(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* Sandrine Blazy, ENSIIE and INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** In-memory representation of values. *) Require Import Coqlib. Require Import AST. Require Import Integers. Require Import Floats. Require Import Values. (** * Properties of memory chunks *) (** Memory reads and writes are performed by quantities called memory chunks, encoding the type, size and signedness of the chunk being addressed. The following functions extract the size information from a chunk. *) Definition size_chunk (chunk: memory_chunk) : Z := match chunk with | Mint8signed => 1 | Mint8unsigned => 1 | Mint16signed => 2 | Mint16unsigned => 2 | Mint32 => 4 | Mfloat32 => 4 | Mfloat64 => 8 | Mfloat64al32 => 8 end. Lemma size_chunk_pos: forall chunk, size_chunk chunk > 0. Proof. intros. destruct chunk; simpl; omega. Qed. Definition size_chunk_nat (chunk: memory_chunk) : nat := nat_of_Z(size_chunk chunk). Lemma size_chunk_conv: forall chunk, size_chunk chunk = Z_of_nat (size_chunk_nat chunk). Proof. intros. destruct chunk; reflexivity. Qed. Lemma size_chunk_nat_pos: forall chunk, exists n, size_chunk_nat chunk = S n. Proof. intros. generalize (size_chunk_pos chunk). rewrite size_chunk_conv. destruct (size_chunk_nat chunk). simpl; intros; omegaContradiction. intros; exists n; auto. Qed. (** Memory reads and writes must respect alignment constraints: the byte offset of the location being addressed should be an exact multiple of the natural alignment for the chunk being addressed. This natural alignment is defined by the following [align_chunk] function. Some target architectures (e.g. PowerPC and x86) have no alignment constraints, which we could reflect by taking [align_chunk chunk = 1]. However, other architectures have stronger alignment requirements. The following definition is appropriate for PowerPC, ARM and x86. *) Definition align_chunk (chunk: memory_chunk) : Z := match chunk with | Mint8signed => 1 | Mint8unsigned => 1 | Mint16signed => 2 | Mint16unsigned => 2 | Mint32 => 4 | Mfloat32 => 4 | Mfloat64 => 8 | Mfloat64al32 => 4 end. Lemma align_chunk_pos: forall chunk, align_chunk chunk > 0. Proof. intro. destruct chunk; simpl; omega. Qed. Lemma align_size_chunk_divides: forall chunk, (align_chunk chunk | size_chunk chunk). Proof. intros. destruct chunk; simpl; try apply Zdivide_refl. exists 2; auto. Qed. Lemma align_le_divides: forall chunk1 chunk2, align_chunk chunk1 <= align_chunk chunk2 -> (align_chunk chunk1 | align_chunk chunk2). Proof. intros. destruct chunk1; destruct chunk2; simpl in *; solve [ omegaContradiction | apply Zdivide_refl | exists 2; reflexivity | exists 4; reflexivity | exists 8; reflexivity ]. Qed. (** * Memory values *) (** A ``memory value'' is a byte-sized quantity that describes the current content of a memory cell. It can be either: - a concrete 8-bit integer; - a byte-sized fragment of an opaque pointer; - the special constant [Undef] that represents uninitialized memory. *) (** Values stored in memory cells. *) Inductive memval: Type := | Undef: memval | Byte: byte -> memval | Pointer: block -> int -> nat -> memval. (** * Encoding and decoding integers *) (** We define functions to convert between integers and lists of bytes of a given length *) Fixpoint bytes_of_int (n: nat) (x: Z) {struct n}: list byte := match n with | O => nil | S m => Byte.repr x :: bytes_of_int m (x / 256) end. Fixpoint int_of_bytes (l: list byte): Z := match l with | nil => 0 | b :: l' => Byte.unsigned b + int_of_bytes l' * 256 end. Parameter big_endian: bool. Definition rev_if_be (l: list byte) : list byte := if big_endian then List.rev l else l. Definition encode_int (sz: nat) (x: Z) : list byte := rev_if_be (bytes_of_int sz x). Definition decode_int (b: list byte) : Z := int_of_bytes (rev_if_be b). (** Length properties *) Lemma length_bytes_of_int: forall n x, length (bytes_of_int n x) = n. Proof. induction n; simpl; intros. auto. decEq. auto. Qed. Lemma rev_if_be_length: forall l, length (rev_if_be l) = length l. Proof. intros; unfold rev_if_be; destruct big_endian. apply List.rev_length. auto. Qed. Lemma encode_int_length: forall sz x, length(encode_int sz x) = sz. Proof. intros. unfold encode_int. rewrite rev_if_be_length. apply length_bytes_of_int. Qed. (** Decoding after encoding *) Lemma int_of_bytes_of_int: forall n x, int_of_bytes (bytes_of_int n x) = x mod (two_p (Z_of_nat n * 8)). Proof. induction n; intros. simpl. rewrite Zmod_1_r. auto. Opaque Byte.wordsize. rewrite inj_S. simpl. replace (Zsucc (Z_of_nat n) * 8) with (Z_of_nat n * 8 + 8) by omega. rewrite two_p_is_exp; try omega. rewrite Zmod_recombine. rewrite IHn. rewrite Zplus_comm. rewrite Byte.Z_mod_two_p_eq. reflexivity. apply two_p_gt_ZERO. omega. apply two_p_gt_ZERO. omega. Qed. Lemma rev_if_be_involutive: forall l, rev_if_be (rev_if_be l) = l. Proof. intros; unfold rev_if_be; destruct big_endian. apply List.rev_involutive. auto. Qed. Lemma decode_encode_int: forall n x, decode_int (encode_int n x) = x mod (two_p (Z_of_nat n * 8)). Proof. unfold decode_int, encode_int; intros. rewrite rev_if_be_involutive. apply int_of_bytes_of_int. Qed. Lemma decode_encode_int_1: forall x, Int.repr (decode_int (encode_int 1 (Int.unsigned x))) = Int.zero_ext 8 x. Proof. intros. rewrite decode_encode_int. rewrite <- (Int.repr_unsigned (Int.zero_ext 8 x)). decEq. symmetry. apply Int.zero_ext_mod. compute; auto. Qed. Lemma decode_encode_int_2: forall x, Int.repr (decode_int (encode_int 2 (Int.unsigned x))) = Int.zero_ext 16 x. Proof. intros. rewrite decode_encode_int. rewrite <- (Int.repr_unsigned (Int.zero_ext 16 x)). decEq. symmetry. apply Int.zero_ext_mod. compute; auto. Qed. Lemma decode_encode_int_4: forall x, Int.repr (decode_int (encode_int 4 (Int.unsigned x))) = x. Proof. intros. rewrite decode_encode_int. transitivity (Int.repr (Int.unsigned x)). decEq. apply Zmod_small. apply Int.unsigned_range. apply Int.repr_unsigned. Qed. Lemma decode_encode_int_8: forall x, Int64.repr (decode_int (encode_int 8 (Int64.unsigned x))) = x. Proof. intros. rewrite decode_encode_int. transitivity (Int64.repr (Int64.unsigned x)). decEq. apply Zmod_small. apply Int64.unsigned_range. apply Int64.repr_unsigned. Qed. (** A length-[n] encoding depends only on the low [8*n] bits of the integer. *) Lemma bytes_of_int_mod: forall n x y, Int.eqmod (two_p (Z_of_nat n * 8)) x y -> bytes_of_int n x = bytes_of_int n y. Proof. induction n. intros; simpl; auto. intros until y. rewrite inj_S. replace (Zsucc (Z_of_nat n) * 8) with (Z_of_nat n * 8 + 8) by omega. rewrite two_p_is_exp; try omega. intro