(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Global environments are a component of the dynamic semantics of all languages involved in the compiler. A global environment maps symbol names (names of functions and of global variables) to the corresponding memory addresses. It also maps memory addresses of functions to the corresponding function descriptions. Global environments, along with the initial memory state at the beginning of program execution, are built from the program of interest, as follows: - A distinct memory address is assigned to each function of the program. These function addresses use negative numbers to distinguish them from addresses of memory blocks. The associations of function name to function address and function address to function description are recorded in the global environment. - For each global variable, a memory block is allocated and associated to the name of the variable. These operations reflect (at a high level of abstraction) what takes place during program linking and program loading in a real operating system. *) Require Recdef. Require Import Zwf. Require Import Axioms. Require Import Coqlib. Require Import Errors. Require Import Maps. Require Import AST. Require Import Integers. Require Import Floats. Require Import Values. Require Import Memory. Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope. Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope. Local Open Scope pair_scope. Local Open Scope error_monad_scope. Set Implicit Arguments. Module Genv. (** * Global environments *) Section GENV. Variable F: Type. (**r The type of function descriptions *) Variable V: Type. (**r The type of information attached to variables *) (** The type of global environments. *) Record t: Type := mkgenv { genv_symb: PTree.t block; (**r mapping symbol -> block *) genv_funs: ZMap.t (option F); (**r mapping function pointer -> definition *) genv_vars: ZMap.t (option (globvar V)); (**r mapping variable pointer -> info *) genv_nextfun: block; (**r next function pointer *) genv_nextvar: block; (**r next variable pointer *) genv_nextfun_neg: genv_nextfun < 0; genv_nextvar_pos: genv_nextvar > 0; genv_symb_range: forall id b, PTree.get id genv_symb = Some b -> b <> 0 /\ genv_nextfun < b /\ b < genv_nextvar; genv_funs_range: forall b f, ZMap.get b genv_funs = Some f -> genv_nextfun < b < 0; genv_vars_range: forall b v, ZMap.get b genv_vars = Some v -> 0 < b < genv_nextvar; genv_vars_inj: forall id1 id2 b, PTree.get id1 genv_symb = Some b -> PTree.get id2 genv_symb = Some b -> id1 = id2 }. (** ** Lookup functions *) (** [find_symbol ge id] returns the block associated with the given name, if any *) Definition find_symbol (ge: t) (id: ident) : option block := PTree.get id ge.(genv_symb). (** [find_funct_ptr ge b] returns the function description associated with the given address. *) Definition find_funct_ptr (ge: t) (b: block) : option F := ZMap.get b ge.(genv_funs). (** [find_funct] is similar to [find_funct_ptr], but the function address is given as a value, which must be a pointer with offset 0. *) Definition find_funct (ge: t) (v: val) : option F := match v with | Vptr b ofs => if Int.eq_dec ofs Int.zero then find_funct_ptr ge b else None | _ => None end. (** [invert_symbol ge b] returns the name associated with the given block, if any *) Definition invert_symbol (ge: t) (b: block) : option ident := PTree.fold (fun res id b' => if eq_block b b' then Some id else res) ge.(genv_symb) None. (** [find_var_info ge b] returns the information attached to the variable at address [b]. *) Definition find_var_info (ge: t) (b: block) : option (globvar V) := ZMap.get b ge.(genv_vars). (** ** Constructing the global environment *) Program Definition add_function (ge: t) (idf: ident * F) : t := @mkgenv (PTree.set idf#1 ge.(genv_nextfun) ge.(genv_symb)) (ZMap.set ge.(genv_nextfun) (Some idf#2) ge.(genv_funs)) ge.(genv_vars) (ge.(genv_nextfun) - 1) ge.(genv_nextvar) _ _ _ _ _ _. Next Obligation. destruct ge; simpl; omega. Qed. Next Obligation. destruct ge; auto. Qed. Next Obligation. destruct ge; simpl in *. rewrite PTree.gsspec in H. destruct (peq id i). inv H. unfold block; omega. exploit genv_symb_range0; eauto. unfold block; omega. Qed. Next Obligation. destruct ge; simpl in *. rewrite ZMap.gsspec in H. destruct (ZIndexed.eq b genv_nextfun0). subst; omega. exploit genv_funs_range0; eauto. omega. Qed. Next Obligation. destruct ge; eauto. Qed. Next Obligation. destruct ge; simpl in *. rewrite PTree.gsspec in H. rewrite PTree.gsspec in H0. destruct (peq id1 i); destruct (peq id2 i). congruence. exploit genv_symb_range0; eauto. intros [A B]. inv H. omegaContradiction. exploit genv_symb_range0; eauto. intros [A B]. inv H0. omegaContradiction. eauto. Qed. Program Definition add_variable (ge: t) (idv: ident * globvar V) : t := @mkgenv (PTree.set idv#1 ge.