(** This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ Copyright (C) 2010-2013 Sylvie Boldo #
# Copyright (C) 2010-2013 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details. *) (** * Missing definitions/lemmas *) Require Export Reals. Require Export ZArith. Require Export Fcore_Zaux. Section Rmissing. (** About R *) Theorem Rle_0_minus : forall x y, (x <= y)%R -> (0 <= y - x)%R. Proof. intros. apply Rge_le. apply Rge_minus. now apply Rle_ge. Qed. Theorem Rabs_eq_Rabs : forall x y : R, Rabs x = Rabs y -> x = y \/ x = Ropp y. Proof. intros x y H. unfold Rabs in H. destruct (Rcase_abs x) as [_|_]. assert (H' := f_equal Ropp H). rewrite Ropp_involutive in H'. rewrite H'. destruct (Rcase_abs y) as [_|_]. left. apply Ropp_involutive. now right. rewrite H. now destruct (Rcase_abs y) as [_|_] ; [right|left]. Qed. Theorem Rabs_minus_le: forall x y : R, (0 <= y)%R -> (y <= 2*x)%R -> (Rabs (x-y) <= x)%R. Proof. intros x y Hx Hy. unfold Rabs; case (Rcase_abs (x - y)); intros H. apply Rplus_le_reg_l with x; ring_simplify; assumption. apply Rplus_le_reg_l with (-x)%R; ring_simplify. auto with real. Qed. Theorem Rplus_eq_reg_r : forall r r1 r2 : R, (r1 + r = r2 + r)%R -> (r1 = r2)%R. Proof. intros r r1 r2 H. apply Rplus_eq_reg_l with r. now rewrite 2!(Rplus_comm r). Qed. Theorem Rplus_le_reg_r : forall r r1 r2 : R, (r1 + r <= r2 + r)%R -> (r1 <= r2)%R. Proof. intros. apply Rplus_le_reg_l with r. now rewrite 2!(Rplus_comm r). Qed. Theorem Rmult_lt_reg_r : forall r r1 r2 : R, (0 < r)%R -> (r1 * r < r2 * r)%R -> (r1 < r2)%R. Proof. intros. apply Rmult_lt_reg_l with r. exact H. now rewrite 2!(Rmult_comm r). Qed. Theorem Rmult_le_reg_r : forall r r1 r2 : R, (0 < r)%R -> (r1 * r <= r2 * r)%R -> (r1 <= r2)%R. Proof. intros. apply Rmult_le_reg_l with r. exact H. now rewrite 2!(Rmult_comm r). Qed. Theorem Rmult_eq_reg_r : forall r r1 r2 : R, (r1 * r)%R = (r2 * r)%R -> r <> 0%R -> r1 = r2. Proof. intros r r1 r2 H1 H2. apply Rmult_eq_reg_l with r. now rewrite 2!(Rmult_comm r). exact H2. Qed. Theorem Rmult_minus_distr_r : forall r r1 r2 : R, ((r1 - r2) * r = r1 * r - r2 * r)%R. Proof. intros r r1 r2. rewrite <- 3!(Rmult_comm r). apply Rmult_minus_distr_l. Qed. Lemma Rmult_neq_reg_r: forall r1 r2 r3:R, (r2 * r1 <> r3 * r1)%R -> r2 <> r3. intros r1 r2 r3 H1 H2. apply H1; rewrite H2; ring. Qed. Lemma Rmult_neq_compat_r: forall r1 r2 r3:R, (r1 <> 0)%R -> (r2 <> r3)%R -> (r2 *r1 <> r3*r1)%R. intros r1 r2 r3 H H1 H2. now apply H1, Rmult_eq_reg_r with r1. Qed. Theorem Rmult_min_distr_r : forall r r1 r2 : R, (0 <= r)%R -> (Rmin r1 r2 * r)%R = Rmin (r1 * r) (r2 * r). Proof. intros r r1 r2 [Hr|Hr]. unfold Rmin. destruct (Rle_dec r1 r2) as [H1|H1] ; destruct (Rle_dec (r1 * r) (r2 * r)) as [H2|H2] ; try easy. apply (f_equal (fun x => Rmult x r)). apply Rle_antisym. exact H1. apply Rmult_le_reg_r with (1 := Hr). apply Rlt_le. now apply Rnot_le_lt. apply Rle_antisym. apply Rmult_le_compat_r. now apply Rlt_le. apply Rlt_le. now apply Rnot_le_lt. exact H2. rewrite <- Hr. rewrite 3!Rmult_0_r. unfold Rmin. destruct (Rle_dec 0 0) as [H0|H0]. easy. elim H0. apply Rle_refl. Qed. Theorem Rmult_min_distr_l : forall r r1 r2 : R, (0 <= r)%R -> (r * Rmin r1 r2)%R = Rmin (r * r1) (r * r2). Proof. intros r r1 r2 Hr. rewrite 3!(Rmult_comm r). now apply Rmult_min_distr_r. Qed. Theorem exp_le : forall x y : R, (x <= y)%R -> (exp x <= exp y)%R. Proof. intros x y [H|H]. apply Rlt_le. now apply exp_increasing. rewrite H. apply Rle_refl. Qed. Theorem Rinv_lt : forall x y, (0 < x)%R -> (x < y)%R -> (/y < /x)%R. Proof. intros x y Hx Hxy. apply Rinv_lt_contravar. apply Rmult_lt_0_compat. exact Hx. now apply Rlt_trans with x. exact Hxy. Qed. Theorem Rinv_le : forall x y, (0 < x)%R -> (x <= y)%R -> (/y <= /x)%R. Proof. intros x y Hx Hxy. apply Rle_Rinv. exact Hx. now apply Rlt_le_trans with x. exact Hxy. Qed. Theorem sqrt_ge_0 : forall x : R, (0 <= sqrt x)%R. Proof. intros x. unfold sqrt. destruct (Rcase_abs x) as [_|H]. apply Rle_refl. apply Rsqrt_positivity. Qed. Theorem Rabs_le : forall x y, (-y <= x <= y)%R -> (Rabs x <= y)%R. Proof. intros x y (Hyx,Hxy). unfold Rabs. case Rcase_abs ; intros Hx. apply Ropp_le_cancel. now rewrite Ropp_involutive. exact Hxy. Qed. Theorem Rabs_le_inv : forall x y, (Rabs x <= y)%R -> (-y <= x <= y)%R. Proof. intros x y Hxy. split. apply Rle_trans with (- Rabs x)%R. now apply Ropp_le_contravar. apply Ropp_le_cancel. rewrite Ropp_involutive, <- Rabs_Ropp. apply RRle_abs. apply Rle_trans with (2 := Hxy). apply RRle_abs. Qed. Theorem Rabs_ge : forall x y, (y <= -x \/ x <= y)%R -> (x <= Rabs y)%R. Proof. intros x y [Hyx|Hxy]. apply Rle_trans with (-y)%R. apply Ropp_le_cancel. now rewrite Ropp_involutive. rewrite <- Rabs_Ropp. apply RRle_abs. apply Rle_trans with (1 := Hxy). apply RRle_abs. Qed. Theorem Rabs_ge_inv : forall x y, (x <= Rabs y)%R -> (y <= -x \/ x <= y)%R. Proof. intros x y. unfold Rabs. case Rcase_abs ; intros Hy Hxy. left. apply Ropp_le_cancel. now rewrite Ropp_involutive. now right. Qed. Theorem Rabs_lt : forall x y, (-y < x < y)%R -> (Rabs x < y)%R. Proof. intros x y (Hyx,Hxy). now apply Rabs_def1. Qed. Theorem Rabs_lt_inv : forall x y, (Rabs x < y)%R -> (-y < x < y)%R. Proof. intros x y H. now split ; eapply Rabs_def2. Qed. Theorem Rabs_gt : forall x y, (y < -x \/ x < y)%R -> (x < Rabs y)%R. Proof. intros x y [Hyx|Hxy]. rewrite <- Rabs_Ropp. apply Rlt_le_trans with (Ropp y). apply Ropp_lt_cancel. now rewrite Ropp_involutive. apply RRle_abs. apply Rlt_le_trans with (1 := Hxy). apply RRle_abs. Qed. Theorem Rabs_gt_inv : forall x y, (x < Rabs y)%R -> (y < -x \/ x < y)%R. Proof. intros x y. unfold Rabs. case Rcase_abs ; intros Hy Hxy. left. apply Ropp_lt_cancel. now rewrite Ropp_involutive. now right. Qed. End Rmissing. Section Z2R. (** Z2R function (Z -> R) *) Fixpoint P2R (p : positive) := match p with | xH => 1%R | xO xH => 2%R | xO t => (2 * P2R t)%R | xI xH => 3%R | xI t => (1 + 2 * P2R t)%R end. Definition Z2R n := match n with | Zpos p => P2R p | Zneg p => Ropp (P2R p) | Z0 => R0 end. Theorem P2R_INR : forall n, P2R n = INR (nat_of_P n). Proof. induction n ; simpl ; try ( rewrite IHn ; rewrite <- (mult_INR 2) ; rewrite <- (nat_of_P_mult_morphism 2) ; change (2 * n)%positive with (xO n)). (* xI *) rewrite (Rplus_comm 1). change (nat_of_P (xO n)) with (Pmult_nat n 2). case n ; intros ; simpl ; try apply refl_equal. case (Pmult_nat p 4) ; intros ; try apply refl_equal. rewrite Rplus_0_l. apply refl_equal. apply Rplus_comm. (* xO *) case n ; intros ; apply refl_equal. (* xH *) apply refl_equal. Qed. Theorem Z2R_IZR : forall n, Z2R n = IZR n. Proof. intro. case n ; intros ; simpl. apply refl_equal. apply P2R_INR. apply Ropp_eq_compat. apply P2R_INR. Qed. Theorem Z2R_opp : forall n, Z2R (-n) = (- Z2R n)%R. Proof. intros. repeat rewrite Z2R_IZR. apply Ropp_Ropp_IZR. Qed. Theorem Z2R_plus : forall m n, (Z2R (m + n) = Z2R m + Z2R n)%R. Proof. intros. repeat rewrite Z2R_IZR. apply plus_IZR. Qed. Theorem minus_IZR : forall n m : Z, IZR (n - m) = (IZR n - IZR m)%R. Proof. intros. unfold Zminus. rewrite plus_IZR. rewrite Ropp_Ropp_IZR. apply refl_equal. Qed. Theorem Z2R_minus : forall m n, (Z2R (m - n) = Z2R m - Z2R n)%R. Proof. intros. repeat rewrite Z2R_IZR. apply minus_IZR. Qed. Theorem Z2R_mult : forall m n, (Z2R (m * n) = Z2R m * Z2R n)%R. Proof. intros. repeat rewrite Z2R_IZR. apply mult_IZR. Qed. Theorem le_Z2R : forall m n, (Z2R m <= Z2R n)%R -> (m <= n)%Z. Proof. intros m n. repeat rewrite Z2R_IZR. apply le_IZR. Qed. Theorem Z2R_le : forall m n, (m <= n)%Z -> (Z2R m <= Z2R n)%R. Proof. intros m n. repeat rewrite Z2R_IZR. apply IZR_le. Qed. Theorem lt_Z2R : forall m n, (Z2R m < Z2R n)%R -> (m < n)%Z. Proof. intros m n. repeat rewrite Z2R_IZR. apply lt_IZR. Qed. Theorem Z2R_lt : forall m n, (m < n)%Z -> (Z2R m < Z2R n)%R. Proof. intros m n. repeat rewrite Z2R_IZR. apply IZR_lt. Qed. Theorem Z2R_le_lt : forall m n p, (m <= n < p)%Z -> (Z2R m <= Z2R n < Z2R p)%R. Proof. intros m n p (H1, H2). split. now apply Z2R_le. now apply Z2R_lt. Qed. Theorem le_lt_Z2R : forall m n p, (Z2R m <= Z2R n < Z2R p)%R -> (m <= n < p)%Z. Proof. intros m n p (H1, H2). split. now apply le_Z2R. now apply lt_Z2R. Qed. Theorem eq_Z2R : forall m n, (Z2R m = Z2R n)%R -> (m = n)%Z. Proof. intros m n H. apply eq_IZR. now rewrite <- 2!Z2R_IZR. Qed. Theorem neq_Z2R : forall m n, (Z2R m <> Z2R n)%R -> (m <> n)%Z. Proof. intros m n H H'. apply H. now apply f_equal. Qed. Theorem Z2R_neq : forall m n, (m <> n)%Z -> (Z2R m <> Z2R n)%R. Proof. intros m n. repeat rewrite Z2R_IZR. apply IZR_neq. Qed. Theorem Z2R_abs : forall z, Z2R (Zabs z) = Rabs (Z2R z). Proof. intros. repeat rewrite Z2R_IZR. now rewrite Rabs_Zabs. Qed. End Z2R. (** Decidable comparison on reals *) Section Rcompare. Definition Rcompare x y := match total_order_T x y with | inleft (left _) => Lt | inleft (right _) => Eq | inright _ => Gt end. Inductive Rcompare_prop (x y : R) : comparison -> Prop := | Rcompare_Lt_ : (x < y)%R -> Rcompare_prop x y Lt | Rcompare_Eq_ : x = y -> Rcompare_prop x y Eq | Rcompare_Gt_ : (y < x)%R -> Rcompare_prop x y Gt. Theorem