(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Jacques-Henri Jourdan, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) Require Automaton. Require Import Alphabet. Require Import List. Require Import Syntax. Module Make(Import A:Automaton.T). (** We instantiate some sets/map. **) Module TerminalComparableM <: ComparableM. Definition t := terminal. Instance tComparable : Comparable t := _. End TerminalComparableM. Module TerminalOrderedType := OrderedType_from_ComparableM TerminalComparableM. Module StateProdPosComparableM <: ComparableM. Definition t := (state*production*nat)%type. Instance tComparable : Comparable t := _. End StateProdPosComparableM. Module StateProdPosOrderedType := OrderedType_from_ComparableM StateProdPosComparableM. Module TerminalSet := FSetAVL.Make TerminalOrderedType. Module StateProdPosMap := FMapAVL.Make StateProdPosOrderedType. (** Nullable predicate for symbols and list of symbols. **) Definition nullable_symb (symbol:symbol) := match symbol with | NT nt => nullable_nterm nt | _ => false end. Definition nullable_word (word:list symbol) := forallb nullable_symb word. (** First predicate for non terminal, symbols and list of symbols, given as FSets. **) Definition first_nterm_set (nterm:nonterminal) := fold_left (fun acc t => TerminalSet.add t acc) (first_nterm nterm) TerminalSet.empty. Definition first_symb_set (symbol:symbol) := match symbol with | NT nt => first_nterm_set nt | T t => TerminalSet.singleton t end. Fixpoint first_word_set (word:list symbol) := match word with | [] => TerminalSet.empty | t::q => if nullable_symb t then TerminalSet.union (first_symb_set t) (first_word_set q) else first_symb_set t end. (** Small helper for finding the part of an item that is after the dot. **) Definition future_of_prod prod dot_pos : list symbol := (fix loop n lst := match n with | O => lst | S x => match loop x lst with [] => [] | _::q => q end end) dot_pos (rev' (prod_rhs_rev prod)). (** We build a fast map to store all the items of all the states. **) Definition items_map (_:unit): StateProdPosMap.t TerminalSet.t := fold_left (fun acc state => fold_left (fun acc item => let key := (state, prod_item item, dot_pos_item item) in let data := fold_left (fun acc t => TerminalSet.add t acc) (lookaheads_item item) TerminalSet.empty in let old := match StateProdPosMap.find key acc with | Some x => x | None => TerminalSet.empty end in StateProdPosMap.add key (TerminalSet.union data old) acc ) (items_of_state state) acc ) all_list (StateProdPosMap.empty TerminalSet.t). (** Accessor. **) Definition find_items_map items_map state prod dot_pos : TerminalSet.t := match StateProdPosMap.find (state, prod, dot_pos) items_map with | None => TerminalSet.empty | Some x => x end. Definition state_has_future state prod (fut:list symbol) (lookahead:terminal) := exists dot_pos:nat, fut = future_of_prod prod dot_pos /\ TerminalSet.In lookahead (find_items_map (items_map ()) state prod dot_pos). (** Iterator over items. **) Definition forallb_items items_map (P:state -> production -> nat -> TerminalSet.t -> bool): bool:= StateProdPosMap.fold (fun key set acc => match key with (st, p, pos) => (acc && P st p pos set)%bool end ) items_map true. Lemma forallb_items_spec : forall p, forallb_items (items_map ()) p = true -> forall st prod fut lookahead, state_has_future st prod fut lookahead -> forall P:state -> production -> list symbol -> terminal -> Prop, (forall st prod pos set lookahead, TerminalSet.In lookahead set -> p st prod pos set = true -> P st prod (future_of_prod prod pos) lookahead) -> P st prod fut lookahead. Proof. intros. unfold forallb_items in H. rewrite StateProdPosMap.fold_1 in H. destruct H0; destruct H0. specialize (H1 st prod x _ _ H2). destruct