(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Multi-way branches (``[switch]'') and their compilation to 2-way comparison trees. *) Require Import EqNat. Require Import Coqlib. Require Import Integers. (** A multi-way branch is composed of a list of (key, action) pairs, plus a default action. *) Definition table : Set := list (int * nat). Fixpoint switch_target (n: int) (dfl: nat) (cases: table) {struct cases} : nat := match cases with | nil => dfl | (key, action) :: rem => if Int.eq n key then action else switch_target n dfl rem end. (** Multi-way branches are translated to a 2-way comparison tree. Each node of the tree performs an equality test or a less-than test against one of the keys. *) Inductive comptree : Set := | CTaction: nat -> comptree | CTifeq: int -> nat -> comptree -> comptree | CTiflt: int -> comptree -> comptree -> comptree. Fixpoint comptree_match (n: int) (t: comptree) {struct t}: nat := match t with | CTaction act => act | CTifeq key act t' => if Int.eq n key then act else comptree_match n t' | CTiflt key t1 t2 => if Int.ltu n key then comptree_match n t1 else comptree_match n t2 end. (** The translation from a table to a comparison tree is performed by untrusted Caml code (function [compile_switch] in file [RTLgenaux.ml]). In Coq, we validate a posteriori the result of this function. In other terms, we now develop and prove correct Coq functions that take a table and a comparison tree, and check that their semantics are equivalent. *) Fixpoint split_lt (pivot: int) (cases: table) {struct cases} : table * table := match cases with | nil => (nil, nil) | (key, act) :: rem => let (l, r) := split_lt pivot rem in if Int.ltu key pivot then ((key, act) :: l, r) else (l, (key, act) :: r) end. Fixpoint split_eq (pivot: int) (cases: table) {struct cases} : option nat * table := match cases with | nil => (None, nil) | (key, act) :: rem => let (same, others) := split_eq pivot rem in if Int.eq key pivot then (Some act, others) else (same, (key, act) :: others) end. Definition refine_low_bound (v lo: Z) := if zeq v lo then lo + 1 else lo. Definition refine_high_bound (v hi: Z) := if zeq v hi then hi - 1 else hi. Fixpoint validate (default: nat) (cases: table) (t: comptree) (lo hi: Z) {struct t} : bool := match t with | CTaction act => match cases with | nil => beq_nat act default | (key1, act1) :: _ => zeq (Int.unsigned key1) lo && zeq lo hi && beq_nat act act1 end | CTifeq pivot act t' => match split_eq pivot cases with | (None, _) => false | (Some act', others) => beq_nat act act' && validate default others t' (refine_low_bound (Int.unsigned pivot) lo) (refine_high_bound (Int.unsigned pivot) hi) end | CTiflt pivot t1 t2 => match split_lt pivot cases with | (lcases, rcases) => validate default lcases t1 lo (Int.unsigned pivot - 1) && validate default rcases t2 (Int.unsigned pivot) hi end end. Definition validate_switch (default: nat) (cases: table) (t: comptree) := validate default cases t 0 Int.max_unsigned. (** Correctness proof for validation. *) Lemma split_eq_prop: forall v default n cases optact cases', split_eq n cases = (optact, cases') -> switch_target v default cases = (if Int.eq v n then match optact with Some act => act | None => default end else switch_target v default cases'). Proof. induction cases; simpl; intros until cases'. intros. inversion H; subst. simpl. destruct (Int.eq v n); auto. destruct a as [key act]. case_eq (split_eq n cases). intros same other SEQ. rewrite (IHcases _ _ SEQ). predSpec Int.eq Int.eq_spec key n; intro EQ; inversion EQ; simpl. subst n. destruct (Int.eq v key). auto. auto. predSpec Int.eq Int.eq_spec v key. subst v. predSpec Int.eq Int.eq_spec key n. congruence. auto. auto. Qed. Lemma split_lt_prop: forall v default n cases lcases rcases, split_lt n cases = (lcases, rcases) -> switch_target v default cases = (if Int.ltu v n then switch_target v default lcases else switch_target v default rcases). Proof. induction cases; intros until rcases; simpl. intro. inversion H; subst. simpl. destruct (Int.ltu v n); auto. destruct a as [key act]. case_eq (split_lt n cases). intros lc rc SEQ. rewrite (IHcases _ _ SEQ). case_eq (Int.ltu key n); intros; inv H0; simpl. predSpec Int.eq Int.eq_spec v key. subst v. rewrite H. auto. auto. predSpec Int.eq Int.eq_spec v key. subst v. rewrite H. auto. auto. Qed. Lemma validate_correct_rec: forall default v t cases lo hi, validate default cases t lo hi = true -> lo <= Int.unsigned v <= hi -> switch_target v default cases = comptree_match v t. Proof. induction t; simpl; intros until hi. (* base case *) destruct cases as [ | [key1 act1] cases1]; intros. replace n with default. reflexivity. symmetry. apply beq_nat_eq. auto. destruct (andb_prop _ _ H). destruct (andb_prop _ _ H1). clear H H1. assert (Int.unsigned key1 = lo). eapply proj_sumbool_true; eauto. assert (lo = hi). eapply proj_sumbool_true; eauto. assert (Int.unsigned v = Int.unsigned key1). omega. replace n with act1. simpl. unfold Int.eq. rewrite H5. rewrite zeq_true. auto. symmetry. apply beq_nat_eq. auto. (* eq node *) case_eq (split_eq i cases). intros optact cases' EQ. destruct optact as [ act | ]. 2: congruence. intros. destruct (andb_prop _ _ H). clear H. rewrite (split_eq_prop v default _ _ _ _ EQ). predSpec Int.eq Int.eq_spec v i. symmetry. apply beq_nat_eq; auto. eapply IHt. eauto. assert (Int.unsigned v <> Int.unsigned i). rewrite <- (Int.repr_unsigned v) in H. rewrite <- (Int.repr_unsigned i) in H. congruence. split. unfold refine_low_bound. destruct (zeq (Int.unsigned i) lo); omega. unfold refine_high_bound. destruct (zeq (Int.unsigned i) hi); omega. (* lt node *) case_eq (split_lt i cases). intros lcases rcases EQ V RANGE. destruct (andb_prop _ _ V). clear V. rewrite (split_lt_prop v default _ _ _ _ EQ). unfold Int.ltu. destruct (zlt (Int.unsigned v) (Int.unsigned i)). eapply IHt1. eauto. omega. eapply IHt2. eauto. omega. Qed. Definition table_tree_agree (default: nat) (cases: table) (t: comptree) : Prop := forall v, switch_target v default cases = comptree_match v t. Theorem validate_switch_correct: forall default t cases, validate_switch default cases t = true -> table_tree_agree default cases t. Proof. unfold validate_switch, table_tree_agree; intros. eapply validate_correct_rec; eauto. apply Int.unsigned_range_2. Qed.