Rcompare_spec : forall x y, Rcompare_prop x y (Rcompare x y). Proof. intros x y. unfold Rcompare. now destruct (total_order_T x y) as [[H|H]|H] ; constructor. Qed. Global Opaque Rcompare. Theorem Rcompare_Lt : forall x y, (x < y)%R -> Rcompare x y = Lt. Proof. intros x y H. case Rcompare_spec ; intro H'. easy. rewrite H' in H. elim (Rlt_irrefl _ H). elim (Rlt_irrefl x). now apply Rlt_trans with y. Qed. Theorem Rcompare_Lt_inv : forall x y, Rcompare x y = Lt -> (x < y)%R. Proof. intros x y. now case Rcompare_spec. Qed. Theorem Rcompare_not_Lt : forall x y, (y <= x)%R -> Rcompare x y <> Lt. Proof. intros x y H1 H2. apply Rle_not_lt with (1 := H1). now apply Rcompare_Lt_inv. Qed. Theorem Rcompare_not_Lt_inv : forall x y, Rcompare x y <> Lt -> (y <= x)%R. Proof. intros x y H. apply Rnot_lt_le. contradict H. now apply Rcompare_Lt. Qed. Theorem Rcompare_Eq : forall x y, x = y -> Rcompare x y = Eq. Proof. intros x y H. rewrite H. now case Rcompare_spec ; intro H' ; try elim (Rlt_irrefl _ H'). Qed. Theorem Rcompare_Eq_inv : forall x y, Rcompare x y = Eq -> x = y. Proof. intros x y. now case Rcompare_spec. Qed. Theorem Rcompare_Gt : forall x y, (y < x)%R -> Rcompare x y = Gt. Proof. intros x y H. case Rcompare_spec ; intro H'. elim (Rlt_irrefl x). now apply Rlt_trans with y. rewrite H' in H. elim (Rlt_irrefl _ H). easy. Qed. Theorem Rcompare_Gt_inv : forall x y, Rcompare x y = Gt -> (y < x)%R. Proof. intros x y. now case Rcompare_spec. Qed. Theorem Rcompare_not_Gt : forall x y, (x <= y)%R -> Rcompare x y <> Gt. Proof. intros x y H1 H2. apply Rle_not_lt with (1 := H1). now apply Rcompare_Gt_inv. Qed. Theorem Rcompare_not_Gt_inv : forall x y, Rcompare x y <> Gt -> (x <= y)%R. Proof. intros x y H. apply Rnot_lt_le. contradict H. now apply Rcompare_Gt. Qed. Theorem Rcompare_Z2R : forall x y, Rcompare (Z2R x) (Z2R y) = Zcompare x y. Proof. intros x y. case Rcompare_spec ; intros H ; apply sym_eq. apply Zcompare_Lt. now apply lt_Z2R. apply Zcompare_Eq. now apply eq_Z2R. apply Zcompare_Gt. now apply lt_Z2R. Qed. Theorem Rcompare_sym : forall x y, Rcompare x y = CompOpp (Rcompare y x). Proof. intros x y. destruct (Rcompare_spec y x) as [H|H|H]. now apply Rcompare_Gt. now apply Rcompare_Eq. now apply Rcompare_Lt. Qed. Theorem Rcompare_plus_r : forall z x y, Rcompare (x + z) (y + z) = Rcompare x y. Proof. intros z x y. destruct (Rcompare_spec x y) as [H|H|H]. apply Rcompare_Lt. now apply Rplus_lt_compat_r. apply Rcompare_Eq. now rewrite H. apply Rcompare_Gt. now apply Rplus_lt_compat_r. Qed. Theorem Rcompare_plus_l : forall z x y, Rcompare (z + x) (z + y) = Rcompare x y. Proof. intros z x y. rewrite 2!(Rplus_comm z). apply Rcompare_plus_r. Qed. Theorem Rcompare_mult_r : forall z x y, (0 < z)%R -> Rcompare (x * z) (y * z) = Rcompare x y. Proof. intros z x y Hz. destruct (Rcompare_spec x y) as [H|H|H]. apply Rcompare_Lt. now apply Rmult_lt_compat_r. apply Rcompare_Eq. now rewrite H. apply Rcompare_Gt. now apply Rmult_lt_compat_r. Qed. Theorem Rcompare_mult_l : forall z x y, (0 < z)%R -> Rcompare (z * x) (z * y) = Rcompare x y. Proof. intros z x y. rewrite 2!(Rmult_comm z). apply Rcompare_mult_r. Qed. Theorem Rcompare_middle : forall x d u, Rcompare (x - d) (u - x) = Rcompare x ((d + u) / 2). Proof. intros x d u. rewrite <- (Rcompare_plus_r (- x / 2 - d / 2) x). rewrite <- (Rcompare_mult_r (/2) (x - d)). field_simplify (x + (- x / 2 - d / 2))%R. now field_simplify ((d + u) / 2 + (- x / 2 - d / 2))%R. apply Rinv_0_lt_compat. now apply (Z2R_lt 0 2). Qed. Theorem Rcompare_half_l : forall x y, Rcompare (x / 2) y = Rcompare x (2 * y). Proof. intros x y. rewrite <- (Rcompare_mult_r 2%R). unfold Rdiv. rewrite Rmult_assoc, Rinv_l, Rmult_1_r. now rewrite Rmult_comm. now apply (Z2R_neq 2 0). now apply (Z2R_lt 0 2). Qed. Theorem Rcompare_half_r : forall x y, Rcompare x (y / 2) = Rcompare (2 * x) y. Proof. intros x y. rewrite <- (Rcompare_mult_r 2%R). unfold Rdiv. rewrite Rmult_assoc, Rinv_l, Rmult_1_r. now rewrite Rmult_comm. now apply (Z2R_neq 2 0). now apply (Z2R_lt 0 2). Qed. Theorem Rcompare_sqr : forall x y, (0 <= x)%R -> (0 <= y)%R -> Rcompare (x * x) (y * y) = Rcompare x y. Proof. intros x y Hx Hy. destruct (Rcompare_spec x y) as [H|H|H]. apply Rcompare_Lt. now apply Rsqr_incrst_1. rewrite H. now apply Rcompare_Eq. apply Rcompare_Gt. now apply Rsqr_incrst_1. Qed. Theorem Rmin_compare : forall x y, Rmin x y = match Rcompare x y with Lt => x | Eq => x | Gt => y end. Proof. intros x y. unfold Rmin. destruct (Rle_dec x y) as [[Hx|Hx]|Hx]. now rewrite Rcompare_Lt. now