(genv_nextvar) ge.(genv_symb)) ge.(genv_funs) (ZMap.set ge.(genv_nextvar) (Some idv#2) ge.(genv_vars)) ge.(genv_nextfun) (ge.(genv_nextvar) + 1) _ _ _ _ _ _. Next Obligation. destruct ge; auto. Qed. Next Obligation. destruct ge; simpl; omega. Qed. Next Obligation. destruct ge; simpl in *. rewrite PTree.gsspec in H. destruct (peq id i). inv H. unfold block; omega. exploit genv_symb_range0; eauto. unfold block; omega. Qed. Next Obligation. destruct ge; eauto. Qed. Next Obligation. destruct ge; simpl in *. rewrite ZMap.gsspec in H. destruct (ZIndexed.eq b genv_nextvar0). subst; omega. exploit genv_vars_range0; eauto. omega. Qed. Next Obligation. destruct ge; simpl in *. rewrite PTree.gsspec in H. rewrite PTree.gsspec in H0. destruct (peq id1 i); destruct (peq id2 i). congruence. exploit genv_symb_range0; eauto. intros [A B]. inv H. omegaContradiction. exploit genv_symb_range0; eauto. intros [A B]. inv H0. omegaContradiction. eauto. Qed. Program Definition empty_genv : t := @mkgenv (PTree.empty block) (ZMap.init None) (ZMap.init None) (-1) 1 _ _ _ _ _ _. Next Obligation. omega. Qed. Next Obligation. omega. Qed. Next Obligation. rewrite PTree.gempty in H. discriminate. Qed. Next Obligation. rewrite ZMap.gi in H. discriminate. Qed. Next Obligation. rewrite ZMap.gi in H. discriminate. Qed. Next Obligation. rewrite PTree.gempty in H. discriminate. Qed. Definition add_functions (ge: t) (fl: list (ident * F)) : t := List.fold_left add_function fl ge. Definition add_variables (ge: t) (vl: list (ident * globvar V)) : t := List.fold_left add_variable vl ge. Definition globalenv (p: program F V) := add_variables (add_functions empty_genv p.(prog_funct)) p.(prog_vars). (** ** Properties of the operations over global environments *) Theorem find_funct_inv: forall ge v f, find_funct ge v = Some f -> exists b, v = Vptr b Int.zero. Proof. intros until f; unfold find_funct. destruct v; try congruence. destruct (Int.eq_dec i Int.zero); try congruence. intros. exists b; congruence. Qed. Theorem find_funct_find_funct_ptr: forall ge b, find_funct ge (Vptr b Int.zero) = find_funct_ptr ge b. Proof. intros; simpl. apply dec_eq_true. Qed. Theorem find_symbol_exists: forall p id gv, In (id, gv) (prog_vars p) -> exists b, find_symbol (globalenv p) id = Some b. Proof. intros until gv. assert (forall vl ge, (exists b, find_symbol ge id = Some b) -> exists b, find_symbol (add_variables ge vl) id = Some b). unfold find_symbol; induction vl; simpl; intros. auto. apply IHvl. simpl. rewrite PTree.gsspec. fold ident. destruct (peq id a#1). exists (genv_nextvar ge); auto. auto. assert (forall vl ge, In (id, gv) vl -> exists b, find_symbol (add_variables ge vl) id = Some b). unfold find_symbol; induction vl; simpl; intros. contradiction. destruct H0. apply H. subst; unfold find_symbol; simpl. rewrite PTree.gss. exists (genv_nextvar ge); auto. eauto. intros. unfold globalenv; eauto. Qed. Remark add_functions_same_symb: forall id fl ge, ~In id (map (@fst ident F) fl) -> find_symbol (add_functions ge fl) id = find_symbol ge id. Proof. induction fl; simpl; intros. auto. rewrite IHfl. unfold find_symbol; simpl. apply PTree.gso. intuition. intuition. Qed. Remark add_functions_same_address: forall b fl ge, b > ge.(genv_nextfun) -> find_funct_ptr (add_functions ge fl) b = find_funct_ptr ge b. Proof. induction fl; simpl; intros. auto. rewrite IHfl. unfold find_funct_ptr; simpl. apply ZMap.gso. red; intros; subst b; omegaContradiction. simpl. omega. Qed. Remark add_variables_same_symb: forall id vl ge, ~In id (map (@fst ident (globvar V)) vl) -> find_symbol (add_variables ge vl) id = find_symbol ge id. Proof. induction vl; simpl; intros. auto. rewrite IHvl. unfold find_symbol; simpl. apply PTree.gso. intuition. intuition. Qed. Remark add_variables_same_address: forall b vl ge, b < ge.(genv_nextvar) -> find_var_info (add_variables ge vl) b = find_var_info ge b. Proof. induction vl; simpl; intros. auto. rewrite IHvl. unfold find_var_info; simpl. apply ZMap.gso. red; intros; subst b; omegaContradiction. simpl. omega. Qed. Remark add_variables_same_funs: forall b vl ge, find_funct_ptr (add_variables ge vl) b = find_funct_ptr ge b. Proof. induction vl; simpl; intros. auto. rewrite IHvl. auto. Qed. Remark add_functions_nextvar: forall fl ge, genv_nextvar (add_functions ge fl) = genv_nextvar ge. Proof. induction fl; simpl; intros. auto. rewrite IHfl. auto. Qed. Remark add_variables_nextvar: forall vl ge, genv_nextvar (add_variables ge vl) = genv_nextvar ge + Z_of_nat(List.length vl). Proof. induction vl; intros. simpl. unfold block; omega. simpl length; rewrite inj_S; simpl. rewrite IHvl. simpl. unfold block; omega. Qed. Theorem