EQM. simpl; decEq. apply Byte.eqm_samerepr. red. eapply Int.eqmod_divides; eauto. apply Zdivide_factor_l. apply IHn. destruct EQM as [k EQ]. exists k. rewrite EQ. rewrite <- Z_div_plus_full_l. decEq. change (two_p 8) with 256. ring. omega. Qed. Lemma encode_int_8_mod: forall x y, Int.eqmod (two_p 8) x y -> encode_int 1%nat x = encode_int 1%nat y. Proof. intros. unfold encode_int. decEq. apply bytes_of_int_mod. auto. Qed. Lemma encode_int_16_mod: forall x y, Int.eqmod (two_p 16) x y -> encode_int 2%nat x = encode_int 2%nat y. Proof. intros. unfold encode_int. decEq. apply bytes_of_int_mod. auto. Qed. (** * Encoding and decoding values *) Definition inj_bytes (bl: list byte) : list memval := List.map Byte bl. Fixpoint proj_bytes (vl: list memval) : option (list byte) := match vl with | nil => Some nil | Byte b :: vl' => match proj_bytes vl' with None => None | Some bl => Some(b :: bl) end | _ => None end. Remark length_inj_bytes: forall bl, length (inj_bytes bl) = length bl. Proof. intros. apply List.map_length. Qed. Remark proj_inj_bytes: forall bl, proj_bytes (inj_bytes bl) = Some bl. Proof. induction bl; simpl. auto. rewrite IHbl. auto. Qed. Lemma inj_proj_bytes: forall cl bl, proj_bytes cl = Some bl -> cl = inj_bytes bl. Proof. induction cl; simpl; intros. inv H; auto. destruct a; try congruence. destruct (proj_bytes cl); inv H. simpl. decEq. auto. Qed. Fixpoint inj_pointer (n: nat) (b: block) (ofs: int) {struct n}: list memval := match n with | O => nil | S m => Pointer b ofs m :: inj_pointer m b ofs end. Fixpoint check_pointer (n: nat) (b: block) (ofs: int) (vl: list memval) {struct n} : bool := match n, vl with | O, nil => true | S m, Pointer b' ofs' m' :: vl' => eq_block b b' && Int.eq_dec ofs ofs' && beq_nat m m' && check_pointer m b ofs vl' | _, _ => false end. Definition proj_pointer (vl: list memval) : val := match vl with | Pointer b ofs n :: vl' => if check_pointer 4%nat b ofs vl then Vptr b ofs else Vundef | _ => Vundef end. Definition encode_val (chunk: memory_chunk) (v: val) : list memval := match v, chunk with | Vint n, (Mint8signed | Mint8unsigned) => inj_bytes (encode_int 1%nat (Int.unsigned n)) | Vint n, (Mint16signed | Mint16unsigned) => inj_bytes (encode_int 2%nat (Int.unsigned n)) | Vint n, Mint32 => inj_bytes (encode_int 4%nat (Int.unsigned n)) | Vptr b ofs, Mint32 => inj_pointer 4%nat b ofs | Vfloat n, Mfloat32 => inj_bytes (encode_int 4%nat (Int.unsigned (Float.bits_of_single n))) | Vfloat n, (Mfloat64 | Mfloat64al32) => inj_bytes (encode_int 8%nat (Int64.unsigned (Float.bits_of_double n))) | _, _ => list_repeat (size_chunk_nat chunk) Undef end. Definition decode_val (chunk: memory_chunk) (vl: list memval) : val := match proj_bytes vl with | Some bl => match chunk with | Mint8signed => Vint(Int.sign_ext 8 (Int.repr (decode_int bl))) | Mint8unsigned => Vint(Int.zero_ext 8 (Int.repr (decode_int bl))) | Mint16signed => Vint(Int.sign_ext 16 (Int.repr (decode_int bl))) | Mint16unsigned => Vint(Int.zero_ext 16 (Int.repr (decode_int bl))) | Mint32 => Vint(Int.repr(decode_int bl)) | Mfloat32 => Vfloat(Float.single_of_bits (Int.repr (decode_int bl))) | Mfloat64 | Mfloat64al32 => Vfloat(Float.double_of_bits (Int64.repr (decode_int bl))) end | None => match chunk with | Mint32 => proj_pointer vl | _ => Vundef end end. Lemma encode_val_length: forall chunk v, length(encode_val chunk v) = size_chunk_nat chunk. Proof. intros. destruct v; simpl; destruct chunk; solve [ reflexivity | apply length_list_repeat | rewrite length_inj_bytes; apply encode_int_length ]. Qed. Lemma check_inj_pointer: forall b ofs n, check_pointer n b ofs (inj_pointer n b ofs) = true. Proof. induction n; simpl. auto. unfold proj_sumbool. rewrite dec_eq_true. rewrite dec_eq_true. rewrite <- beq_nat_refl. simpl; auto. Qed. Definition decode_encode_val (v1: val) (chunk1 chunk2: memory_chunk) (v2: val) : Prop := match v1, chunk1, chunk2 with | Vundef, _, _ => v2 = Vundef | Vint n, Mint8signed, Mint8signed => v2 = Vint(Int.sign_ext 8 n) | Vint n, Mint8unsigned, Mint8signed => v2 = Vint(Int.sign_ext 8 n) | Vint n, Mint8signed, Mint8unsigned => v2 = Vint(Int.zero_ext 8 n) | Vint n, Mint8unsigned, Mint8unsigned => v2 = Vint(Int.zero_ext 8 n) | Vint n, Mint16signed, Mint16signed => v2 = Vint(Int.sign_ext 16 n) | Vint n, Mint16unsigned, Mint16signed => v2 = Vint(Int.sign_ext 16 n) | Vint n, Mint16signed, Mint16unsigned => v2 = Vint(Int.zero_ext 16 n) | Vint n, Mint16unsigned, Mint16unsigned => v2 = Vint(Int.zero_ext 16 n) | Vint n, Mint32, Mint32 => v2 = Vint n | Vint n, Mint32, Mfloat32 => v2 = Vfloat(Float.single_of_bits n) | Vint n, (Mfloat32 | Mfloat64 | Mfloat64al32), _ => v2 = Vundef | Vint n, _, _ => True (**r nothing meaningful to say about v2 *) | Vptr b ofs, Mint32, Mint32 => v2 = Vptr b ofs | Vptr b ofs, _, _ => v2 = Vundef | Vfloat f, Mfloat32, Mfloat32 => v2 = Vfloat(Float.singleoffloat f) | Vfloat f, Mfloat32, Mint32 => v2 = Vint(Float.bits_of_single f) | Vfloat f, (Mfloat64 | Mfloat64al32), (Mfloat64 | Mfloat64al32) => v2 = Vfloat f | Vfloat f, (Mint8signed|Mint8unsigned|Mint16signed|Mint16unsigned|Mint32), _ => v2 = Vundef | Vfloat f, _, _ => True (* nothing interesting to say about v2 *) end. Remark decode_val_undef: forall bl chunk, decode_val chunk (Undef :: bl) = Vundef. Proof. intros. unfold decode_val. simpl. destruct chunk; auto. Qed. Lemma decode_encode_val_general: forall v chunk1 chunk2, decode_encode_val v chunk1 chunk2 (decode_val chunk2 (encode_val chunk1 v)). Proof. Opaque inj_pointer. intros. destruct v; destruct chunk1; simpl; try (apply decode_val_undef); destruct chunk2; unfold decode_val; auto; try (rewrite proj_inj_bytes). (* int-int *) rewrite decode_encode_int_1. decEq. apply Int.sign_ext_zero_ext. compute; auto. rewrite decode_encode_int_1. decEq. apply Int.zero_ext_idem. compute; auto. rewrite decode_encode_int_1. decEq. apply Int.sign_ext_zero_ext. compute; auto. rewrite decode_encode_int_1. decEq. apply Int.zero_ext_idem. compute; auto. rewrite decode_encode_int_2. decEq. apply Int.sign_ext_zero_ext. compute; auto. rewrite decode_encode_int_2. decEq. apply Int.zero_ext_idem. compute; auto. rewrite decode_encode_int_2. decEq. apply Int.sign_ext_zero_ext. compute; auto. rewrite decode_encode_int_2. decEq. apply Int.zero_ext_idem. compute; auto. rewrite decode_encode_int_4. auto. rewrite decode_encode_int_4. auto. rewrite decode_encode_int_4. auto. rewrite decode_encode_int_4. decEq. apply Float.single_of_bits_of_single. rewrite decode_encode_int_8. decEq. apply Float.double_of_bits_of_double. rewrite decode_encode_int_8. decEq. apply Float.double_of_bits_of_double. rewrite