rewrite Rcompare_Eq. rewrite Rcompare_Gt. easy. now apply Rnot_le_lt. Qed. End Rcompare. Section Rle_bool. Definition Rle_bool x y := match Rcompare x y with | Gt => false | _ => true end. Inductive Rle_bool_prop (x y : R) : bool -> Prop := | Rle_bool_true_ : (x <= y)%R -> Rle_bool_prop x y true | Rle_bool_false_ : (y < x)%R -> Rle_bool_prop x y false. Theorem Rle_bool_spec : forall x y, Rle_bool_prop x y (Rle_bool x y). Proof. intros x y. unfold Rle_bool. case Rcompare_spec ; constructor. now apply Rlt_le. rewrite H. apply Rle_refl. exact H. Qed. Theorem Rle_bool_true : forall x y, (x <= y)%R -> Rle_bool x y = true. Proof. intros x y Hxy. case Rle_bool_spec ; intros H. apply refl_equal. elim (Rlt_irrefl x). now apply Rle_lt_trans with y. Qed. Theorem Rle_bool_false : forall x y, (y < x)%R -> Rle_bool x y = false. Proof. intros x y Hxy. case Rle_bool_spec ; intros H. elim (Rlt_irrefl x). now apply Rle_lt_trans with y. apply refl_equal. Qed. End Rle_bool. Section Rlt_bool. Definition Rlt_bool x y := match Rcompare x y with | Lt => true | _ => false end. Inductive Rlt_bool_prop (x y : R) : bool -> Prop := | Rlt_bool_true_ : (x < y)%R -> Rlt_bool_prop x y true | Rlt_bool_false_ : (y <= x)%R -> Rlt_bool_prop x y false. Theorem Rlt_bool_spec : forall x y, Rlt_bool_prop x y (Rlt_bool x y). Proof. intros x y. unfold Rlt_bool. case Rcompare_spec ; constructor. exact H. rewrite H. apply Rle_refl. now apply Rlt_le. Qed. Theorem negb_Rlt_bool : forall x y, negb (Rle_bool x y) = Rlt_bool y x. Proof. intros x y. unfold Rlt_bool, Rle_bool. rewrite Rcompare_sym. now case Rcompare. Qed. Theorem negb_Rle_bool : forall x y, negb (Rlt_bool x y) = Rle_bool y x. Proof. intros x y. unfold Rlt_bool, Rle_bool. rewrite Rcompare_sym. now case Rcompare. Qed. Theorem Rlt_bool_true : forall x y, (x < y)%R -> Rlt_bool x y = true. Proof. intros x y Hxy. rewrite <- negb_Rlt_bool. now rewrite Rle_bool_false. Qed. Theorem Rlt_bool_false : forall x y, (y <= x)%R -> Rlt_bool x y = false. Proof. intros x y Hxy. rewrite <- negb_Rlt_bool. now rewrite Rle_bool_true. Qed. End Rlt_bool. Section Req_bool. Definition Req_bool x y := match Rcompare x y with | Eq => true | _ => false end. Inductive Req_bool_prop (x y : R) : bool -> Prop := | Req_bool_true_ : (x = y)%R -> Req_bool_prop x y true | Req_bool_false_ : (x <> y)%R -> Req_bool_prop x y false. Theorem Req_bool_spec : forall x y, Req_bool_prop x y (Req_bool x y). Proof. intros x y. unfold Req_bool. case Rcompare_spec ; constructor. now apply Rlt_not_eq. easy. now apply Rgt_not_eq. Qed. Theorem Req_bool_true : forall x y, (x = y)%R -> Req_bool x y = true. Proof. intros x y Hxy. case Req_bool_spec ; intros H. apply refl_equal. contradict H. exact Hxy. Qed. Theorem Req_bool_false : forall x y, (x <> y)%R -> Req_bool x y = false. Proof. intros x y Hxy. case Req_bool_spec ; intros H. contradict Hxy. exact H. apply refl_equal. Qed. End Req_bool. Section Floor_Ceil. (** Zfloor and Zceil *) Definition Zfloor (x : R) := (up x - 1)%Z. Theorem Zfloor_lb : forall x : R, (Z2R (Zfloor x) <= x)%R. Proof. intros x. unfold Zfloor. rewrite Z2R_minus. simpl. rewrite Z2R_IZR. apply Rplus_le_reg_r with (1 - x)%R. ring_simplify. exact (proj2 (archimed x)). Qed. Theorem Zfloor_ub : forall x : R, (x < Z2R (Zfloor x) + 1)%R. Proof. intros x. unfold Zfloor. rewrite Z2R_minus. unfold Rminus. rewrite Rplus_assoc. rewrite Rplus_opp_l, Rplus_0_r. rewrite Z2R_IZR. exact (proj1 (archimed x)). Qed. Theorem Zfloor_lub : forall n x, (Z2R n <= x)%R -> (n <= Zfloor x)%Z. Proof. intros n x Hnx. apply Zlt_succ_le. apply lt_Z2R. apply Rle_lt_trans with (1 := Hnx). unfold Zsucc. rewrite Z2R_plus. apply Zfloor_ub. Qed. Theorem Zfloor_imp : forall n x, (Z2R n <= x < Z2R (n + 1))%R -> Zfloor x = n. Proof. intros n x Hnx. apply Zle_antisym. apply Zlt_succ_le. apply lt_Z2R. apply Rle_lt_trans with (2 := proj2 Hnx). apply Zfloor_lb. now apply Zfloor_lub. Qed. Theorem Zfloor_Z2R : forall n, Zfloor (Z2R n) = n. Proof. intros n. apply Zfloor_imp. split. apply Rle_refl. apply Z2R_lt. apply Zlt_succ. Qed. Theorem Zfloor_le : forall x y, (x <= y)%R -> (Zfloor x <= Zfloor y)%Z. Proof. intros x y Hxy. apply Zfloor_lub. apply Rle_trans with (2 := Hxy). apply Zfloor_lb. Qed. Definition Zceil (x : R) := (- Zfloor (- x))%Z. Theorem Zceil_ub : forall x : R, (x <= Z2R (Zceil x))%R. Proof. intros x. unfold Zceil. rewrite Z2R_opp. apply Ropp_le_cancel. rewrite Ropp_involutive. apply Zfloor_lb. Qed. Theorem Zceil_glb : forall n x, (x <= Z2R n)%R -> (Zceil x <= n)%Z. Proof. intros n x