(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** This module defines the type of values that is used in the dynamic semantics of all our intermediate languages. *) Require Import Coqlib. Require Import AST. Require Import Integers. Require Import Floats. Definition block : Set := Z. Definition eq_block := zeq. (** A value is either: - a machine integer; - a floating-point number; - a pointer: a pair of a memory address and an integer offset with respect to this address; - the [Vundef] value denoting an arbitrary bit pattern, such as the value of an uninitialized variable. *) Inductive val: Set := | Vundef: val | Vint: int -> val | Vfloat: float -> val | Vptr: block -> int -> val. Definition Vzero: val := Vint Int.zero. Definition Vone: val := Vint Int.one. Definition Vmone: val := Vint Int.mone. Definition Vtrue: val := Vint Int.one. Definition Vfalse: val := Vint Int.zero. (** The module [Val] defines a number of arithmetic and logical operations over type [val]. Most of these operations are straightforward extensions of the corresponding integer or floating-point operations. *) Module Val. Definition of_bool (b: bool): val := if b then Vtrue else Vfalse. Definition has_type (v: val) (t: typ) : Prop := match v, t with | Vundef, _ => True | Vint _, Tint => True | Vfloat _, Tfloat => True | Vptr _ _, Tint => True | _, _ => False end. Fixpoint has_type_list (vl: list val) (tl: list typ) {struct vl} : Prop := match vl, tl with | nil, nil => True | v1 :: vs, t1 :: ts => has_type v1 t1 /\ has_type_list vs ts | _, _ => False end. (** Truth values. Pointers and non-zero integers are treated as [True]. The integer 0 (also used to represent the null pointer) is [False]. [Vundef] and floats are neither true nor false. *) Definition is_true (v: val) : Prop := match v with | Vint n => n <> Int.zero | Vptr b ofs => True | _ => False end. Definition is_false (v: val) : Prop := match v with | Vint n => n = Int.zero | _ => False end. Inductive bool_of_val: val -> bool -> Prop := | bool_of_val_int_true: forall n, n <> Int.zero -> bool_of_val (Vint n) true | bool_of_val_int_false: bool_of_val (Vint Int.zero) false | bool_of_val_ptr: forall b ofs, bool_of_val (Vptr b ofs) true. Definition neg (v: val) : val := match v with | Vint n => Vint (Int.neg n) | _ => Vundef end. Definition negf (v: val) : val := match v with | Vfloat f => Vfloat (Float.neg f) | _ => Vundef end. Definition absf (v: val) : val := match v with | Vfloat f => Vfloat (Float.abs f) | _ => Vundef end. Definition intoffloat (v: val) : val := match v with | Vfloat f => Vint (Float.intoffloat f) | _ => Vundef end. Definition intuoffloat (v: val) : val := match v with | Vfloat f => Vint (Float.intuoffloat f) | _ => Vundef end. Definition floatofint (v: val) : val := match v with | Vint n => Vfloat (Float.floatofint n) | _ => Vundef end. Definition floatofintu (v: val) : val := match v with | Vint n => Vfloat (Float.floatofintu n) | _ => Vundef end. Definition notint (v: val) : val := match v with | Vint n => Vint (Int.xor n Int.mone) | _ => Vundef end. Definition notbool (v: val) : val := match v with | Vint n => of_bool (Int.eq n Int.zero) | Vptr b ofs => Vfalse | _ => Vundef end. Definition zero_ext (nbits: Z) (v: val) : val := match v with | Vint n => Vint(Int.zero_ext nbits n) | _ => Vundef end. Definition sign_ext (nbits: Z) (v: val) : val := match v with | Vint n => Vint(Int.sign_ext nbits n) | _ => Vundef end. Definition singleoffloat (v: val) : val := match v with | Vfloat f => Vfloat(Float.singleoffloat f) | _ => Vundef end. Definition add (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => Vint(Int.add n1 n2) | Vptr b1 ofs1, Vint n2 => Vptr b1 (Int.add ofs1 n2) | Vint n1, Vptr b2 ofs2 => Vptr b2 (Int.add ofs2 n1) | _, _ => Vundef end. Definition sub (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => Vint(Int.sub n1 n2) | Vptr b1 ofs1, Vint n2 => Vptr b1 (Int.sub ofs1 n2) | Vptr b1 ofs1, Vptr b2 ofs2 => if zeq b1 b2 then Vint(Int.sub ofs1 ofs2) else Vundef | _, _ => Vundef end. Definition mul (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => Vint(Int.mul n1 n2) | _, _ => Vundef end. Definition divs (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then Vundef else Vint(Int.divs n1 n2) | _, _ => Vundef end. Definition mods (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then Vundef else Vint(Int.mods n1 n2) | _, _ => Vundef end. Definition divu (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then Vundef else Vint(Int.divu n1 n2) | _, _ => Vundef end. Definition modu (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then Vundef else Vint(Int.modu n1 n2) | _, _ => Vundef end. Definition and (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => Vint(Int.and n1 n2) | _, _ => Vundef end. Definition or (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => Vint(Int.or n1 n2) | _, _ => Vundef end. Definition xor (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => Vint(Int.xor n1 n2) | _, _ => Vundef end. Definition shl (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => if Int.ltu n2 (Int.repr 32) then Vint(Int.shl n1 n2) else Vundef | _, _ => Vundef end. Definition shr (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => if Int.ltu n2 (Int.repr 32) then Vint(Int.shr n1 n2) else Vundef | _, _ => Vundef end. Definition shr_carry (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => if Int.ltu n2 (Int.repr 32) then Vint(Int.shr_carry n1 n2) else Vundef | _, _ => Vundef end. Definition shrx (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => if Int.ltu n2 (Int.repr 32) then Vint(Int.shrx n1 n2) else Vundef | _, _ => Vundef end. Definition shru (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => if Int.ltu n2 (Int.repr 32) then Vint(Int.shru n1 n2) else Vundef | _, _ => Vundef end. Definition rolm (v: val) (amount mask: int): val := match v with | Vint n => Vint(Int.rolm n amount mask) | _ => Vundef end. Definition ror (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => if Int.ltu n2 (Int.repr 32) then Vint(Int.ror n1 n2) else Vundef | _, _ => Vundef end. Definition addf (v1 v2: val): val := match v1, v2 with | Vfloat f1, Vfloat f2 => Vfloat(Float.add f1 f2) | _, _ => Vundef end. Definition subf (v1 v2: val): val := match v1, v2 with | Vfloat f1, Vfloat f2 => Vfloat(Float.sub f1 f2) | _, _ => Vundef end. Definition mulf (v1 v2: val): val := match v1, v2 with | Vfloat f1, Vfloat f2 => Vfloat(Float.mul f1 f2) | _, _ => Vundef end. Definition divf (v1 v2: val): val := match v1, v2 with | Vfloat f1, Vfloat f2 => Vfloat(Float.div f1 f2) | _, _ => Vundef end. Definition cmp_mismatch (c: comparison): val := match c with | Ceq => Vfalse | Cne => Vtrue | _ => Vundef end. Definition cmp (c: comparison) (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => of_bool (Int.cmp c n1 n2) | Vint n1, Vptr b2 ofs2 => if Int.eq n1 Int.zero then cmp_mismatch c else Vundef | Vptr b1 ofs1, Vptr b2 ofs2 => if zeq b1 b2 then of_bool (Int.cmp c ofs1 ofs2) else cmp_mismatch c | Vptr b1 ofs1, Vint n2 => if Int.eq n2 Int.zero then cmp_mismatch c else Vundef | _, _ => Vundef end. Definition cmpu (c: comparison) (v1 v2: val): val := match v1, v2 with | Vint n1, Vint n2 => of_bool (Int.cmpu c n1 n2) | Vint n1, Vptr b2 ofs2 => if Int.eq n1 Int.zero then cmp_mismatch c else Vundef | Vptr b1 ofs1, Vptr b2 ofs2 => if zeq b1 b2 then of_bool (Int.cmpu c ofs1 ofs2) else cmp_mismatch c | Vptr b1 ofs1, Vint n2 => if Int.eq n2 Int.zero then cmp_mismatch c else Vundef | _, _ => Vundef end. Definition cmpf (c: comparison) (v1 v2: val): val := match v1, v2 with | Vfloat f1, Vfloat f2 => of_bool (Float.cmp c f1 f2) | _, _ => Vundef end. (** [load_result] is used in the memory model (library [Mem]) to post-process the results of a memory read. For instance, consider storing the integer value [0xFFF] on 1 byte at a given address, and reading it back. If it is read back with chunk [Mint8unsigned], zero-extension must be performed, resulting in [0xFF]. If it is read back as a [Mint8signed], sign-extension is performed and [0xFFFFFFFF] is returned. Type mismatches (e.g. reading back a float as a [Mint32]) read back as [Vundef]. *) Definition load_result (chunk: memory_chunk) (v: val) := match chunk, v with | Mint8signed, Vint n => Vint (Int.sign_ext 8 n) | Mint8unsigned, Vint n => Vint (Int.zero_ext 8 n) | Mint16signed, Vint n => Vint (Int.sign_ext 16 n) | Mint16unsigned, Vint n => Vint (Int.zero_ext 16 n) | Mint32, Vint n => Vint n | Mint32, Vptr b ofs => Vptr b ofs | Mfloat32, Vfloat f => Vfloat(Float.singleoffloat f) | Mfloat64, Vfloat f => Vfloat f | _, _ => Vundef end. (** Theorems on arithmetic operations. *) Theorem cast8unsigned_and: forall x, zero_ext 8 x = and x (Vint(Int.repr 255)). Proof. destruct x; simpl; auto. decEq. change 255 with (two_p 8 - 1). apply Int.zero_ext_and. vm_compute; auto. Qed. Theorem cast16unsigned_and: forall x, zero_ext 16 x = and x (Vint(Int.repr 65535)). Proof. destruct x; simpl; auto. decEq. change 65535 with (two_p 16 - 1). apply Int.zero_ext_and. vm_compute; auto. Qed. Theorem istrue_not_isfalse: forall v, is_false v -> is_true (notbool v). Proof. destruct v; simpl; try contradiction. intros. subst i. simpl. discriminate. Qed. Theorem isfalse_not_istrue: forall v, is_true v -> is_false (notbool v). Proof. destruct v; simpl; try contradiction. intros. generalize (Int.eq_spec i Int.zero). case (Int.eq i Int.zero); intro. contradiction. simpl. auto. auto. Qed. Theorem bool_of_true_val: forall v, is_true v -> bool_of_val v true. Proof. intro. destruct v; simpl; intros; try contradiction. constructor; auto. constructor. Qed. Theorem bool_of_true_val2: forall v, bool_of_val v true -> is_true v. Proof. intros. inversion H; simpl; auto. Qed. Theorem bool_of_true_val_inv: forall v b, is_true v -> bool_of_val v b -> b = true. Proof. intros. inversion H0; subst v b; simpl in H; auto. Qed. Theorem bool_of_false_val: forall v, is_false v -> bool_of_val v false. Proof. intro. destruct v; simpl; intros; try contradiction. subst i; constructor. Qed. Theorem bool_of_false_val2: forall v, bool_of_val v false -> is_false v. Proof. intros. inversion