decode_encode_int_8. decEq. apply Float.double_of_bits_of_double. rewrite decode_encode_int_8. decEq. apply Float.double_of_bits_of_double. change (proj_bytes (inj_pointer 4 b i)) with (@None (list byte)). simpl. unfold proj_pointer. generalize (check_inj_pointer b i 4%nat). Transparent inj_pointer. simpl. intros EQ; rewrite EQ; auto. Qed. Lemma decode_encode_val_similar: forall v1 chunk1 chunk2 v2, type_of_chunk chunk1 = type_of_chunk chunk2 -> size_chunk chunk1 = size_chunk chunk2 -> decode_encode_val v1 chunk1 chunk2 v2 -> v2 = Val.load_result chunk2 v1. Proof. intros until v2; intros TY SZ DE. destruct chunk1; destruct chunk2; simpl in TY; try discriminate; simpl in SZ; try omegaContradiction; destruct v1; auto. Qed. Lemma decode_val_type: forall chunk cl, Val.has_type (decode_val chunk cl) (type_of_chunk chunk). Proof. intros. unfold decode_val. destruct (proj_bytes cl). destruct chunk; simpl; auto. destruct chunk; simpl; auto. unfold proj_pointer. destruct cl; try (exact I). destruct m; try (exact I). destruct (check_pointer 4%nat b i (Pointer b i n :: cl)); exact I. Qed. Lemma encode_val_int8_signed_unsigned: forall v, encode_val Mint8signed v = encode_val Mint8unsigned v. Proof. intros. destruct v; simpl; auto. Qed. Lemma encode_val_int16_signed_unsigned: forall v, encode_val Mint16signed v = encode_val Mint16unsigned v. Proof. intros. destruct v; simpl; auto. Qed. Lemma encode_val_int8_zero_ext: forall n, encode_val Mint8unsigned (Vint (Int.zero_ext 8 n)) = encode_val Mint8unsigned (Vint n). Proof. intros; unfold encode_val. decEq. apply encode_int_8_mod. apply Int.eqmod_zero_ext. compute; auto. Qed. Lemma encode_val_int8_sign_ext: forall n, encode_val Mint8signed (Vint (Int.sign_ext 8 n)) = encode_val Mint8signed (Vint n). Proof. intros; unfold encode_val. decEq. apply encode_int_8_mod. apply Int.eqmod_sign_ext'. compute; auto. Qed. Lemma encode_val_int16_zero_ext: forall n, encode_val Mint16unsigned (Vint (Int.zero_ext 16 n)) = encode_val Mint16unsigned (Vint n). Proof. intros; unfold encode_val. decEq. apply encode_int_16_mod. apply Int.eqmod_zero_ext. compute; auto. Qed. Lemma encode_val_int16_sign_ext: forall n, encode_val Mint16signed (Vint (Int.sign_ext 16 n)) = encode_val Mint16signed (Vint n). Proof. intros; unfold encode_val. decEq. apply encode_int_16_mod. apply Int.eqmod_sign_ext'. compute; auto. Qed. Lemma decode_val_cast: forall chunk l, let v := decode_val chunk l in match chunk with | Mint8signed => v = Val.sign_ext 8 v | Mint8unsigned => v = Val.zero_ext 8 v | Mint16signed => v = Val.sign_ext 16 v | Mint16unsigned => v = Val.zero_ext 16 v | Mfloat32 => v = Val.singleoffloat v | _ => True end. Proof. unfold decode_val; intros; destruct chunk; auto; destruct (proj_bytes l); auto. unfold Val.sign_ext. rewrite Int.sign_ext_idem; auto. compute; auto. unfold Val.zero_ext. rewrite Int.zero_ext_idem; auto. compute; auto. unfold Val.sign_ext. rewrite Int.sign_ext_idem; auto. compute; auto. unfold Val.zero_ext. rewrite Int.zero_ext_idem; auto. compute; auto. simpl. rewrite Float.singleoffloat_of_bits. auto. Qed. (** Pointers cannot be forged. *) Definition memval_valid_first (mv: memval) : Prop := match mv with | Pointer b ofs n => n = 3%nat | _ => True end. Definition memval_valid_cont (mv: memval) : Prop := match mv with | Pointer b