find_funct_ptr_exists: forall p id f, list_norepet (prog_funct_names p) -> list_disjoint (prog_funct_names p) (prog_var_names p) -> In (id, f) (prog_funct p) -> exists b, find_symbol (globalenv p) id = Some b /\ find_funct_ptr (globalenv p) b = Some f. Proof. intros until f. assert (forall fl ge, In (id, f) fl -> list_norepet (map (@fst ident F) fl) -> exists b, find_symbol (add_functions ge fl) id = Some b /\ find_funct_ptr (add_functions ge fl) b = Some f). induction fl; simpl; intros. contradiction. inv H0. destruct H. subst a. exists (genv_nextfun ge); split. rewrite add_functions_same_symb; auto. unfold find_symbol; simpl. apply PTree.gss. rewrite add_functions_same_address. unfold find_funct_ptr; simpl. apply ZMap.gss. simpl; omega. apply IHfl; auto. intros. exploit (H p.(prog_funct) empty_genv); eauto. intros [b [A B]]. unfold globalenv; exists b; split. rewrite add_variables_same_symb. auto. eapply list_disjoint_notin; eauto. unfold prog_funct_names. change id with (fst (id, f)). apply in_map; auto. rewrite add_variables_same_funs. auto. Qed. Theorem find_funct_ptr_prop: forall (P: F -> Prop) p b f, (forall id f, In (id, f) (prog_funct p) -> P f) -> find_funct_ptr (globalenv p) b = Some f -> P f. Proof. intros until f. intros PROP. assert (forall fl ge, List.incl fl (prog_funct p) -> match find_funct_ptr ge b with None => True | Some f => P f end -> match find_funct_ptr (add_functions ge fl) b with None => True | Some f => P f end). induction fl; simpl; intros. auto. apply IHfl. eauto with coqlib. unfold find_funct_ptr; simpl. destruct a as [id' f']; simpl. rewrite ZMap.gsspec. destruct (ZIndexed.eq b (genv_nextfun ge)). apply PROP with id'. apply H. auto with coqlib. assumption. unfold globalenv. rewrite add_variables_same_funs. intro. exploit (H p.(prog_funct) empty_genv). auto with coqlib. unfold find_funct_ptr; simpl. rewrite ZMap.gi. auto. rewrite H0. auto. Qed. Theorem find_funct_prop: forall (P: F -> Prop) p v f, (forall id f, In (id, f) (prog_funct p) -> P f) -> find_funct (globalenv p) v = Some f -> P f. Proof. intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v. rewrite find_funct_find_funct_ptr in H0. eapply find_funct_ptr_prop; eauto. Qed. Theorem find_funct_ptr_inversion: forall p b f, find_funct_ptr (globalenv p) b = Some f -> exists id, In (id, f) (prog_funct p). Proof. intros. pattern f. apply find_funct_ptr_prop with p b; auto. intros. exists id; auto. Qed. Theorem find_funct_inversion: forall p v f, find_funct (globalenv p) v = Some f -> exists id, In (id, f) (prog_funct p). Proof. intros. pattern f. apply find_funct_prop with p v; auto. intros. exists id; auto. Qed. Theorem find_funct_ptr_negative: forall p b f, find_funct_ptr (globalenv p) b = Some f -> b < 0. Proof. unfold find_funct_ptr. intros. destruct (globalenv p). simpl in H. exploit genv_funs_range0; eauto. omega. Qed. Theorem find_var_info_positive: forall p b v, find_var_info (globalenv p) b = Some v -> b > 0. Proof. unfold find_var_info. intros. destruct (globalenv p). simpl in H. exploit genv_vars_range0; eauto. omega. Qed. Remark add_variables_symb_neg: forall id b vl ge, find_symbol (add_variables ge vl) id = Some b -> b < 0 -> find_symbol ge id = Some b. Proof. induction vl; simpl; intros. auto. exploit IHvl; eauto. unfold find_symbol; simpl. rewrite PTree.gsspec. fold ident. destruct (peq id (a#1)); auto. intros. inv H1. generalize (genv_nextvar_pos ge). intros. omegaContradiction. Qed. Theorem find_funct_ptr_symbol_inversion: forall p id b f, find_symbol (globalenv p) id = Some b -> find_funct_ptr (globalenv p) b = Some f -> In (id, f) p.(prog_funct). Proof. intros until f. assert (forall fl ge, find_symbol (add_functions ge fl) id = Some b -> find_funct_ptr (add_functions ge fl) b = Some f -> In (id, f) fl \/ (find_symbol ge id = Some b /\ find_funct_ptr ge b = Some f)). induction fl; simpl; intros. auto. exploit IHfl; eauto. intros [A | [A B]]. auto. destruct a as [id' f']. unfold find_symbol in A; simpl in A. unfold find_funct_ptr in B; simpl in B. rewrite PTree.gsspec in A. destruct (peq id id'). inv A. rewrite ZMap.gss in B. inv B. auto. rewrite ZMap.gso in B. right; auto. exploit genv_symb_range; eauto. unfold block, ZIndexed.t; omega. intros. assert (b < 0) by (eapply find_funct_ptr_negative; eauto). unfold globalenv in *. rewrite add_variables_same_funs in H1. exploit (H (prog_funct p) empty_genv). eapply add_variables_symb_neg; eauto. auto. intuition. unfold find_symbol in H3; simpl in H3. rewrite PTree.gempty in H3. discriminate. Qed. Theorem find_symbol_not_nullptr: forall p id b, find_symbol (globalenv p) id = Some b -> b <> Mem.nullptr. Proof. intros until b. unfold find_symbol. destruct (globalenv p); simpl. intros. exploit genv_symb_range0; eauto. intuition. Qed. Theorem