H; simpl; auto. Qed. Theorem bool_of_false_val_inv: forall v b, is_false v -> bool_of_val v b -> b = false. Proof. intros. inversion H0; subst v b; simpl in H. congruence. auto. contradiction. Qed. Theorem notbool_negb_1: forall b, of_bool (negb b) = notbool (of_bool b). Proof. destruct b; reflexivity. Qed. Theorem notbool_negb_2: forall b, of_bool b = notbool (of_bool (negb b)). Proof. destruct b; reflexivity. Qed. Theorem notbool_idem2: forall b, notbool(notbool(of_bool b)) = of_bool b. Proof. destruct b; reflexivity. Qed. Theorem notbool_idem3: forall x, notbool(notbool(notbool x)) = notbool x. Proof. destruct x; simpl; auto. case (Int.eq i Int.zero); reflexivity. Qed. Theorem add_commut: forall x y, add x y = add y x. Proof. destruct x; destruct y; simpl; auto. decEq. apply Int.add_commut. Qed. Theorem add_assoc: forall x y z, add (add x y) z = add x (add y z). Proof. destruct x; destruct y; destruct z; simpl; auto. rewrite Int.add_assoc; auto. rewrite Int.add_assoc; auto. decEq. decEq. apply Int.add_commut. decEq. rewrite Int.add_commut. rewrite <- Int.add_assoc. decEq. apply Int.add_commut. decEq. rewrite Int.add_assoc. auto. Qed. Theorem add_permut: forall x y z, add x (add y z) = add y (add x z). Proof. intros. rewrite (add_commut y z). rewrite <- add_assoc. apply add_commut. Qed. Theorem add_permut_4: forall x y z t, add (add x y) (add z t) = add (add x z) (add y t). Proof. intros. rewrite add_permut. rewrite add_assoc. rewrite add_permut. symmetry. apply add_assoc. Qed. Theorem neg_zero: neg Vzero = Vzero. Proof. reflexivity. Qed. Theorem neg_add_distr: forall x y, neg(add x y) = add (neg x) (neg y). Proof. destruct x; destruct y; simpl; auto. decEq. apply Int.neg_add_distr. Qed. Theorem sub_zero_r: forall x, sub Vzero x = neg x. Proof. destruct x; simpl; auto. Qed. Theorem sub_add_opp: forall x y, sub x (Vint y) = add x (Vint (Int.neg y)). Proof. destruct x; intro y; simpl; auto; rewrite Int.sub_add_opp; auto. Qed. Theorem sub_opp_add: forall x y, sub x (Vint (Int.neg y)) = add x (Vint y). Proof. intros. unfold sub, add. destruct x; auto; rewrite Int.sub_add_opp; rewrite Int.neg_involutive; auto. Qed. Theorem sub_add_l: forall v1 v2 i, sub (add v1 (Vint i)) v2 = add (sub v1 v2) (Vint i). Proof. destruct v1; destruct v2; intros; simpl; auto. rewrite Int.sub_add_l. auto. rewrite Int.sub_add_l. auto. case (zeq b b0); intro. rewrite Int.sub_add_l. auto. reflexivity. Qed. Theorem sub_add_r: forall v1 v2 i, sub v1 (add v2 (Vint i)) = add (sub v1 v2) (Vint (Int.neg i)). Proof. destruct v1; destruct v2; intros; simpl; auto. rewrite Int.sub_add_r. auto. repeat rewrite Int.sub_add_opp. decEq. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. decEq. repeat rewrite Int.sub_add_opp. rewrite Int.add_assoc. decEq. apply Int.neg_add_distr. case (zeq b b0); intro. simpl. decEq. repeat rewrite Int.sub_add_opp. rewrite Int.add_assoc. decEq. apply Int.neg_add_distr. reflexivity. Qed. Theorem mul_commut: forall x y, mul x y = mul y x. Proof. destruct x; destruct y; simpl; auto. decEq. apply Int.mul_commut. Qed. Theorem mul_assoc: forall x y z, mul (mul x y) z = mul x (mul y z). Proof. destruct x; destruct y; destruct z; simpl; auto. decEq. apply Int.mul_assoc. Qed. Theorem mul_add_distr_l: forall x y z, mul (add x y) z = add (mul x z) (mul y z). Proof. destruct x; destruct y; destruct z; simpl; auto. decEq. apply Int.mul_add_distr_l. Qed. Theorem