ofs n => n <> 3%nat | _ => True end. Inductive encoding_shape: list memval -> Prop := | encoding_shape_intro: forall mv1 mvl, memval_valid_first mv1 -> (forall mv, In mv mvl -> memval_valid_cont mv) -> encoding_shape (mv1 :: mvl). Lemma encode_val_shape: forall chunk v, encoding_shape (encode_val chunk v). Proof. intros. destruct (size_chunk_nat_pos chunk) as [sz1 EQ]. assert (A: encoding_shape (list_repeat (size_chunk_nat chunk) Undef)). rewrite EQ; simpl; constructor. exact I. intros. replace mv with Undef. exact I. symmetry; eapply in_list_repeat; eauto. assert (B: forall bl, length bl = size_chunk_nat chunk -> encoding_shape (inj_bytes bl)). intros. destruct bl; simpl in *. congruence. constructor. exact I. unfold inj_bytes. intros. exploit list_in_map_inv; eauto. intros [x [C D]]. subst mv. exact I. destruct v; auto; destruct chunk; simpl; auto; try (apply B; apply encode_int_length). constructor. red. auto. simpl; intros. intuition; subst mv; red; simpl; congruence. Qed. Lemma check_pointer_inv: forall b ofs n mv, check_pointer n b ofs mv = true -> mv = inj_pointer n b ofs. Proof. induction n; destruct mv; simpl. auto. congruence. congruence. destruct m; try congruence. intro. destruct (andb_prop _ _ H). destruct (andb_prop _ _ H0). destruct (andb_prop _ _ H2). decEq. decEq. symmetry; eapply proj_sumbool_true; eauto. symmetry; eapply proj_sumbool_true; eauto. symmetry; apply beq_nat_true; auto. auto. Qed. Inductive decoding_shape: list memval -> Prop := | decoding_shape_intro: forall mv1 mvl, memval_valid_first mv1 -> mv1 <> Undef -> (forall mv, In mv mvl -> memval_valid_cont mv /\ mv <> Undef) -> decoding_shape (mv1 :: mvl). Lemma decode_val_shape: forall chunk mvl, List.length mvl = size_chunk_nat chunk -> decode_val chunk mvl = Vundef \/ decoding_shape mvl. Proof. intros. destruct (size_chunk_nat_pos chunk) as [sz EQ]. unfold decode_val. caseEq (proj_bytes mvl). intros bl PROJ. right. exploit inj_proj_bytes; eauto. intros. subst mvl. destruct bl; simpl in H. congruence. simpl. constructor. red; auto. congruence. unfold inj_bytes; intros. exploit list_in_map_inv; eauto. intros [b [A B]]. subst mv. split. red; auto. congruence. intros. destruct chunk; auto. unfold proj_pointer. destruct mvl; auto. destruct m; auto. caseEq (check_pointer 4%nat b i (Pointer b i n :: mvl)); auto. intros. right. exploit check_pointer_inv; eauto. simpl; intros; inv H2. constructor. red. auto. congruence. simpl; intros. intuition; subst mv; simpl; congruence. Qed. Lemma encode_val_pointer_inv: forall chunk v b ofs n mvl, encode_val chunk v = Pointer b ofs n :: mvl -> chunk = Mint32 /\ v = Vptr b ofs /\ mvl = inj_pointer 3%nat b ofs. Proof. intros until mvl. assert (A: list_repeat (size_chunk_nat chunk) Undef = Pointer b ofs n :: mvl -> chunk = Mint32 /\ v = Vptr b ofs /\ mvl = inj_pointer 3 b ofs). intros. destruct (size_chunk_nat_pos chunk) as [sz SZ]. rewrite SZ in H. simpl in H. discriminate. assert (B: forall bl, length bl <> 0%nat -> inj_bytes bl = Pointer b ofs n :: mvl -> chunk = Mint32 /\ v = Vptr b ofs /\ mvl = inj_pointer 3 b ofs). intros. destruct bl; simpl in *; congruence. unfold encode_val; destruct v; destruct chunk; (apply A; assumption) || (apply B; rewrite encode_int_length; congruence) || idtac. simpl. intros EQ; inv EQ; auto. Qed. Lemma