global_addresses_distinct: forall ge id1 id2 b1 b2, id1 <> id2 -> find_symbol ge id1 = Some b1 -> find_symbol ge id2 = Some b2 -> b1 <> b2. Proof. intros. red; intros; subst. elim H. destruct ge. eauto. Qed. Theorem invert_find_symbol: forall ge id b, invert_symbol ge b = Some id -> find_symbol ge id = Some b. Proof. intros until b; unfold find_symbol, invert_symbol. apply PTree_Properties.fold_rec. intros. rewrite H in H0; auto. congruence. intros. destruct (eq_block b v). inv H2. apply PTree.gss. rewrite PTree.gsspec. destruct (peq id k). subst. assert (m!k = Some b) by auto. congruence. auto. Qed. Theorem find_invert_symbol: forall ge id b, find_symbol ge id = Some b -> invert_symbol ge b = Some id. Proof. intros until b. assert (find_symbol ge id = Some b -> exists id', invert_symbol ge b = Some id'). unfold find_symbol, invert_symbol. apply PTree_Properties.fold_rec. intros. rewrite H in H0; auto. rewrite PTree.gempty; congruence. intros. destruct (eq_block b v). exists k; auto. rewrite PTree.gsspec in H2. destruct (peq id k). inv H2. congruence. auto. intros; exploit H; eauto. intros [id' A]. assert (id = id'). eapply genv_vars_inj; eauto. apply invert_find_symbol; auto. congruence. Qed. (** * Construction of the initial memory state *) Section INITMEM. Variable ge: t. Definition init_data_size (i: init_data) : Z := match i with | Init_int8 _ => 1 | Init_int16 _ => 2 | Init_int32 _ => 4 | Init_float32 _ => 4 | Init_float64 _ => 8 | Init_addrof _ _ => 4 | Init_space n => Zmax n 0 end. Lemma init_data_size_pos: forall i, init_data_size i >= 0. Proof. destruct i; simpl; try omega. generalize (Zle_max_r z 0). omega. Qed. Definition store_init_data (m: mem) (b: block) (p: Z) (id: init_data) : option mem := match id with | Init_int8 n => Mem.store Mint8unsigned m b p (Vint n) | Init_int16 n => Mem.store Mint16unsigned m b p (Vint n) | Init_int32 n => Mem.store Mint32 m b p (Vint n) | Init_float32 n => Mem.store Mfloat32 m b p (Vfloat n) | Init_float64 n => Mem.store Mfloat64 m b p (Vfloat n) | Init_addrof symb ofs => match find_symbol ge symb with | None => None | Some b' => Mem.store Mint32 m b p (Vptr b' ofs) end | Init_space n => Some m end. Fixpoint store_init_data_list (m: mem) (b: block) (p: Z) (idl: list init_data) {struct idl}: option mem := match idl with | nil => Some m | id :: idl' => match store_init_data m b p id with | None => None | Some m' => store_init_data_list m' b (p + init_data_size id) idl' end end. Function store_zeros (m: mem) (b: block) (n: Z) {wf (Zwf 0) n}: option mem := if zle n 0 then Some m else let n' := n - 1 in match Mem.store Mint8unsigned m b n' Vzero with | Some m' => store_zeros m' b n' | None => None end. Proof. intros. red. omega. apply Zwf_well_founded. Qed. Fixpoint init_data_list_size (il: list init_data) {struct il} : Z := match il with | nil => 0 | i :: il' => init_data_size i + init_data_list_size il' end. Definition perm_globvar (gv: globvar V) : permission := if gv.(gvar_volatile) then Nonempty else if gv.(gvar_readonly) then Readable else Writable. Definition alloc_variable (m: mem) (idv: ident * globvar V) : option mem := let init := idv#2.(gvar_init) in let sz := init_data_list_size init in let (m1, b) := Mem.alloc m 0 sz in match store_zeros m1 b sz with | None => None | Some m2 => match store_init_data_list m2 b 0 init with | None => None | Some m3 => Mem.drop_perm m3 b 0 sz (perm_globvar idv#2) end end. Fixpoint alloc_variables (m: mem) (vl: list (ident * globvar V)) {struct vl} : option mem := match vl with | nil => Some m | v :: vl' => match alloc_variable m v with | None => None | Some m' => alloc_variables m' vl' end end. Remark store_init_data_list_nextblock: forall idl b m p m', store_init_data_list m b p idl = Some m' -> Mem.nextblock m' = Mem.nextblock m. Proof. induction idl; simpl; intros until m'. intros. congruence. caseEq (store_init_data m b p a); try congruence. intros. transitivity (Mem.nextblock m0). eauto. destruct a; simpl in H; try (eapply Mem.nextblock_store; eauto; fail). congruence. destruct (find_symbol ge i); try congruence. eapply Mem.nextblock_store; eauto. Qed. Remark store_zeros_nextblock: forall m b n m', store_zeros m b n = Some m' -> Mem.nextblock m' = Mem.nextblock m. Proof. intros until n. functional induction (store_zeros m b n); intros. inv H; auto. rewrite IHo; eauto with mem. congruence. Qed. Remark alloc_variables_nextblock: forall vl m m', alloc_variables m vl = Some m' -> Mem.nextblock m' = Mem.nextblock m + Z_of_nat(List.length vl). Proof. induction vl. simpl; intros. inv H; unfold block; omega. simpl length; rewrite inj_S; simpl. intros m m'. unfold alloc_variable. set (init := gvar_init a#2). set (sz := init_data_list_size init). caseEq (Mem.alloc m 0 sz). intros m1 b