mul_add_distr_r: forall x y z, mul x (add y z) = add (mul x y) (mul x z). Proof. destruct x; destruct y; destruct z; simpl; auto. decEq. apply Int.mul_add_distr_r. Qed. Theorem mul_pow2: forall x n logn, Int.is_power2 n = Some logn -> mul x (Vint n) = shl x (Vint logn). Proof. intros; destruct x; simpl; auto. change 32 with (Z_of_nat wordsize). rewrite (Int.is_power2_range _ _ H). decEq. apply Int.mul_pow2. auto. Qed. Theorem mods_divs: forall x y, mods x y = sub x (mul (divs x y) y). Proof. destruct x; destruct y; simpl; auto. case (Int.eq i0 Int.zero); simpl. auto. decEq. apply Int.mods_divs. Qed. Theorem modu_divu: forall x y, modu x y = sub x (mul (divu x y) y). Proof. destruct x; destruct y; simpl; auto. generalize (Int.eq_spec i0 Int.zero); case (Int.eq i0 Int.zero); simpl. auto. intro. decEq. apply Int.modu_divu. auto. Qed. Theorem divs_pow2: forall x n logn, Int.is_power2 n = Some logn -> divs x (Vint n) = shrx x (Vint logn). Proof. intros; destruct x; simpl; auto. change 32 with (Z_of_nat wordsize). rewrite (Int.is_power2_range _ _ H). generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro. subst n. compute in H. discriminate. decEq. apply Int.divs_pow2. auto. Qed. Theorem divu_pow2: forall x n logn, Int.is_power2 n = Some logn -> divu x (Vint n) = shru x (Vint logn). Proof. intros; destruct x; simpl; auto. change 32 with (Z_of_nat wordsize). rewrite (Int.is_power2_range _ _ H). generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro. subst n. compute in H. discriminate. decEq. apply Int.divu_pow2. auto. Qed. Theorem modu_pow2: forall x n logn, Int.is_power2 n = Some logn -> modu x (Vint n) = and x (Vint (Int.sub n Int.one)). Proof. intros; destruct x; simpl; auto. generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro. subst n. compute in H. discriminate. decEq. eapply Int.modu_and; eauto. Qed. Theorem and_commut: forall x y, and x y = and y x. Proof. destruct x; destruct y; simpl; auto. decEq. apply Int.and_commut. Qed. Theorem and_assoc: forall x y z, and (and x y) z = and x (and y z). Proof. destruct x; destruct y; destruct z; simpl; auto. decEq. apply Int.and_assoc. Qed. Theorem or_commut: forall x y, or x y = or y x. Proof. destruct x; destruct y; simpl; auto. decEq. apply Int.or_commut. Qed. Theorem or_assoc: forall x y z, or (or x y) z = or x (or y z). Proof. destruct x; destruct y; destruct z; simpl; auto. decEq. apply Int.or_assoc. Qed. Theorem xor_commut: forall x y, xor x y = xor y x. Proof. destruct x; destruct y; simpl; auto. decEq. apply Int.xor_commut. Qed. Theorem xor_assoc: forall x y z, xor (xor x y) z = xor x (xor y z). Proof. destruct x; destruct y; destruct z; simpl; auto. decEq. apply Int.xor_assoc. Qed. Theorem shl_mul: forall x y, Val.mul x (Val.shl Vone y) = Val.shl x y. Proof. destruct x; destruct y; simpl; auto. case (Int.ltu i0 (Int.repr 32)); auto. decEq. symmetry. apply Int.shl_mul. Qed. Theorem shl_rolm: forall x n, Int.ltu n (Int.repr 32) = true -> shl x (Vint n) = rolm x n (Int.shl Int.mone n). Proof. intros; destruct x; simpl; auto. rewrite H. decEq. apply Int.shl_rolm. exact H. Qed. Theorem shru_rolm: forall x n, Int.ltu n (Int.repr 32) = true -> shru x (Vint n) = rolm x (Int.sub (Int.repr 32) n) (Int.shru Int.mone n). Proof. intros; destruct x; simpl; auto. rewrite H. decEq. apply Int.shru_rolm. exact H. Qed. Theorem shrx_carry: forall x y, add (shr x