(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (* A solver for unification constraints. *) Require Import Recdef Coqlib Maps Errors. Local Open Scope nat_scope. Local Open Scope error_monad_scope. (** This module provides a solver for sets of unification constraints of the following kinds: [T(x) = base-type] or [T(x) = T(y)]. The unknowns are the types [T(x)] of every identifier [x]. *) (** The interface for base types. *) Module Type TYPE_ALGEBRA. Variable t: Type. Variable eq: forall (x y: t), {x=y} + {x<>y}. Variable default: t. End TYPE_ALGEBRA. (** The constraint solver. *) Module UniSolver (T: TYPE_ALGEBRA). (* The current set of constraints is represented by a record with two components: - [te_typ]: a partial map from variables to types - [te_equ]: a list of pairs [(x,y)] of variables, indicating that the type of [x] must be equal to the type of [y]. *) Definition constraint : Type := (positive * positive)%type. Record typenv : Type := Typenv { te_typ: PTree.t T.t; (**r mapping var -> typ *) te_equ: list constraint (**r additional equality constraints *) }. Definition initial : typenv := {| te_typ := PTree.empty _; te_equ := nil |}. (** Add the constraint [T(x) = ty]. *) Definition set (e: typenv) (x: positive) (ty: T.t) : res typenv := match e.(te_typ)!x with | None => OK {| te_typ := PTree.set x ty e.(te_typ); te_equ := e.(te_equ) |} | Some ty' => if T.eq ty ty' then OK e else Error (MSG "bad definition/use of variable " :: POS x :: nil) end. Fixpoint set_list (e: typenv) (rl: list positive) (tyl: list T.t) {struct rl}: res typenv := match rl, tyl with | nil, nil => OK e | r1::rs, ty1::tys => do e1 <- set e r1 ty1; set_list e1 rs tys | _, _ => Error (msg "arity mismatch") end. (** Add the constraint [T(x) = T(y)]. The boolean result is [true] if the types of [x] or [y] could be made more precise. Otherwise, [te_typ] does not change and [false] is returned. *) Definition move (e: typenv) (r1 r2: positive) : res (bool * typenv) := if peq r1 r2 then OK (false, e) else match e.(te_typ)!r1, e.(te_typ)!r2 with | None, None => OK (false, {| te_typ := e.(te_typ); te_equ := (r1, r2) :: e.(te_equ) |}) | Some ty1, None => OK (true, {| te_typ := PTree.set r2 ty1 e.(te_typ); te_equ := e.(te_equ) |}) | None, Some ty2 => OK (true, {| te_typ := PTree.set r1 ty2 e.(te_typ); te_equ := e.(te_equ) |}) | Some ty1, Some ty2 => if T.eq ty1 ty2 then OK (false, e) else Error(MSG "ill-typed move from " :: POS r1 :: MSG " to " :: POS r2 :: nil) end. (** Solve the remaining subtyping constraints by iteration. *) Fixpoint solve_rec (e: typenv) (changed: bool) (q: list constraint) : res (typenv * bool) := match q with | nil => OK (e, changed) | (r1, r2) :: q' => do (changed1, e1) <- move e r1 r2; solve_rec e1 (changed || changed1) q' end. (** Measuring the state *) Lemma move_shape: forall e r1 r2 changed e', move e r1 r2 = OK (changed, e') -> (e'.(te_equ) = e.(te_equ) \/ e'.(te_equ) = (r1, r2) :: e.(te_equ)) /\ (changed = true -> e'.(te_equ) = e.(te_equ)). Proof. unfold move; intros. destruct (peq r1 r2). inv H. auto. destruct e.(te_typ)!r1 as [ty1|]; destruct e.(te_typ)!r2 as [ty2|]; inv H; simpl. destruct (T.eq ty1 ty2); inv H1. auto. auto. auto. split. auto. intros. discriminate. Qed. Lemma length_move: forall e r1 r2 changed e', move e r1 r2 = OK (changed, e') -> length e'.