ALLOC. caseEq (store_zeros m1 b sz); try congruence. intros m2 STZ. caseEq (store_init_data_list m2 b 0 init); try congruence. intros m3 STORE. caseEq (Mem.drop_perm m3 b 0 sz (perm_globvar a#2)); try congruence. intros m4 DROP REC. rewrite (IHvl _ _ REC). rewrite (Mem.nextblock_drop _ _ _ _ _ _ DROP). rewrite (store_init_data_list_nextblock _ _ _ _ STORE). rewrite (store_zeros_nextblock _ _ _ STZ). rewrite (Mem.nextblock_alloc _ _ _ _ _ ALLOC). unfold block in *; omega. Qed. Remark store_zeros_perm: forall prm b' q m b n m', store_zeros m b n = Some m' -> Mem.perm m b' q prm -> Mem.perm m' b' q prm. Proof. intros until n. functional induction (store_zeros m b n); intros. inv H; auto. eauto with mem. congruence. Qed. Remark store_init_data_list_perm: forall prm b' q idl b m p m', store_init_data_list m b p idl = Some m' -> Mem.perm m b' q prm -> Mem.perm m' b' q prm. Proof. induction idl; simpl; intros until m'. intros. congruence. caseEq (store_init_data m b p a); try congruence. intros. eapply IHidl; eauto. destruct a; simpl in H; eauto with mem. congruence. destruct (find_symbol ge i); try congruence. eauto with mem. Qed. Remark alloc_variables_perm: forall prm b' q vl m m', alloc_variables m vl = Some m' -> Mem.perm m b' q prm -> Mem.perm m' b' q prm. Proof. induction vl. simpl; intros. congruence. intros until m'. simpl. unfold alloc_variable. set (init := gvar_init a#2). set (sz := init_data_list_size init). caseEq (Mem.alloc m 0 sz). intros m1 b ALLOC. caseEq (store_zeros m1 b sz); try congruence. intros m2 STZ. caseEq (store_init_data_list m2 b 0 init); try congruence. intros m3 STORE. caseEq (Mem.drop_perm m3 b 0 sz (perm_globvar a#2)); try congruence. intros m4 DROP REC PERM. assert (b' <> b). apply Mem.valid_not_valid_diff with m; eauto with mem. eapply IHvl; eauto. eapply Mem.perm_drop_3; eauto. eapply store_init_data_list_perm; eauto. eapply store_zeros_perm; eauto. eauto with mem. Qed. Remark store_zeros_outside: forall m b n m', store_zeros m b n = Some m' -> forall chunk b' p, b' <> b -> Mem.load chunk m' b' p = Mem.load chunk m b' p. Proof. intros until n. functional induction (store_zeros m b n); intros. inv H; auto. rewrite IHo; auto. eapply Mem.load_store_other; eauto. inv H. Qed. Remark store_init_data_list_outside: forall b il m p m', store_init_data_list m b p il = Some m' -> forall chunk b' q, b' <> b \/ q + size_chunk chunk <= p -> Mem.load chunk m' b' q = Mem.load chunk m b' q. Proof. induction il; simpl. intros; congruence. intros until m'. caseEq (store_init_data m b p a); try congruence. intros m1 A B chunk b' q C. transitivity (Mem.load chunk m1 b' q). eapply IHil; eauto. generalize (init_data_size_pos a). intuition omega. destruct a; simpl in A; try (eapply Mem.load_store_other; eauto; intuition; fail). congruence. destruct (find_symbol ge i); try congruence. eapply Mem.load_store_other; eauto; intuition. Qed. Fixpoint load_store_init_data (m: mem) (b: block) (p: Z) (il: list init_data) {struct il} : Prop := match il with | nil => True | Init_int8 n :: il' => Mem.load Mint8unsigned m b p = Some(Vint(Int.zero_ext 8 n)) /\ load_store_init_data m b (p + 1) il' | Init_int16 n :: il' => Mem.load Mint16unsigned m b p = Some(Vint(Int.zero_ext 16 n)) /\ load_store_init_data m b (p + 2) il' | Init_int32 n :: il' => Mem.load Mint32 m b p = Some(Vint n) /\ load_store_init_data m b (p + 4) il' | Init_float32 n :: il' => Mem.load Mfloat32 m b p = Some(Vfloat(Float.singleoffloat n)) /\ load_store_init_data m b (p + 4) il' | Init_float64 n :: il' => Mem.load Mfloat64 m b p = Some(Vfloat n) /\ load_store_init_data m b (p + 8) il' | Init_addrof symb ofs :: il' => (exists b', find_symbol ge symb = Some b' /\ Mem.load Mint32 m b p = Some(Vptr b' ofs)) /\ load_store_init_data m b (p + 4) il' | Init_space n :: il' => load_store_init_data m b (p + Zmax n 0) il' end. Lemma store_init_data_list_charact: forall b il m p m', store_init_data_list m b p il = Some m' -> load_store_init_data m' b p il. Proof. assert (A: forall chunk v m b p m1 il m', Mem.store chunk m b p v = Some m1 -> store_init_data_list m1 b (p + size_chunk chunk) il = Some m' -> Val.has_type v (type_of_chunk chunk) -> Mem.load chunk m' b p = Some(Val.load_result chunk v)). intros. transitivity (Mem.load chunk m1 b p). eapply store_init_data_list_outside; eauto. right. omega. eapply Mem.load_store_same; eauto. induction il; simpl. auto. intros until m'. caseEq (store_init_data m b p a); try congruence. intros m1 B C. exploit IHil; eauto. intro D. destruct a; simpl in B; intuition. eapply (A Mint8unsigned (Vint i)); eauto. simpl; auto. eapply (A Mint16unsigned (Vint i)); eauto. simpl; auto. eapply (A Mint32 (Vint i)); eauto. simpl; auto. eapply (A Mfloat32 (Vfloat f)); eauto. simpl; auto. eapply (A Mfloat64 (Vfloat f)); eauto. simpl; auto. destruct (find_symbol ge i); try congruence. exists b0; split; auto. eapply (A Mint32 (Vptr b0 i0)); eauto. simpl; auto. Qed. Remark load_alloc_variables: forall chunk b p vl m m', alloc_variables m vl = Some m' -> Mem.valid_block m b -> Mem.load chunk m' b p = Mem.load chunk m b p. Proof. induction vl; simpl; intros until m'. congruence. unfold alloc_variable. set (init := gvar_init a#2). set (sz := init_data_list_size init). caseEq (Mem.alloc m 0 sz). intros m1 b1 ALLOC. caseEq (store_zeros m1 b1 sz); try congruence. intros m2 STZ. caseEq (store_init_data_list m2 b1 0 init); try congruence. intros m3 STORE. caseEq (Mem.drop_perm m3 b1 0 sz (perm_globvar a#2)); try congruence. intros m4 DROP REC VALID. assert (b <> b1). apply Mem.valid_not_valid_diff with m; eauto with mem. transitivity (Mem.load chunk m4 b p). apply IHvl; auto. red. rewrite (Mem.nextblock_drop _ _ _ _ _ _ DROP). rewrite (store_init_data_list_nextblock _ _ _ _ STORE). rewrite (store_zeros_nextblock _ _ _ STZ). change (Mem.valid_block m1 b). eauto with mem. transitivity (Mem.load chunk m3 b p). eapply Mem.load_drop; eauto. transitivity (Mem.load chunk m2 b p). eapply store_init_data_list_outside; eauto. transitivity (Mem.load chunk m1 b p). eapply store_zeros_outside; eauto. eapply Mem.load_alloc_unchanged; eauto. Qed. Remark load_store_init_data_invariant: forall m m' b, (forall chunk ofs, Mem.load chunk m' b ofs = Mem.load chunk m b ofs) -> forall il p, load_store_init_data m b p il -> load_store_init_data m' b p il. Proof. induction il; intro p; simpl. auto. repeat rewrite H. destruct a; intuition. Qed. Lemma alloc_variables_charact: forall id gv vl g m m', genv_nextvar g = Mem.nextblock m -> alloc_variables m vl = Some m' -> list_norepet (map (@fst ident (globvar V)) vl) -> In (id, gv) vl -> exists b, find_symbol (add_variables g vl) id = Some b /\ find_var_info (add_variables g vl) b = Some gv /\ Mem.range_perm m' b 0 (init_data_list_size gv.(gvar_init)) (perm_globvar gv) /\ (gv.(gvar_volatile) = false -> load_store_init_data m' b 0 gv.(gvar_init)). Proof. induction vl; simpl. contradiction. intros until m'; intro NEXT. unfold alloc_variable. destruct a as [id' gv']. simpl. set (init := gvar_init gv'). set (sz := init_data_list_size init). caseEq (Mem.alloc m 0 sz); try congruence. intros m1 b ALLOC. caseEq (store_zeros m1 b sz); try congruence. intros m2 STZ. caseEq (store_init_data_list m2 b 0 init); try congruence. intros m3 STORE. caseEq (Mem.drop_perm m3 b 0 sz (perm_globvar gv')); try congruence. intros m4 DROP REC NOREPET IN. inv NOREPET. exploit Mem.alloc_result; eauto. intro BEQ. destruct IN. inversion H; subst id gv. exists (Mem.nextblock m); split. rewrite add_variables_same_symb; auto. unfold find_symbol; simpl. rewrite PTree.gss. congruence. split. rewrite add_variables_same_address. unfold find_var_info; simpl. rewrite NEXT. apply ZMap.gss. simpl. rewrite <- NEXT; omega. split. red; intros. rewrite <- BEQ. eapply alloc_variables_perm; eauto. eapply Mem.perm_drop_1; eauto. intros NOVOL. apply load_store_init_data_invariant with m3. intros. transitivity (Mem.load chunk m4 (Mem.nextblock m) ofs). eapply load_alloc_variables; eauto. red. rewrite (Mem.nextblock_drop _ _ _ _ _ _ DROP). rewrite (store_init_data_list_nextblock _ _ _ _ STORE). rewrite (store_zeros_nextblock _ _ _ STZ). change (Mem.valid_block m1 (Mem.nextblock m)). rewrite <- BEQ. eauto with mem. eapply Mem.load_drop; eauto. repeat right. unfold perm_globvar. rewrite NOVOL. destruct (gvar_readonly gv'); auto with mem. rewrite <- BEQ. eapply store_init_data_list_charact; eauto. apply IHvl with m4; auto. simpl. rewrite (Mem.nextblock_drop _ _ _ _ _ _ DROP). rewrite (store_init_data_list_nextblock _ _ _ _ STORE). rewrite (store_zeros_nextblock _ _ _ STZ). rewrite (Mem.nextblock_alloc _ _ _ _ _ ALLOC). unfold block in *; omega. Qed. End INITMEM. Definition init_mem (p: program F V) := alloc_variables (globalenv p) Mem.empty p.(prog_vars). Theorem find_symbol_not_fresh: forall p id b m, init_mem p = Some m -> find_symbol (globalenv p) id = Some b -> Mem.valid_block m b. Proof. unfold init_mem; intros. exploit alloc_variables_nextblock; eauto. rewrite Mem.nextblock_empty. intro. exploit genv_symb_range; eauto. intros. generalize (add_variables_nextvar (prog_vars p) (add_functions empty_genv (prog_funct p))). rewrite add_functions_nextvar. simpl genv_nextvar. intro. red. rewrite H1. rewrite <- H3. intuition. Qed. Theorem find_var_info_not_fresh: forall p b gv m, init_mem p = Some m -> find_var_info (globalenv p) b = Some gv -> Mem.valid_block m b. Proof. unfold init_mem; intros. exploit alloc_variables_nextblock; eauto. rewrite Mem.nextblock_empty. intro. exploit genv_vars_range; eauto. intros. generalize (add_variables_nextvar (prog_vars p) (add_functions empty_genv (prog_funct p))). rewrite add_functions_nextvar. simpl genv_nextvar. intro. red. rewrite H1. rewrite <- H3. intuition. Qed. Theorem find_var_exists: forall p id gv m, list_norepet (prog_var_names p) -> In (id, gv) (prog_vars p) -> init_mem p = Some m -> exists b, find_symbol (globalenv p) id = Some b /\ find_var_info (globalenv p) b = Some gv /\ Mem.range_perm m b 0 (init_data_list_size gv.