y) (shr_carry x y) = shrx x y. Proof. destruct x; destruct y; simpl; auto. case (Int.ltu i0 (Int.repr 32)); auto. simpl. decEq. apply Int.shrx_carry. Qed. Theorem or_rolm: forall x n m1 m2, or (rolm x n m1) (rolm x n m2) = rolm x n (Int.or m1 m2). Proof. intros; destruct x; simpl; auto. decEq. apply Int.or_rolm. Qed. Theorem rolm_rolm: forall x n1 m1 n2 m2, rolm (rolm x n1 m1) n2 m2 = rolm x (Int.and (Int.add n1 n2) (Int.repr 31)) (Int.and (Int.rol m1 n2) m2). Proof. intros; destruct x; simpl; auto. decEq. replace (Int.and (Int.add n1 n2) (Int.repr 31)) with (Int.modu (Int.add n1 n2) (Int.repr 32)). apply Int.rolm_rolm. change (Int.repr 31) with (Int.sub (Int.repr 32) Int.one). apply Int.modu_and with (Int.repr 5). reflexivity. Qed. Theorem rolm_zero: forall x m, rolm x Int.zero m = and x (Vint m). Proof. intros; destruct x; simpl; auto. decEq. apply Int.rolm_zero. Qed. Theorem addf_commut: forall x y, addf x y = addf y x. Proof. destruct x; destruct y; simpl; auto. decEq. apply Float.addf_commut. Qed. Lemma negate_cmp_mismatch: forall c, cmp_mismatch (negate_comparison c) = notbool(cmp_mismatch c). Proof. destruct c; reflexivity. Qed. Theorem negate_cmp: forall c x y, cmp (negate_comparison c) x y = notbool (cmp c x y). Proof. destruct x; destruct y; simpl; auto. rewrite Int.negate_cmp. apply notbool_negb_1. case (Int.eq i Int.zero). apply negate_cmp_mismatch. reflexivity. case (Int.eq i0 Int.zero). apply negate_cmp_mismatch. reflexivity. case (zeq b b0); intro. rewrite Int.negate_cmp. apply notbool_negb_1. apply negate_cmp_mismatch. Qed. Theorem negate_cmpu: forall c x y, cmpu (negate_comparison c) x y = notbool (cmpu c x y). Proof. destruct x; destruct y; simpl; auto. rewrite Int.negate_cmpu. apply notbool_negb_1. case (Int.eq i Int.zero). apply negate_cmp_mismatch. reflexivity. case (Int.eq i0 Int.zero). apply negate_cmp_mismatch. reflexivity. case (zeq b b0); intro. rewrite Int.negate_cmpu. apply notbool_negb_1. apply negate_cmp_mismatch. Qed. Lemma swap_cmp_mismatch: forall c, cmp_mismatch (swap_comparison c) = cmp_mismatch c. Proof. destruct c; reflexivity. Qed. Theorem swap_cmp: forall c x y, cmp (swap_comparison c) x y = cmp c y x. Proof. destruct x; destruct y; simpl; auto. rewrite Int.swap_cmp. auto. case (Int.eq i Int.zero). apply swap_cmp_mismatch. auto. case (Int.eq i0 Int.zero). apply swap_cmp_mismatch. auto. case (zeq b b0); intro. subst b0. rewrite zeq_true. rewrite Int.swap_cmp. auto. rewrite zeq_false. apply swap_cmp_mismatch. auto. Qed. Theorem swap_cmpu: forall c x y, cmpu (swap_comparison c) x y = cmpu c y x. Proof. destruct x; destruct y; simpl; auto. rewrite Int.swap_cmpu. auto. case (Int.eq i Int.zero). apply swap_cmp_mismatch. auto. case (Int.eq i0 Int.zero). apply swap_cmp_mismatch. auto. case (zeq b b0); intro. subst b0. rewrite zeq_true. rewrite Int.swap_cmpu. auto. rewrite zeq_false. apply swap_cmp_mismatch. auto. Qed. Theorem negate_cmpf_eq: forall v1 v2, notbool (cmpf Cne v1 v2) = cmpf Ceq v1 v2. Proof. destruct v1; destruct v2; simpl; auto. rewrite Float.cmp_ne_eq. rewrite notbool_negb_1. apply notbool_idem2. Qed. Theorem negate_cmpf_ne: forall v1 v2, notbool (cmpf Ceq v1 v2) = cmpf Cne v1 v2. Proof. destruct v1; destruct v2; simpl; auto. rewrite Float.cmp_ne_eq. rewrite notbool_negb_1. auto. Qed. Lemma or_of_bool: forall b1 b2, or (of_bool b1) (of_bool b2) = of_bool (b1 || b2). Proof. destruct