(te_equ) + (if changed then 1 else 0) <= S(length e.(te_equ)). Proof. unfold move; intros. destruct (peq r1 r2). inv H. omega. destruct e.(te_typ)!r1 as [ty1|]; destruct e.(te_typ)!r2 as [ty2|]; inv H; simpl. destruct (T.eq ty1 ty2); inv H1. omega. omega. omega. omega. Qed. Lemma length_solve_rec: forall q e ch e' ch', solve_rec e ch q = OK (e', ch') -> length e'.(te_equ) + (if ch' && negb ch then 1 else 0) <= length e.(te_equ) + length q. Proof. induction q; simpl; intros. - inv H. replace (ch' && negb ch') with false. omega. destruct ch'; auto. - destruct a as [r1 r2]; monadInv H. rename x0 into e0. rename x into ch0. exploit IHq; eauto. intros A. exploit length_move; eauto. intros B. set (X := (if ch' && negb (ch || ch0) then 1 else 0)) in *. set (Y := (if ch0 then 1 else 0)) in *. set (Z := (if ch' && negb ch then 1 else 0)) in *. cut (Z <= X + Y). intros. omega. unfold X, Y, Z. destruct ch'; destruct ch; destruct ch0; simpl; auto. Qed. Definition weight_typenv (e: typenv) : nat := length e.(te_equ). (** Iterative solving of the remaining constraints *) Function solve_constraints (e: typenv) {measure weight_typenv e}: res typenv := match solve_rec {| te_typ := e.(te_typ); te_equ := nil |} false e.(te_equ) with | OK(e', false) => OK e (**r no more changes, fixpoint reached *) | OK(e', true) => solve_constraints e' (**r one more iteration *) | Error msg => Error msg end. Proof. intros. exploit length_solve_rec; eauto. simpl. intros. unfold weight_typenv. omega. Qed. Definition typassign := positive -> T.t. Definition makeassign (e: typenv) : typassign := fun x => match e.(te_typ)!x with Some ty => ty | None => T.default end. Definition solve (e: typenv) : res typassign := do e' <- solve_constraints e; OK(makeassign e'). (** What it means to be a solution *) Definition satisf (te: typassign) (e: typenv) : Prop := (forall x ty, e.(te_typ)!x = Some ty -> te x = ty) /\ (forall x y, In (x, y) e.(te_equ) -> te x = te y). Lemma satisf_initial: forall te, satisf te initial. Proof. unfold initial; intros; split; simpl; intros. rewrite PTree.gempty in H; discriminate. contradiction. Qed. (** Soundness proof *) Lemma set_incr: forall te x ty e e', set e x ty = OK e' -> satisf te e' -> satisf te e. Proof. unfold set; intros. destruct (te_typ e)!x as [ty'|] eqn:E. - destruct (T.eq ty ty'); inv H. auto. - inv H. destruct H0 as [A B]; simpl in *. red; split; intros; auto. apply A. rewrite PTree.gso by congruence. auto. Qed. Hint Resolve set_incr: ty. Lemma set_sound: forall te x ty e e', set e x ty = OK e' -> satisf te e' -> te x = ty. Proof. unfold set; intros. destruct H0 as [P Q]. destruct (te_typ e)!x as [ty'|] eqn:E. - destruct (T.eq ty ty'); inv H. eauto. - inv H. simpl in P. apply P. apply PTree.gss. Qed. Lemma set_list_incr: forall te xl tyl e e', set_list e xl tyl = OK e' -> satisf te e' -> satisf te e. Proof. induction xl; destruct tyl; simpl; intros; monadInv H; eauto with ty. Qed. Hint Resolve set_list_incr: ty. Lemma set_list_sound: forall te xl tyl e e', set_list e xl tyl = OK e' -> satisf te e' -> map te xl = tyl. Proof. induction xl; destruct tyl; simpl; intros; monadInv H. auto. f_equal. eapply set_sound; eauto with ty. eauto. Qed. Lemma move_incr: forall te e r1 r2 e' changed, move e r1 r2 = OK(changed, e') -> satisf te e' -> satisf te e. Proof. unfold move; intros. destruct H0 as [P Q]. destruct (peq r1 r2). inv H; split; auto. destruct (te_typ e)!r1 as [ty1|] eqn:E1; destruct (te_typ e)!r2 as [ty2|] eqn:E2. - destruct (T.eq ty1 ty2); inv H. split; auto. - inv H; simpl in *; split; auto. intros. apply P. rewrite PTree.gso by congruence. auto. - inv H; simpl in *; split; auto. intros. apply P. rewrite PTree.gso by congruence. auto. - inv H; simpl in *; split; auto. Qed. Hint Resolve move_incr: ty. Lemma move_sound: forall te e r1 r2 e' changed, move e r1 r2 = OK(changed, e') -> satisf te e' -> te r1 = te r2. Proof. unfold move; intros. destruct H0 as [P Q]. destruct (peq r1 r2). congruence. destruct (te_typ e)!r1 as [ty1|] eqn:E1; destruct (te_typ e)!r2 as [ty2|] eqn:E2. - destruct (T.eq ty1 ty2); inv H. erewrite ! P by eauto. auto. - inv H; simpl in *. rewrite (P r1 ty1). rewrite (P r2 ty1). auto. apply PTree.gss. rewrite PTree.gso by congruence. auto. - inv H; simpl in *. rewrite (P r1 ty2). rewrite (P r2 ty2). auto. rewrite PTree.gso by congruence. auto. apply PTree.gss. - inv H; simpl in *. apply Q; auto. Qed. Lemma solve_rec_incr: forall te q e changed e' changed', solve_rec e changed q = OK(e', changed') -> satisf te e' -> satisf te e. Proof. induction q; simpl; intros. - inv H. auto. - destruct a as [r1 r2]; monadInv H. eauto with ty. Qed. Lemma solve_rec_sound: forall te r1 r2 q e changed e' changed', solve_rec e changed q = OK(e', changed') -> In (r1, r2) q -> satisf te e' -> te r1 = te r2. Proof. induction q; simpl; intros. - contradiction. - destruct a as [r3 r4]; monadInv H. destruct H0. + inv H. eapply move_sound; eauto. eapply solve_rec_incr; eauto. + eapply IHq; eauto with ty. Qed. Lemma move_false: forall e r1 r2 e', move e r1 r2 = OK(false, e') -> te_typ e' = te_typ e /\ makeassign e r1 = makeassign e r2. Proof. unfold move; intros. destruct (peq r1 r2). inv H. split; auto. unfold makeassign; destruct (te_typ e)!r1 as [ty1|] eqn:E1; destruct (te_typ e)!r2 as [ty2|] eqn:E2. - destruct (T.eq ty1 ty2); inv H. auto. - discriminate. - discriminate. - inv H. split; auto. Qed. Lemma solve_rec_false: forall r1 r2 q e changed e', solve_rec e changed q = OK(e', false) -> changed = false /\ (In (r1, r2) q -> makeassign e r1 = makeassign e r2). Proof. induction q; simpl; intros. - inv H. tauto. - destruct a as [r3 r4]; monadInv H. exploit IHq; eauto. intros [P Q]. destruct changed; try discriminate. destruct x; try discriminate. exploit move_false; eauto. intros [U V]. split. auto. intros [A|A]. inv A. auto. exploit Q; auto. unfold makeassign; rewrite U; auto. Qed. Lemma solve_constraints_incr: forall te e e', solve_constraints e = OK e' -> satisf te e' -> satisf te e. Proof. intros te e; functional induction (solve_constraints e); intros. - inv H. auto. - exploit solve_rec_incr; eauto. intros [A B]. split; auto. intros; eapply solve_rec_sound; eauto. - discriminate. Qed. Lemma solve_constraints_sound: forall e e', solve_constraints e = OK e' -> satisf (makeassign e') e'. Proof. intros e0; functional induction (solve_constraints e0); intros. - inv H. split; intros. unfold makeassign; rewrite H. split; auto with ty. exploit solve_rec_false. eauto. intros [A B]. eapply B; eauto. - eauto. - discriminate. Qed. Theorem solve_sound: forall e te, solve e = OK te -> satisf te e. Proof. unfold solve; intros. monadInv H. eapply solve_constraints_incr. eauto. eapply solve_constraints_sound; eauto. Qed. (** Completeness proof *) Lemma set_complete: forall te e x ty, satisf te e -> te x = ty -> exists e', set e x ty = OK e' /\ satisf te e'. Proof. unfold set; intros. generalize H; intros [P Q]. destruct (te_typ e)!x as [ty1|] eqn:E. - replace ty1 with ty. rewrite dec_eq_true. exists e; auto. exploit P; eauto. congruence. - econstructor; split; eauto. split; simpl; intros; auto. rewrite PTree.gsspec in H1. destruct (peq x0 x). congruence. eauto. Qed. Lemma set_list_complete: forall te xl tyl e, satisf te e -> map te xl = tyl -> exists e', set_list e xl tyl = OK e' /\ satisf te e'. Proof. induction xl; intros; inv H0; simpl. econstructor; eauto. exploit (set_complete te e a (te a)); auto. intros (e1 & P & Q). exploit (IHxl (map te xl) e1); auto. intros (e2 & U & V). exists e2; split; auto. rewrite P; auto. Qed. Lemma move_complete: forall te e r1 r2, satisf te e -> te r1 = te r2 -> exists changed e', move e r1 r2 = OK(changed, e') /\ satisf te e'. Proof. unfold move; intros. elim H; intros P Q. assert (Q': forall x y, In (x, y) ((r1, r2) :: te_equ e) -> te x = te y). { intros. destruct H1; auto. congruence. } destruct (peq r1 r2). econstructor; econstructor; eauto. destruct (te_typ e)!r1 as [ty1|] eqn:E1; destruct (te_typ e)!r2 as [ty2|] eqn:E2. - replace ty2 with ty1. rewrite dec_eq_true. econstructor; econstructor; eauto. exploit (P r1); eauto. exploit (P r2); eauto. congruence. - econstructor; econstructor; split; eauto. split; simpl; intros; auto. rewrite PTree.gsspec in H1. destruct (peq x r2). inv H1. rewrite <- H0. eauto. eauto. - econstructor; econstructor; split; eauto. split; simpl; intros; auto. rewrite PTree.gsspec in H1. destruct (peq x r1). inv H1. rewrite H0. eauto. eauto. - econstructor; econstructor; split; eauto. split; eauto. Qed. Lemma solve_rec_complete: forall te q e changed, satisf te e -> (forall r1 r2, In (r1, r2) q -> te r1 = te r2) -> exists e' changed', solve_rec e changed q = OK(e', changed') /\ satisf te e'. Proof. induction q; simpl; intros. - econstructor; econstructor; eauto. - destruct a as [r1 r2]. exploit (move_complete te e r1 r2); auto. intros (changed1 & e1 & A & B). exploit (IHq e1 (changed || changed1)); auto. intros (e' & changed' & C & D). exists e'; exists changed'. rewrite A; simpl; rewrite C; auto. Qed. Lemma solve_constraints_complete: forall te e, satisf te e -> exists e', solve_constraints e = OK e' /\ satisf te e'. Proof. intros te e. functional induction (solve_constraints e); intros. - exists e; auto. - exploit (solve_rec_complete te (te_equ e) {| te_typ := te_typ e; te_equ := nil |} false). destruct H; split; auto. simpl; tauto. destruct H; auto. intros (e1 & changed1 & P & Q). apply IHr. congruence. - exploit (solve_rec_complete te (te_equ e) {| te_typ := te_typ e; te_equ := nil |} false). destruct H; split; auto. simpl; tauto. destruct H; auto. intros (e1 & changed1 & P & Q). congruence. Qed. Lemma solve_complete: forall te e, satisf te e -> exists te', solve e = OK te'. Proof. intros. unfold solve. destruct (solve_constraints_complete te e H) as (e' & P & Q). econstructor. rewrite P. simpl. eauto. Qed. End UniSolver.