Hnx. unfold Zceil. apply Zopp_le_cancel. rewrite Zopp_involutive. apply Zfloor_lub. rewrite Z2R_opp. now apply Ropp_le_contravar. Qed. Theorem Zceil_imp : forall n x, (Z2R (n - 1) < x <= Z2R n)%R -> Zceil x = n. Proof. intros n x Hnx. unfold Zceil. rewrite <- (Zopp_involutive n). apply f_equal. apply Zfloor_imp. split. rewrite Z2R_opp. now apply Ropp_le_contravar. rewrite <- (Zopp_involutive 1). rewrite <- Zopp_plus_distr. rewrite Z2R_opp. now apply Ropp_lt_contravar. Qed. Theorem Zceil_Z2R : forall n, Zceil (Z2R n) = n. Proof. intros n. unfold Zceil. rewrite <- Z2R_opp, Zfloor_Z2R. apply Zopp_involutive. Qed. Theorem Zceil_le : forall x y, (x <= y)%R -> (Zceil x <= Zceil y)%Z. Proof. intros x y Hxy. apply Zceil_glb. apply Rle_trans with (1 := Hxy). apply Zceil_ub. Qed. Theorem Zceil_floor_neq : forall x : R, (Z2R (Zfloor x) <> x)%R -> (Zceil x = Zfloor x + 1)%Z. Proof. intros x Hx. apply Zceil_imp. split. ring_simplify (Zfloor x + 1 - 1)%Z. apply Rnot_le_lt. intros H. apply Hx. apply Rle_antisym. apply Zfloor_lb. exact H. apply Rlt_le. rewrite Z2R_plus. apply Zfloor_ub. Qed. Definition Ztrunc x := if Rlt_bool x 0 then Zceil x else Zfloor x. Theorem Ztrunc_Z2R : forall n, Ztrunc (Z2R n) = n. Proof. intros n. unfold Ztrunc. case Rlt_bool_spec ; intro H. apply Zceil_Z2R. apply Zfloor_Z2R. Qed. Theorem Ztrunc_floor : forall x, (0 <= x)%R -> Ztrunc x = Zfloor x. Proof. intros x Hx. unfold Ztrunc. case Rlt_bool_spec ; intro H. elim Rlt_irrefl with x. now apply Rlt_le_trans with R0. apply refl_equal. Qed. Theorem Ztrunc_ceil : forall x, (x <= 0)%R -> Ztrunc x = Zceil x. Proof. intros x Hx. unfold Ztrunc. case Rlt_bool_spec ; intro H. apply refl_equal. rewrite (Rle_antisym _ _ Hx H). fold (Z2R 0). rewrite Zceil_Z2R. apply Zfloor_Z2R. Qed. Theorem Ztrunc_le : forall x y, (x <= y)%R -> (Ztrunc x <= Ztrunc y)%Z. Proof. intros x y Hxy. unfold Ztrunc at 1. case Rlt_bool_spec ; intro Hx. unfold Ztrunc. case Rlt_bool_spec ; intro Hy. now apply Zceil_le. apply Zle_trans with 0%Z. apply Zceil_glb. now apply Rlt_le. now apply Zfloor_lub. rewrite Ztrunc_floor. now apply Zfloor_le. now apply Rle_trans with x. Qed. Theorem Ztrunc_opp : forall x, Ztrunc (- x) = Zopp (Ztrunc x). Proof. intros x. unfold Ztrunc at 2. case Rlt_bool_spec ; intros Hx. rewrite Ztrunc_floor. apply sym_eq. apply Zopp_involutive. rewrite <- Ropp_0. apply Ropp_le_contravar. now apply Rlt_le. rewrite Ztrunc_ceil. unfold Zceil. now rewrite Ropp_involutive. rewrite <- Ropp_0. now apply Ropp_le_contravar. Qed. Theorem Ztrunc_abs : forall x, Ztrunc (Rabs x) = Zabs (Ztrunc x). Proof. intros x. rewrite Ztrunc_floor. 2: apply Rabs_pos. unfold Ztrunc. case Rlt_bool_spec ; intro H. rewrite Rabs_left with (1 := H). rewrite Zabs_non_eq. apply sym_eq. apply Zopp_involutive. apply Zceil_glb. now apply Rlt_le. rewrite Rabs_pos_eq with (1 := H). apply sym_eq. apply Zabs_eq. now apply Zfloor_lub. Qed. Theorem Ztrunc_lub : forall n x, (Z2R n <= Rabs x)%R -> (n <= Zabs (Ztrunc x))%Z. Proof. intros n x H. rewrite <- Ztrunc_abs. rewrite Ztrunc_floor. 2: apply Rabs_pos. now apply Zfloor_lub. Qed. Definition Zaway x := if Rlt_bool x 0 then Zfloor x else Zceil x. Theorem Zaway_Z2R : forall n, Zaway (Z2R n) = n. Proof. intros n. unfold Zaway. case Rlt_bool_spec ; intro H. apply Zfloor_Z2R. apply Zceil_Z2R. Qed. Theorem Zaway_ceil : forall x, (0 <= x)%R -> Zaway x = Zceil x. Proof. intros x Hx. unfold Zaway. case Rlt_bool_spec ; intro H. elim Rlt_irrefl with x. now apply Rlt_le_trans with R0. apply refl_equal. Qed. Theorem Zaway_floor : forall x, (x <= 0)%R -> Zaway x = Zfloor x. Proof. intros x Hx. unfold Zaway. case Rlt_bool_spec ; intro H. apply refl_equal. rewrite (Rle_antisym _ _ Hx H). fold (Z2R 0). rewrite Zfloor_Z2R. apply Zceil_Z2R. Qed. Theorem Zaway_le : forall x y, (x <= y)%R -> (Zaway x <= Zaway y)%Z. Proof. intros x y Hxy. unfold Zaway at 1. case Rlt_bool_spec ; intro Hx. unfold Zaway. case Rlt_bool_spec ; intro Hy. now apply Zfloor_le. apply le_Z2R. apply Rle_trans with 0%R. apply Rlt_le. apply Rle_lt_trans with (2 := Hx). apply Zfloor_lb. apply Rle_trans with (1 := Hy). apply Zceil_ub. rewrite Zaway_ceil. now apply Zceil_le. now apply Rle_trans with x. Qed. Theorem Zaway_opp : forall x, Zaway (- x) = Zopp (Zaway x). Proof. intros x. unfold Zaway at 2. case Rlt_bool_spec ; intro H. rewrite Zaway_ceil. unfold Zceil. now rewrite Ropp_involutive. apply Rlt_le. now apply Ropp_0_gt_lt_contravar. rewrite Zaway_floor. apply sym_eq. apply Zopp_involutive. rewrite <- Ropp_0. now apply Ropp_le_contravar. Qed. Theorem