H0. apply H1. unfold find_items_map in *. pose proof (@StateProdPosMap.find_2 _ (items_map ()) (st, prod, x)). destruct (StateProdPosMap.find (st, prod, x) (items_map ())); [ |destruct (TerminalSet.empty_1 H2)]. specialize (H0 _ (eq_refl _)). pose proof (StateProdPosMap.elements_1 H0). revert H. generalize true at 1. induction H3. destruct H. destruct y. simpl in H3; destruct H3. pose proof (compare_eq (st, prod, x) k H). destruct H3. simpl. generalize (p st prod x t). induction l; simpl; intros. rewrite Bool.andb_true_iff in H3. intuition. destruct a; destruct k; destruct p0. simpl in H3. replace (b0 && b && p s p0 n t0)%bool with (b0 && p s p0 n t0 && b)%bool in H3. apply (IHl _ _ H3). destruct b, b0, (p s p0 n t0); reflexivity. intro. apply IHInA. Qed. (** * Validation for completeness **) (** The nullable predicate is a fixpoint : it is correct. **) Definition nullable_stable:= forall p:production, nullable_word (rev (prod_rhs_rev p)) = true -> nullable_nterm (prod_lhs p) = true. Definition is_nullable_stable (_:unit) := forallb (fun p:production => implb (nullable_word (rev' (prod_rhs_rev p))) (nullable_nterm (prod_lhs p))) all_list. Property is_nullable_stable_correct : is_nullable_stable () = true -> nullable_stable. Proof. unfold is_nullable_stable, nullable_stable. intros. rewrite forallb_forall in H. specialize (H p (all_list_forall p)). unfold rev' in H; rewrite <- rev_alt in H. rewrite H0 in H; intuition. Qed. (** The first predicate is a fixpoint : it is correct. **) Definition first_stable:= forall (p:production), TerminalSet.Subset (first_word_set (rev (prod_rhs_rev p))) (first_nterm_set (prod_lhs p)). Definition is_first_stable (_:unit) := forallb (fun p:production => TerminalSet.subset (first_word_set (rev' (prod_rhs_rev p))) (first_nterm_set (prod_lhs p))) all_list. Property is_first_stable_correct : is_first_stable () = true -> first_stable. Proof. unfold is_first_stable, first_stable. intros. rewrite forallb_forall in H. specialize (H p (all_list_forall p)). unfold rev' in H; rewrite <- rev_alt in H. apply TerminalSet.subset_2; intuition. Qed. (** The initial state has all the S=>.u items, where S is the start non-terminal **) Definition start_future := forall (init:initstate) (t:terminal) (p:production), prod_lhs p = start_nt init -> state_has_future init p (rev (prod_rhs_rev p)) t. Definition is_start_future items_map := forallb (fun init => forallb (fun prod => if compare_eqb (prod_lhs prod) (start_nt init) then let lookaheads := find_items_map items_map init prod 0 in forallb (fun t => TerminalSet.mem t lookaheads) all_list else true) all_list) all_list. Property is_start_future_correct : is_start_future (items_map ()) = true -> start_future. Proof. unfold is_start_future, start_future. intros. rewrite forallb_forall in H. specialize (H init (all_list_forall _)). rewrite forallb_forall in H. specialize (H p (all_list_forall _)). rewrite <- compare_eqb_iff in H0. rewrite H0 in H. rewrite forallb_forall in H. specialize (H t (all_list_forall _)). exists 0. split. apply rev_alt. apply TerminalSet.mem_2; eauto. Qed. (** If a state contains an item of the form A->_.av[[b]], where a is a terminal, then reading an a does a [Shift_act], to a state containing an item of the form A->_.v[[b]]. **) Definition terminal_shift := forall (s1:state) prod fut lookahead, state_has_future s1 prod fut lookahead -> match fut with | T t::q => match action_table s1 with | Lookahead_act awp => match awp t with | Shift_act s2 _ => state_has_future s2 prod q lookahead | _ => False end | _ => False end | _ => True end. Definition is_terminal_shift items_map := forallb_items items_map (fun s1 prod pos lset => match future_of_prod prod pos with | T t::_ => match action_table