b1; destruct b2; reflexivity. Qed. Theorem cmpf_le: forall v1 v2, cmpf Cle v1 v2 = or (cmpf Clt v1 v2) (cmpf Ceq v1 v2). Proof. destruct v1; destruct v2; simpl; auto. rewrite or_of_bool. decEq. apply Float.cmp_le_lt_eq. Qed. Theorem cmpf_ge: forall v1 v2, cmpf Cge v1 v2 = or (cmpf Cgt v1 v2) (cmpf Ceq v1 v2). Proof. destruct v1; destruct v2; simpl; auto. rewrite or_of_bool. decEq. apply Float.cmp_ge_gt_eq. Qed. Definition is_bool (v: val) := v = Vundef \/ v = Vtrue \/ v = Vfalse. Lemma of_bool_is_bool: forall b, is_bool (of_bool b). Proof. destruct b; unfold is_bool; simpl; tauto. Qed. Lemma undef_is_bool: is_bool Vundef. Proof. unfold is_bool; tauto. Qed. Lemma cmp_mismatch_is_bool: forall c, is_bool (cmp_mismatch c). Proof. destruct c; simpl; unfold is_bool; tauto. Qed. Lemma cmp_is_bool: forall c v1 v2, is_bool (cmp c v1 v2). Proof. destruct v1; destruct v2; simpl; try apply undef_is_bool. apply of_bool_is_bool. case (Int.eq i Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool. case (Int.eq i0 Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool. case (zeq b b0); intro. apply of_bool_is_bool. apply cmp_mismatch_is_bool. Qed. Lemma cmpu_is_bool: forall c v1 v2, is_bool (cmpu c v1 v2). Proof. destruct v1; destruct v2; simpl; try apply undef_is_bool. apply of_bool_is_bool. case (Int.eq i Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool. case (Int.eq i0 Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool. case (zeq b b0); intro. apply of_bool_is_bool. apply cmp_mismatch_is_bool. Qed. Lemma cmpf_is_bool: forall c v1 v2, is_bool (cmpf c v1 v2). Proof. destruct v1; destruct v2; simpl; apply undef_is_bool || apply of_bool_is_bool. Qed. Lemma notbool_is_bool: forall v, is_bool (notbool v). Proof. destruct v; simpl. apply undef_is_bool. apply of_bool_is_bool. apply undef_is_bool. unfold is_bool; tauto. Qed. Lemma notbool_xor: forall v, is_bool v -> v = xor (notbool v) Vone. Proof. intros. elim H; intro. subst v. reflexivity. elim H0; intro; subst v; reflexivity. Qed. (** The ``is less defined'' relation between values. A value is less defined than itself, and [Vundef] is less defined than any value. *) Inductive lessdef: val -> val -> Prop := | lessdef_refl: forall v, lessdef v v | lessdef_undef: forall v, lessdef Vundef v. Inductive lessdef_list: list val -> list val -> Prop := | lessdef_list_nil: lessdef_list nil nil | lessdef_list_cons: forall v1 v2 vl1 vl2, lessdef v1 v2 -> lessdef_list vl1 vl2 -> lessdef_list (v1 :: vl1) (v2 :: vl2). Hint Resolve lessdef_refl lessdef_undef lessdef_list_nil lessdef_list_cons. Lemma lessdef_list_inv: forall vl1 vl2, lessdef_list vl1 vl2 -> vl1 = vl2 \/ In Vundef vl1. Proof. induction 1; simpl. tauto. inv H. destruct IHlessdef_list. left; congruence. tauto. tauto. Qed. Lemma load_result_lessdef: forall chunk v1 v2, lessdef v1 v2 -> lessdef (load_result chunk v1) (load_result chunk v2). Proof. intros. inv H. auto. destruct chunk; simpl; auto. Qed. Lemma zero_ext_lessdef: forall n v1 v2, lessdef v1 v2 -> lessdef (zero_ext n v1) (zero_ext n v2). Proof. intros; inv H; simpl; auto. Qed. Lemma sign_ext_lessdef: forall n v1 v2, lessdef v1 v2 -> lessdef (sign_ext n v1) (sign_ext n v2). Proof. intros; inv H; simpl; auto. Qed. Lemma singleoffloat_lessdef: forall v1 v2, lessdef v1 v2 -> lessdef (singleoffloat v1) (singleoffloat v2). Proof. intros; inv H; simpl; auto. Qed. End Val.