Zaway_abs : forall x, Zaway (Rabs x) = Zabs (Zaway x). Proof. intros x. rewrite Zaway_ceil. 2: apply Rabs_pos. unfold Zaway. case Rlt_bool_spec ; intro H. rewrite Rabs_left with (1 := H). rewrite Zabs_non_eq. apply (f_equal (fun v => - Zfloor v)%Z). apply Ropp_involutive. apply le_Z2R. apply Rlt_le. apply Rle_lt_trans with (2 := H). apply Zfloor_lb. rewrite Rabs_pos_eq with (1 := H). apply sym_eq. apply Zabs_eq. apply le_Z2R. apply Rle_trans with (1 := H). apply Zceil_ub. Qed. End Floor_Ceil. Section Zdiv_Rdiv. Theorem Zfloor_div : forall x y, y <> Z0 -> Zfloor (Z2R x / Z2R y) = (x / y)%Z. Proof. intros x y Zy. generalize (Z_div_mod_eq_full x y Zy). intros Hx. rewrite Hx at 1. assert (Zy': Z2R y <> R0). contradict Zy. now apply eq_Z2R. unfold Rdiv. rewrite Z2R_plus, Rmult_plus_distr_r, Z2R_mult. replace (Z2R y * Z2R (x / y) * / Z2R y)%R with (Z2R (x / y)) by now field. apply Zfloor_imp. rewrite Z2R_plus. assert (0 <= Z2R (x mod y) * / Z2R y < 1)%R. (* *) assert (forall x' y', (0 < y')%Z -> 0 <= Z2R (x' mod y') * / Z2R y' < 1)%R. (* . *) clear. intros x y Hy. split. apply Rmult_le_pos. apply (Z2R_le 0). refine (proj1 (Z_mod_lt _ _ _)). now apply Zlt_gt. apply Rlt_le. apply Rinv_0_lt_compat. now apply (Z2R_lt 0). apply Rmult_lt_reg_r with (Z2R y). now apply (Z2R_lt 0). rewrite Rmult_1_l, Rmult_assoc, Rinv_l, Rmult_1_r. apply Z2R_lt. eapply Z_mod_lt. now apply Zlt_gt. apply Rgt_not_eq. now apply (Z2R_lt 0). (* . *) destruct (Z_lt_le_dec y 0) as [Hy|Hy]. rewrite <- Rmult_opp_opp. rewrite Ropp_inv_permute with (1 := Zy'). rewrite <- 2!Z2R_opp. rewrite <- Zmod_opp_opp. apply H. clear -Hy. omega. apply H. clear -Zy Hy. omega. (* *) split. pattern (Z2R (x / y)) at 1 ; rewrite <- Rplus_0_r. apply Rplus_le_compat_l. apply H. apply Rplus_lt_compat_l. apply H. Qed. End Zdiv_Rdiv. Section pow. Variable r : radix. Theorem radix_pos : (0 < Z2R r)%R. Proof. destruct r as (v, Hr). simpl. apply (Z2R_lt 0). apply Zlt_le_trans with 2%Z. easy. now apply Zle_bool_imp_le. Qed. (** Well-used function called bpow for computing the power function #β#^e *) Definition bpow e := match e with | Zpos p => Z2R (Zpower_pos r p) | Zneg p => Rinv (Z2R (Zpower_pos r p)) | Z0 => R1 end. Theorem Z2R_Zpower_pos : forall n m, Z2R (Zpower_pos n m) = powerRZ (Z2R n) (Zpos m). Proof. intros. rewrite Zpower_pos_nat. simpl. induction (nat_of_P m). apply refl_equal. unfold Zpower_nat. simpl. rewrite Z2R_mult. apply Rmult_eq_compat_l. exact IHn0. Qed. Theorem bpow_powerRZ : forall e, bpow e = powerRZ (Z2R r) e. Proof. destruct e ; unfold bpow. reflexivity. now rewrite Z2R_Zpower_pos. now rewrite Z2R_Zpower_pos. Qed. Theorem bpow_ge_0 : forall e : Z, (0 <= bpow e)%R. Proof. intros. rewrite bpow_powerRZ. apply powerRZ_le. apply radix_pos. Qed. Theorem bpow_gt_0 : forall e : Z, (0 < bpow e)%R. Proof. intros. rewrite bpow_powerRZ. apply powerRZ_lt. apply radix_pos. Qed. Theorem bpow_plus : forall e1 e2 : Z, (bpow (e1 + e2) = bpow e1 * bpow e2)%R. Proof. intros. repeat rewrite bpow_powerRZ. apply powerRZ_add. apply Rgt_not_eq. apply radix_pos. Qed. Theorem bpow_1 : bpow 1 = Z2R r. Proof. unfold bpow, Zpower_pos. simpl. now rewrite Zmult_1_r. Qed. Theorem bpow_plus1 : forall e : Z, (bpow (e + 1) = Z2R r * bpow e)%R. Proof. intros. rewrite <- bpow_1. rewrite <- bpow_plus. now rewrite Zplus_comm. Qed. Theorem bpow_opp : forall e : Z, (bpow (-e) = /bpow e)%R. Proof. intros e; destruct e. simpl; now rewrite Rinv_1. now replace (-Zpos p)%Z with (Zneg p) by reflexivity. replace (-Zneg p)%Z with (Zpos p) by reflexivity. simpl; rewrite Rinv_involutive; trivial. generalize (bpow_gt_0 (Zpos p)). simpl; auto with real. Qed. Theorem Z2R_Zpower_nat : forall e : nat, Z2R (Zpower_nat r e) = bpow (Z_of_nat e). Proof. intros [|e]. split. rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ. rewrite <- Zpower_pos_nat. now rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P. Qed. Theorem Z2R_Zpower : forall e : Z, (0 <= e)%Z -> Z2R (Zpower r e) = bpow e. Proof. intros [|e|e] H. split. split. now elim H. Qed. Theorem bpow_lt : forall e1 e2 : Z, (e1 < e2)%Z -> (bpow e1 < bpow e2)%R. Proof. intros e1 e2 H. replace e2 with (e1 + (e2 - e1))%Z by ring. rewrite <- (Rmult_1_r (bpow e1)). rewrite bpow_plus. apply Rmult_lt_compat_l. apply bpow_gt_0. assert (0 < e2 - e1)%Z by omega. destruct (e2 - e1)%Z ; try discriminate H0. clear. rewrite <- Z2R_Zpower by easy. apply (Z2R_lt 1). now apply Zpower_gt_1. Qed. Theorem lt_bpow : forall e1 e2 : Z, (bpow e1 < bpow e2)%R -> (e1 < e2)%Z. Proof. intros e1 e2 