decode_val_pointer_inv: forall chunk mvl b ofs, decode_val chunk mvl = Vptr b ofs -> chunk = Mint32 /\ mvl = inj_pointer 4%nat b ofs. Proof. intros until ofs; unfold decode_val. destruct (proj_bytes mvl). destruct chunk; congruence. destruct chunk; try congruence. unfold proj_pointer. destruct mvl. congruence. destruct m; try congruence. case_eq (check_pointer 4%nat b0 i (Pointer b0 i n :: mvl)); intros. inv H0. split; auto. apply check_pointer_inv; auto. congruence. Qed. Inductive pointer_encoding_shape: list memval -> Prop := | pointer_encoding_shape_intro: forall mv1 mvl, ~memval_valid_cont mv1 -> (forall mv, In mv mvl -> ~memval_valid_first mv) -> pointer_encoding_shape (mv1 :: mvl). Lemma encode_pointer_shape: forall b ofs, pointer_encoding_shape (encode_val Mint32 (Vptr b ofs)). Proof. intros. simpl. constructor. unfold memval_valid_cont. red; intro. elim H. auto. unfold memval_valid_first. simpl; intros; intuition; subst mv; congruence. Qed. Lemma decode_pointer_shape: forall chunk mvl b ofs, decode_val chunk mvl = Vptr b ofs -> chunk = Mint32 /\ pointer_encoding_shape mvl. Proof. intros. exploit decode_val_pointer_inv; eauto. intros [A B]. split; auto. subst mvl. apply encode_pointer_shape. Qed. (** * Compatibility with memory injections *) (** Relating two memory values according to a memory injection. *) Inductive memval_inject (f: meminj): memval -> memval -> Prop := | memval_inject_byte: forall n, memval_inject f (Byte n) (Byte n) | memval_inject_ptr: forall b1 ofs1 b2 ofs2 delta n, f b1 = Some (b2, delta) -> ofs2 = Int.add ofs1 (Int.repr delta) -> memval_inject f (Pointer b1 ofs1 n) (Pointer b2 ofs2 n) | memval_inject_undef: forall mv, memval_inject f Undef mv. Lemma memval_inject_incr: forall f f' v1 v2, memval_inject f v1 v2 -> inject_incr f f' -> memval_inject f' v1 v2. Proof. intros. inv H; econstructor. rewrite (H0 _ _ _ H1). reflexivity. auto. Qed. (** [decode_val], applied to lists of memory values that are pairwise related by [memval_inject], returns values that are related by [val_inject]. *) Lemma proj_bytes_inject: forall f vl vl', list_forall2 (memval_inject f) vl vl' -> forall bl, proj_bytes vl = Some bl -> proj_bytes vl' = Some bl. Proof. induction 1; simpl. congruence. inv H; try congruence. destruct (proj_bytes al); intros. inv H. rewrite (IHlist_forall2 l); auto. congruence. Qed. Lemma check_pointer_inject: forall f vl vl', list_forall2 (memval_inject f) vl vl' -> forall n b ofs b' delta, check_pointer n b ofs vl = true -> f b = Some(b', delta) -> check_pointer n b' (Int.add ofs (Int.repr delta)) vl' = true. Proof. induction 1; intros; destruct n; simpl in *; auto. inv H; auto. destruct (andb_prop _ _ H1). destruct (andb_prop _ _ H). destruct (andb_prop _ _ H5). assert (n = n0) by (apply beq_nat_true; auto). assert (b = b0) by (eapply proj_sumbool_true; eauto). assert (ofs = ofs1) by (eapply proj_sumbool_true; eauto). subst. rewrite H3 in H2; inv H2. unfold proj_sumbool. rewrite dec_eq_true. rewrite dec_eq_true. rewrite <- beq_nat_refl. simpl. eauto. congruence. Qed. Lemma proj_pointer_inject: forall f vl1 vl2, list_forall2 (memval_inject f) vl1 vl2 -> val_inject f (proj_pointer vl1) (proj_pointer vl2). Proof. intros. unfold proj_pointer. inversion H; subst. auto. inversion H0; subst; auto. case_eq (check_pointer 4%nat