s1 with | Lookahead_act awp => match awp t with | Shift_act s2 _ => TerminalSet.subset lset (find_items_map items_map s2 prod (S pos)) | _ => false end | _ => false end | _ => true end). Property is_terminal_shift_correct : is_terminal_shift (items_map ()) = true -> terminal_shift. Proof. unfold is_terminal_shift, terminal_shift. intros. apply (forallb_items_spec _ H _ _ _ _ H0 (fun _ _ _ _ => _)). intros. destruct (future_of_prod prod0 pos) as [|[]] eqn:?; intuition. destruct (action_table st); intuition. destruct (l0 t); intuition. exists (S pos). split. unfold future_of_prod in *. rewrite Heql; reflexivity. apply (TerminalSet.subset_2 H2); intuition. Qed. (** If a state contains an item of the form A->_.[[a]], then either we do a [Default_reduce_act] of the corresponding production, either a is a terminal (ie. there is a lookahead terminal), and reading a does a [Reduce_act] of the corresponding production. **) Definition end_reduce := forall (s:state) prod fut lookahead, state_has_future s prod fut lookahead -> fut = [] -> match action_table s with | Default_reduce_act p => p = prod | Lookahead_act awt => match awt lookahead with | Reduce_act p => p = prod | _ => False end end. Definition is_end_reduce items_map := forallb_items items_map (fun s prod pos lset => match future_of_prod prod pos with | [] => match action_table s with | Default_reduce_act p => compare_eqb p prod | Lookahead_act awt => TerminalSet.fold (fun lookahead acc => match awt lookahead with | Reduce_act p => (acc && compare_eqb p prod)%bool | _ => false end) lset true end | _ => true end). Property is_end_reduce_correct : is_end_reduce (items_map ()) = true -> end_reduce. Proof. unfold is_end_reduce, end_reduce. intros. revert H1. apply (forallb_items_spec _ H _ _ _ _ H0 (fun _ _ _ _ => _)). intros. rewrite H3 in H2. destruct (action_table st); intuition. apply compare_eqb_iff; intuition. rewrite TerminalSet.fold_1 in H2. revert H2. generalize true at 1. pose proof (TerminalSet.elements_1 H1). induction H2. pose proof (compare_eq _ _ H2). destruct H4. simpl. assert (fold_left (fun (a : bool) (e : TerminalSet.elt) => match l e with | Shift_act _ _ => false | Reduce_act p => (a && compare_eqb p prod0)%bool | Fail_act => false end) l0 false = true -> False). induction l0; intuition. apply IHl0. simpl in H4. destruct (l a); intuition. destruct (l lookahead0); intuition. apply compare_eqb_iff. destruct (compare_eqb p prod0); intuition. destruct b; intuition. simpl; intros. eapply IHInA; eauto. Qed. (** If a state contains an item of the form A->_.Bv[[b]], where B is a non terminal, then the goto table says we have to go to a state containing an item of the form A->_.v[[b]]. **) Definition non_terminal_goto := forall (s1:state) prod fut lookahead, state_has_future s1 prod fut lookahead -> match fut with | NT nt::q => match goto_table s1 nt with | Some (exist s2 _) => state_has_future s2 prod q lookahead | None => forall prod fut lookahead, state_has_future s1 prod fut lookahead -> match fut with | NT nt'::_ => nt <> nt' | _ => True end end | _ => True end. Definition is_non_terminal_goto items_map := forallb_items items_map (fun s1 prod pos lset => match future_of_prod prod pos with | NT nt::_ => match goto_table s1 nt with | Some (exist s2 _) => TerminalSet.subset lset (find_items_map items_map s2 prod (S pos)) | None => forallb_items items_map (fun s1' prod' pos' _ => (implb (compare_eqb s1 s1') match future_of_prod prod' pos' with | NT nt' :: _ => negb (compare_eqb nt nt') | _ => true end)%bool) end | _ => true end). Property is_non_terminal_goto_correct : is_non_terminal_goto (items_map ()) = true -> non_terminal_goto. Proof. unfold is_non_terminal_goto, non_terminal_goto. intros. apply (forallb_items_spec _ H _ _ _ _ H0 (fun _ _ _ _ => _)). intros. destruct (future_of_prod prod0 pos) as [|[]] eqn:?; intuition. destruct (goto_table st n) as [[]|]. exists (S pos). split. unfold future_of_prod in *. rewrite Heql; reflexivity. apply (TerminalSet.subset_2 H2); intuition. intros. remember st in H2; revert Heqs. apply (forallb_items_spec _ H2 _ _ _ _ H3 (fun _ _ _ _ => _)); intros. rewrite <- compare_eqb_iff in Heqs; rewrite Heqs in H5. destruct (future_of_prod prod2 pos0) as [|[]]; intuition. rewrite <- compare_eqb_iff in H6; rewrite H6 in H5. discriminate. Qed. Definition start_goto := forall (init:initstate), goto_table init (start_nt init) = None. Definition is_start_goto (_:unit) := forallb (fun (init:initstate) => match goto_table init (start_nt init) with | Some _ => false | None => true end) all_list. Definition is_start_goto_correct: is_start_goto () = true -> start_goto. Proof. unfold is_start_goto, start_goto. rewrite forallb_forall. intros. specialize (H init (all_list_forall _)). destruct (goto_table init (start_nt init)); congruence. Qed. (** Closure property of item sets : if a state contains an item of the form A->_.Bv[[b]], then for each production B->u and each terminal a of first(vb), the state contains an item of the form B->_.u[[a]] **) Definition non_terminal_closed := forall (s1:state) prod fut lookahead, state_has_future s1 prod fut lookahead -> match fut with | NT nt::q => forall (p:production) (lookahead2:terminal), prod_lhs p = nt -> TerminalSet.In lookahead2 (first_word_set q) \/ lookahead2 = lookahead /\ nullable_word q = true -> state_has_future s1 p (rev (prod_rhs_rev p)) lookahead2 | _ => True end. Definition is_non_terminal_closed items_map := forallb_items items_map (fun s1 prod pos lset => match future_of_prod prod pos with | NT nt::q => forallb (fun p => if compare_eqb (prod_lhs p) nt then let lookaheads := find_items_map items_map s1 p 0 in (implb (nullable_word q) (TerminalSet.subset lset lookaheads)) && TerminalSet.subset (first_word_set q) lookaheads else true )%bool all_list | _ => true end). Property is_non_terminal_closed_correct: is_non_terminal_closed (items_map ()) = true -> non_terminal_closed. Proof. unfold is_non_terminal_closed, non_terminal_closed. intros. apply (forallb_items_spec _ H _ _ _ _ H0 (fun _ _ _ _ => _)). intros. destruct (future_of_prod prod0 pos); intuition. destruct s; eauto; intros. rewrite forallb_forall in H2. specialize (H2 p (all_list_forall p)). rewrite <- compare_eqb_iff in H3. rewrite H3 in H2. rewrite Bool.andb_true_iff in H2. destruct H2. exists 0. split. apply rev_alt. destruct H4 as [|[]]; subst. apply (TerminalSet.subset_2 H5); intuition. rewrite H6 in H2. apply (TerminalSet.subset_2 H2); intuition. Qed. (** The automaton is complete **) Definition complete := nullable_stable /\ first_stable /\ start_future /\ terminal_shift /\ end_reduce /\ non_terminal_goto /\ start_goto /\ non_terminal_closed. Definition is_complete (_:unit) := let items_map := items_map () in (is_nullable_stable () && is_first_stable () && is_start_future items_map && is_terminal_shift items_map && is_end_reduce items_map && is_start_goto () && is_non_terminal_goto items_map && is_non_terminal_closed items_map)%bool. Property is_complete_correct: is_complete () = true -> complete. Proof. unfold is_complete, complete. repeat rewrite Bool.andb_true_iff. intuition. apply is_nullable_stable_correct; assumption. apply is_first_stable_correct; assumption. apply is_start_future_correct; assumption. apply is_terminal_shift_correct; assumption. apply is_end_reduce_correct; assumption. apply is_non_terminal_goto_correct; assumption. apply is_start_goto_correct; assumption. apply is_non_terminal_closed_correct; assumption. Qed. End Make.