H. apply Zgt_lt. apply Znot_le_gt. intros H'. apply Rlt_not_le with (1 := H). destruct (Zle_lt_or_eq _ _ H'). apply Rlt_le. now apply bpow_lt. rewrite H0. apply Rle_refl. Qed. Theorem bpow_le : forall e1 e2 : Z, (e1 <= e2)%Z -> (bpow e1 <= bpow e2)%R. Proof. intros e1 e2 H. apply Rnot_lt_le. intros H'. apply Zle_not_gt with (1 := H). apply Zlt_gt. now apply lt_bpow. Qed. Theorem le_bpow : forall e1 e2 : Z, (bpow e1 <= bpow e2)%R -> (e1 <= e2)%Z. Proof. intros e1 e2 H. apply Znot_gt_le. intros H'. apply Rle_not_lt with (1 := H). apply bpow_lt. now apply Zgt_lt. Qed. Theorem bpow_inj : forall e1 e2 : Z, bpow e1 = bpow e2 -> e1 = e2. Proof. intros. apply Zle_antisym. apply le_bpow. now apply Req_le. apply le_bpow. now apply Req_le. Qed. Theorem bpow_exp : forall e : Z, bpow e = exp (Z2R e * ln (Z2R r)). Proof. (* positive case *) assert (forall e, bpow (Zpos e) = exp (Z2R (Zpos e) * ln (Z2R r))). intros e. unfold bpow. rewrite Zpower_pos_nat. unfold Z2R at 2. rewrite P2R_INR. induction (nat_of_P e). rewrite Rmult_0_l. now rewrite exp_0. rewrite Zpower_nat_S. rewrite S_INR. rewrite Rmult_plus_distr_r. rewrite exp_plus. rewrite Rmult_1_l. rewrite exp_ln. rewrite <- IHn. rewrite <- Z2R_mult. now rewrite Zmult_comm. apply radix_pos. (* general case *) intros [|e|e]. rewrite Rmult_0_l. now rewrite exp_0. apply H. unfold bpow. change (Z2R (Zpower_pos r e)) with (bpow (Zpos e)). rewrite H. rewrite <- exp_Ropp. rewrite <- Ropp_mult_distr_l_reverse. now rewrite <- Z2R_opp. Qed. (** Another well-used function for having the logarithm of a real number x to the base #β# *) Record ln_beta_prop x := { ln_beta_val :> Z ; _ : (x <> 0)%R -> (bpow (ln_beta_val - 1)%Z <= Rabs x < bpow ln_beta_val)%R }. Definition ln_beta : forall x : R, ln_beta_prop x. Proof. intros x. set (fact := ln (Z2R r)). (* . *) assert (0 < fact)%R. apply exp_lt_inv. rewrite exp_0. unfold fact. rewrite exp_ln. apply (Z2R_lt 1). apply radix_gt_1. apply radix_pos. (* . *) exists (Zfloor (ln (Rabs x) / fact) + 1)%Z. intros Hx'. generalize (Rabs_pos_lt _ Hx'). clear Hx'. generalize (Rabs x). clear x. intros x Hx. rewrite 2!bpow_exp. fold fact. pattern x at 2 3 ; replace x with (exp (ln x * / fact * fact)). split. rewrite Z2R_minus. apply exp_le. apply Rmult_le_compat_r. now apply Rlt_le. unfold Rminus. rewrite Z2R_plus. rewrite Rplus_assoc. rewrite Rplus_opp_r, Rplus_0_r. apply Zfloor_lb. apply exp_increasing. apply Rmult_lt_compat_r. exact H. rewrite Z2R_plus. apply Zfloor_ub. rewrite Rmult_assoc. rewrite Rinv_l. rewrite Rmult_1_r. now apply exp_ln. now apply Rgt_not_eq. Qed. Theorem bpow_lt_bpow : forall e1 e2, (bpow (e1 - 1) < bpow e2)%R -> (e1 <= e2)%Z. Proof. intros e1 e2 He. rewrite (Zsucc_pred e1). apply Zlt_le_succ. now apply lt_bpow. Qed. Theorem bpow_unique : forall x e1 e2, (bpow (e1 - 1) <= x < bpow e1)%R -> (bpow (e2 - 1) <= x < bpow e2)%R -> e1 = e2. Proof. intros x e1 e2 (H1a,H1b) (H2a,H2b). apply Zle_antisym ; apply bpow_lt_bpow ; apply Rle_lt_trans with x ; assumption. Qed. Theorem ln_beta_unique : forall (x : R) (e : Z), (bpow (e - 1) <= Rabs x < bpow e)%R -> ln_beta x = e :> Z. Proof. intros x e1 He. destruct (Req_dec x 0) as [Hx|Hx]. elim Rle_not_lt with (1 := proj1 He). rewrite Hx, Rabs_R0. apply bpow_gt_0. destruct (ln_beta x) as (e2, Hx2). simpl. apply bpow_unique with (2 := He). now apply Hx2. Qed. Theorem ln_beta_opp : forall x, ln_beta (-x) = ln_beta x :> Z. Proof. intros x. destruct (Req_dec x 0) as [Hx|Hx]. now rewrite Hx, Ropp_0. destruct (ln_beta x) as (e, He). simpl. specialize (He Hx). apply ln_beta_unique. now rewrite Rabs_Ropp. Qed. Theorem ln_beta_abs : forall x, ln_beta (Rabs x) = ln_beta x :> Z. Proof. intros x. unfold Rabs. case Rcase_abs ; intros _. apply ln_beta_opp. apply refl_equal. Qed. Theorem ln_beta_unique_pos : forall (x : R) (e : Z), (bpow (e - 1) <= x < bpow e)%R -> ln_beta x = e :> Z. Proof. intros x e1 He1. rewrite <- ln_beta_abs. apply ln_beta_unique. rewrite 2!Rabs_pos_eq. exact He1. apply Rle_trans with (2 := proj1 He1). apply bpow_ge_0. apply Rabs_pos. Qed. Theorem ln_beta_le_abs : forall x y, (x <> 0)%R -> (Rabs x <= Rabs y)%R -> (ln_beta x <= ln_beta y)%Z. Proof. intros x y H0x Hxy. destruct (ln_beta x) as (ex, Hx). destruct (ln_beta y) as (ey, Hy). simpl. apply bpow_lt_bpow. specialize (Hx H0x). apply Rle_lt_trans with (1 := proj1 Hx). apply Rle_lt_trans with (1 := Hxy). apply Hy. intros Hy'. apply Rlt_not_le with (1 := Rabs_pos_lt _ H0x). apply Rle_trans with (1 := Hxy). rewrite Hy', Rabs_R0. apply Rle_refl. Qed. Theorem ln_beta_le : forall x y, (0 < x)%R -> (x <= y)%R -> (ln_beta x <= ln_beta y)%Z. Proof. intros x y H0x Hxy. apply ln_beta_le_abs. now apply Rgt_not_eq. rewrite 2!Rabs_pos_eq. exact Hxy. apply Rle_trans with (2 := Hxy). now apply Rlt_le. now apply Rlt_le. Qed. Theorem ln_beta_bpow : forall e, (ln_beta (bpow e) = e + 1 :> Z)%Z. Proof. intros e. apply ln_beta_unique. rewrite Rabs_right. replace (e + 1 - 1)%Z with e by ring. split. apply Rle_refl. apply bpow_lt. apply Zlt_succ. apply Rle_ge. apply bpow_ge_0. Qed. Theorem ln_beta_mult_bpow : forall x e, x <> R0 -> (ln_beta (x * bpow e) = ln_beta x + e :>Z)%Z. Proof. intros x e Zx. destruct (ln_beta x) as (ex, Ex) ; simpl. specialize (Ex Zx). apply ln_beta_unique. rewrite Rabs_mult. rewrite (Rabs_pos_eq (bpow e)) by apply bpow_ge_0. split. replace (ex + e - 1)%Z with (ex - 1 + e)%Z by ring. rewrite bpow_plus. apply Rmult_le_compat_r. apply bpow_ge_0. apply Ex. rewrite bpow_plus. apply Rmult_lt_compat_r. apply bpow_gt_0. apply Ex. Qed. Theorem ln_beta_le_bpow : forall x e, x <> R0 -> (Rabs x < bpow e)%R -> (ln_beta x <= e)%Z. Proof. intros x e Zx Hx. destruct (ln_beta x) as (ex, Ex) ; simpl. specialize (Ex Zx). apply bpow_lt_bpow. now apply Rle_lt_trans with (Rabs x). Qed. Theorem ln_beta_gt_bpow : forall x e, (bpow e <= Rabs x)%R -> (e < ln_beta x)%Z. Proof. intros x e Hx. destruct (ln_beta x) as (ex, Ex) ; simpl. apply lt_bpow. apply Rle_lt_trans with (1 := Hx). apply Ex. intros Zx. apply Rle_not_lt with (1 := Hx). rewrite Zx, Rabs_R0. apply bpow_gt_0. Qed. Theorem bpow_ln_beta_gt : forall x, (Rabs x < bpow (ln_beta x))%R. Proof. intros x. destruct (Req_dec x 0) as [Zx|Zx]. rewrite Zx, Rabs_R0. apply bpow_gt_0. destruct (ln_beta x) as (ex, Ex) ; simpl. now apply Ex. Qed. Theorem ln_beta_le_Zpower : forall m e, m <> Z0 -> (Zabs m < Zpower r e)%Z-> (ln_beta (Z2R m) <= e)%Z. Proof. intros m e Zm Hm. apply ln_beta_le_bpow. exact (Z2R_neq m 0 Zm). destruct (Zle_or_lt 0 e). rewrite <- Z2R_abs, <- Z2R_Zpower with (1 := H). now apply Z2R_lt. elim Zm. cut (Zabs m < 0)%Z. now case m. clear -Hm H. now destruct e. Qed. Theorem ln_beta_gt_Zpower : forall m e, m <> Z0 -> (Zpower r e <= Zabs m)%Z -> (e < ln_beta (Z2R m))%Z. Proof. intros m e Zm Hm. apply ln_beta_gt_bpow. rewrite <- Z2R_abs. destruct (Zle_or_lt 0 e). rewrite <- Z2R_Zpower with (1 := H). now apply Z2R_le. apply Rle_trans with (bpow 0). apply bpow_le. now apply Zlt_le_weak. apply (Z2R_le 1). clear -Zm. zify ; omega. Qed. End pow. Section Bool. Theorem eqb_sym : forall x y, Bool.eqb x y = Bool.eqb y x. Proof. now intros [|] [|]. Qed. Theorem eqb_false : forall x y, x = negb y -> Bool.eqb x y = false. Proof. now intros [|] [|]. Qed. Theorem eqb_true : forall x y, x = y -> Bool.eqb x y = true. Proof. now intros [|] [|]. Qed. End Bool. Section cond_Ropp. Definition cond_Ropp (b : bool) m := if b then Ropp m else m. Theorem Z2R_cond_Zopp : forall b m, Z2R (cond_Zopp b m) = cond_Ropp b (Z2R m). Proof. intros [|] m. apply Z2R_opp. apply refl_equal. Qed. Theorem abs_cond_Ropp : forall b m, Rabs (cond_Ropp b m) = Rabs m. Proof. intros [|] m. apply Rabs_Ropp. apply refl_equal. Qed. Theorem cond_Ropp_Rlt_bool : forall m, cond_Ropp (Rlt_bool m 0) m = Rabs m. Proof. intros m. apply sym_eq. case Rlt_bool_spec ; intros Hm. now apply Rabs_left. now apply Rabs_pos_eq. Qed. Theorem cond_Ropp_involutive : forall b x, cond_Ropp b (cond_Ropp b x) = x. Proof. intros [|] x. apply Ropp_involutive. apply refl_equal. Qed. Theorem cond_Ropp_even_function : forall {A : Type} (f : R -> A), (forall x, f (Ropp x) = f x) -> forall b x, f (cond_Ropp b x) = f x. Proof. now intros A f Hf [|] x ; simpl. Qed. Theorem cond_Ropp_odd_function : forall (f : R -> R), (forall x, f (Ropp x) = Ropp (f x)) -> forall b x, f (cond_Ropp b x) = cond_Ropp b (f x). Proof. now intros f Hf [|] x ; simpl. Qed. Theorem cond_Ropp_inj : forall b x y, cond_Ropp b x = cond_Ropp b y -> x = y. Proof. intros b x y H. rewrite <- (cond_Ropp_involutive b x), H. apply cond_Ropp_involutive. Qed. Theorem cond_Ropp_mult_l : forall b x y, cond_Ropp b (x * y) = (cond_Ropp b x * y)%R. Proof. intros [|] x y. apply sym_eq. apply Ropp_mult_distr_l_reverse. apply refl_equal. Qed. Theorem cond_Ropp_mult_r : forall b x y, cond_Ropp b (x * y) = (x * cond_Ropp b y)%R. Proof. intros [|] x y. apply sym_eq. apply Ropp_mult_distr_r_reverse. apply refl_equal. Qed. Theorem cond_Ropp_plus : forall b x y, cond_Ropp b (x + y) = (cond_Ropp b x + cond_Ropp b y)%R. Proof. intros [|] x y. apply Ropp_plus_distr. apply refl_equal. Qed. End cond_Ropp.