b0 ofs1 (Pointer b0 ofs1 n :: al)); intros. exploit check_pointer_inject. eexact H. eauto. eauto. intro. rewrite H4. econstructor; eauto. constructor. Qed. Lemma proj_bytes_not_inject: forall f vl vl', list_forall2 (memval_inject f) vl vl' -> proj_bytes vl = None -> proj_bytes vl' <> None -> In Undef vl. Proof. induction 1; simpl; intros. congruence. inv H; try congruence. right. apply IHlist_forall2. destruct (proj_bytes al); congruence. destruct (proj_bytes bl); congruence. auto. Qed. Lemma check_pointer_undef: forall n b ofs vl, In Undef vl -> check_pointer n b ofs vl = false. Proof. induction n; intros; simpl. destruct vl. elim H. auto. destruct vl. auto. destruct m; auto. simpl in H; destruct H. congruence. rewrite IHn; auto. apply andb_false_r. Qed. Lemma proj_pointer_undef: forall vl, In Undef vl -> proj_pointer vl = Vundef. Proof. intros; unfold proj_pointer. destruct vl; auto. destruct m; auto. rewrite check_pointer_undef. auto. auto. Qed. Theorem decode_val_inject: forall f vl1 vl2 chunk, list_forall2 (memval_inject f) vl1 vl2 -> val_inject f (decode_val chunk vl1) (decode_val chunk vl2). Proof. intros. unfold decode_val. case_eq (proj_bytes vl1); intros. exploit proj_bytes_inject; eauto. intros. rewrite H1. destruct chunk; constructor. destruct chunk; auto. case_eq (proj_bytes vl2); intros. rewrite proj_pointer_undef. auto. eapply proj_bytes_not_inject; eauto. congruence. apply proj_pointer_inject; auto. Qed. (** Symmetrically, [encode_val], applied to values related by [val_inject], returns lists of memory values that are pairwise related by [memval_inject]. *) Lemma inj_bytes_inject: forall f bl, list_forall2 (memval_inject f) (inj_bytes bl) (inj_bytes bl). Proof. induction bl; constructor; auto. constructor. Qed. Lemma repeat_Undef_inject_any: forall f vl, list_forall2 (memval_inject f) (list_repeat (length vl) Undef) vl. Proof. induction vl; simpl; constructor; auto. constructor. Qed. Lemma repeat_Undef_inject_self: forall f n, list_forall2 (memval_inject f) (list_repeat n Undef) (list_repeat n Undef). Proof. induction n; simpl; constructor; auto. constructor. Qed. Theorem encode_val_inject: forall f v1 v2 chunk, val_inject f v1 v2 -> list_forall2 (memval_inject f) (encode_val chunk v1) (encode_val chunk v2). Proof. intros. inv H; simpl. destruct chunk; apply inj_bytes_inject || apply repeat_Undef_inject_self. destruct chunk; apply inj_bytes_inject || apply repeat_Undef_inject_self. destruct chunk; try (apply repeat_Undef_inject_self). repeat econstructor; eauto. replace (size_chunk_nat chunk) with (length (encode_val chunk v2)). apply repeat_Undef_inject_any. apply encode_val_length. Qed. Definition memval_lessdef: memval -> memval -> Prop := memval_inject inject_id. Lemma memval_lessdef_refl: forall mv, memval_lessdef mv mv. Proof. red. destruct mv; econstructor. unfold inject_id; reflexivity. rewrite Int.add_zero; auto. Qed. (** [memval_inject] and compositions *) Lemma memval_inject_compose: forall f f' v1 v2 v3, memval_inject f v1 v2 -> memval_inject f' v2 v3 -> memval_inject (compose_meminj f f') v1 v3. Proof. intros. inv H. inv H0. constructor. inv H0. econstructor. unfold compose_meminj; rewrite H1; rewrite H5; eauto. rewrite Int.add_assoc. decEq. unfold Int.add. apply Int.eqm_samerepr. auto with ints. constructor. Qed.