(gvar_init)) (perm_globvar gv) /\ (gv.(gvar_volatile) = false -> load_store_init_data (globalenv p) m b 0 gv.(gvar_init)). Proof. intros. exploit alloc_variables_charact; eauto. instantiate (1 := Mem.empty). rewrite add_functions_nextvar. rewrite Mem.nextblock_empty; auto. assumption. Qed. (** ** Compatibility with memory injections *) Section INITMEM_INJ. Variable ge: t. Variable thr: block. Hypothesis symb_inject: forall id b, find_symbol ge id = Some b -> b < thr. Lemma store_init_data_neutral: forall m b p id m', Mem.inject_neutral thr m -> b < thr -> store_init_data ge m b p id = Some m' -> Mem.inject_neutral thr m'. Proof. intros. destruct id; simpl in H1; try (eapply Mem.store_inject_neutral; eauto; fail). inv H1; auto. revert H1. caseEq (find_symbol ge i); try congruence. intros b' FS ST. eapply Mem.store_inject_neutral; eauto. econstructor. unfold Mem.flat_inj. apply zlt_true; eauto. rewrite Int.add_zero. auto. Qed. Lemma store_init_data_list_neutral: forall b idl m p m', Mem.inject_neutral thr m -> b < thr -> store_init_data_list ge m b p idl = Some m' -> Mem.inject_neutral thr m'. Proof. induction idl; simpl. intros; congruence. intros until m'; intros INJ FB. caseEq (store_init_data ge m b p a); try congruence. intros. eapply IHidl. eapply store_init_data_neutral; eauto. auto. eauto. Qed. Lemma store_zeros_neutral: forall m b n m', Mem.inject_neutral thr m -> b < thr -> store_zeros m b n = Some m' -> Mem.inject_neutral thr m'. Proof. intros until n. functional induction (store_zeros m b n); intros. inv H1; auto. apply IHo; auto. eapply Mem.store_inject_neutral; eauto. constructor. inv H1. Qed. Lemma alloc_variable_neutral: forall id m m', alloc_variable ge m id = Some m' -> Mem.inject_neutral thr m -> Mem.nextblock m < thr -> Mem.inject_neutral thr m'. Proof. intros until m'. unfold alloc_variable. set (init := gvar_init id#2). set (sz := init_data_list_size init). caseEq (Mem.alloc m 0 sz); try congruence. intros m1 b ALLOC. caseEq (store_zeros m1 b sz); try congruence. intros m2 STZ. caseEq (store_init_data_list ge m2 b 0 init); try congruence. intros m3 STORE DROP NEUTRAL NEXT. assert (b < thr). rewrite (Mem.alloc_result _ _ _ _ _ ALLOC). auto. eapply Mem.drop_inject_neutral; eauto. eapply store_init_data_list_neutral with (m := m2) (b := b); eauto. eapply store_zeros_neutral with (m := m1); eauto. eapply Mem.alloc_inject_neutral; eauto. Qed. Lemma alloc_variables_neutral: forall idl m m', alloc_variables ge m idl = Some m' -> Mem.inject_neutral thr m -> Mem.nextblock m' <= thr -> Mem.inject_neutral thr m'. Proof. induction idl; simpl. intros. congruence. intros until m'. caseEq (alloc_variable ge m a); try congruence. intros. assert (Mem.nextblock m' = Mem.nextblock m + Z_of_nat(length (a :: idl))). eapply alloc_variables_nextblock with ge. simpl. rewrite H. auto. simpl length in H3. rewrite inj_S in H3. exploit alloc_variable_neutral; eauto. unfold block in *; omega. Qed. End INITMEM_INJ. Theorem initmem_inject: forall p m, init_mem p = Some m -> Mem.inject (Mem.flat_inj (Mem.nextblock m)) m m. Proof. unfold init_mem; intros. apply Mem.neutral_inject. eapply alloc_variables_neutral; eauto. intros. exploit find_symbol_not_fresh; eauto. apply Mem.empty_inject_neutral. omega. Qed. End GENV. (** * Commutation with program transformations *) (** ** Commutation with matching between programs. *) Section MATCH_PROGRAMS. Variables A B V W: Type. Variable match_fun: A -> B -> Prop. Variable match_varinfo: V -> W -> Prop. Inductive match_globvar: globvar V -> globvar W -> Prop := | match_globvar_intro: forall info1 info2 init ro vo, match_varinfo info1 info2 -> match_globvar (mkglobvar info1 init ro vo) (mkglobvar info2 init ro vo). Record match_genvs (ge1: t A V) (ge2: t B W): Prop := { mge_nextfun: genv_nextfun ge1 = genv_nextfun ge2; mge_nextvar: genv_nextvar ge1 = genv_nextvar ge2; mge_symb: genv_symb ge1 = genv_symb ge2; mge_funs: forall b f, ZMap.get b (genv_funs ge1) = Some f -> exists tf, ZMap.get b (genv_funs ge2) = Some tf /\ match_fun f tf; mge_rev_funs: forall b tf, ZMap.get b (genv_funs ge2) = Some tf -> exists f, ZMap.get b (genv_funs ge1) = Some f /\ match_fun f tf; mge_vars: forall b v, ZMap.get b (genv_vars ge1) = Some v -> exists tv, ZMap.get b (genv_vars ge2) = Some tv /\ match_globvar v tv; mge_rev_vars: forall b tv, ZMap.get b (genv_vars ge2) = Some tv -> exists v, ZMap.get b (genv_vars ge1) = Some v /\ match_globvar v tv }. Lemma add_function_match: forall ge1 ge2 id f1 f2, match_genvs ge1 ge2 -> match_fun f1 f2 -> match_genvs (add_function ge1 (id, f1)) (add_function ge2 (id, f2)). Proof. intros. destruct H. constructor; simpl. congruence. congruence. congruence. rewrite mge_nextfun0. intros. rewrite ZMap.gsspec in H. rewrite ZMap.gsspec. destruct (ZIndexed.eq b (genv_nextfun ge2)). exists f2; split; congruence. eauto. rewrite mge_nextfun0. intros. rewrite ZMap.gsspec in H. rewrite ZMap.gsspec. destruct (ZIndexed.eq b (genv_nextfun ge2)). exists f1; split; congruence. eauto. auto. auto. Qed. Lemma add_functions_match: forall fl1 fl2, list_forall2 (match_funct_entry match_fun) fl1 fl2 -> forall ge1 ge2, match_genvs ge1 ge2 -> match_genvs (add_functions ge1 fl1) (add_functions ge2 fl2). Proof. induction 1; intros; simpl. auto. destruct a1 as [id1 f1]; destruct b1 as [id2 f2]. destruct H. subst. apply IHlist_forall2. apply add_function_match; auto. Qed. Lemma add_variable_match: forall ge1 ge2 id v1 v2, match_genvs ge1 ge2 -> match_globvar v1 v2 -> match_genvs (add_variable ge1 (id, v1)) (add_variable ge2 (id, v2)). Proof. intros. destruct H. constructor; simpl. congruence. congruence. congruence. auto. auto. rewrite mge_nextvar0. intros. rewrite ZMap.gsspec in H. rewrite ZMap.gsspec. destruct (ZIndexed.eq b (genv_nextvar ge2)). exists v2; split; congruence. eauto. rewrite mge_nextvar0. intros. rewrite ZMap.gsspec in H. rewrite ZMap.gsspec. destruct (ZIndexed.eq b (genv_nextvar ge2)). exists v1; split; congruence. eauto. Qed. Lemma add_variables_match: forall vl1 vl2, list_forall2 (match_var_entry match_varinfo) vl1 vl2 -> forall ge1 ge2, match_genvs ge1 ge2 -> match_genvs (add_variables ge1 vl1) (add_variables ge2 vl2). Proof. induction 1; intros; simpl. auto. inv H. apply IHlist_forall2. apply add_variable_match; auto. constructor; auto. Qed. Variable p: program A V. Variable p': program B W. Hypothesis progmatch: match_program match_fun match_varinfo p p'. Lemma globalenvs_match: match_genvs (globalenv p) (globalenv p'). Proof. unfold globalenv. destruct progmatch. destruct H0. apply add_variables_match; auto. apply add_functions_match; auto. constructor; simpl; auto; intros; rewrite ZMap.gi in H2; congruence. Qed. Theorem find_funct_ptr_match: forall (b : block) (f : A), find_funct_ptr (globalenv p) b = Some f -> exists tf : B, find_funct_ptr (globalenv p') b = Some tf /\ match_fun f tf. Proof (mge_funs globalenvs_match). Theorem find_funct_ptr_rev_match: forall (b : block) (tf : B), find_funct_ptr (globalenv p') b = Some tf -> exists f : A, find_funct_ptr (globalenv p) b = Some f /\ match_fun f tf. Proof (mge_rev_funs globalenvs_match). Theorem find_funct_match: forall (v : val) (f : A), find_funct (globalenv p) v = Some f -> exists tf : B, find_funct (globalenv p') v = Some tf /\ match_fun f tf. Proof. intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v. rewrite find_funct_find_funct_ptr in H. rewrite find_funct_find_funct_ptr. apply find_funct_ptr_match. auto. Qed. Theorem find_funct_rev_match: forall (v : val) (tf : B), find_funct (globalenv p') v = Some tf -> exists f : A, find_funct (globalenv p) v = Some f /\ match_fun f tf. Proof. intros. exploit find_funct_inv; eauto. intros [b EQ]. subst v. rewrite find_funct_find_funct_ptr in H. rewrite find_funct_find_funct_ptr. apply find_funct_ptr_rev_match. auto. Qed. Theorem find_var_info_match: forall (b : block) (v : globvar V), find_var_info (globalenv p) b = Some v -> exists tv, find_var_info (globalenv p') b = Some tv /\ match_globvar v tv. Proof (mge_vars globalenvs_match). Theorem find_var_info_rev_match: forall (b : block) (tv : globvar W), find_var_info (globalenv p') b = Some tv -> exists v, find_var_info (globalenv p) b = Some v /\ match_globvar v tv. Proof (mge_rev_vars globalenvs_match). Theorem find_symbol_match: forall (s : ident), find_symbol (globalenv p') s = find_symbol (globalenv p) s. Proof. intros. destruct globalenvs_match. unfold find_symbol. congruence. Qed. Lemma store_init_data_list_match: forall idl m b ofs, store_init_data_list (globalenv p') m b ofs idl = store_init_data_list (globalenv p) m b ofs idl. Proof. induction idl; simpl; intros. auto. assert (store_init_data (globalenv p') m b ofs a = store_init_data (globalenv p) m b ofs a). destruct a; simpl; auto. rewrite find_symbol_match. auto. rewrite H. destruct (store_init_data (globalenv p) m b ofs a); auto. Qed. Lemma alloc_variables_match: forall vl1 vl2, list_forall2 (match_var_entry match_varinfo) vl1 vl2 -> forall m, alloc_variables (globalenv p') m vl2 = alloc_variables (globalenv p) m vl1. Proof. induction 1; intros; simpl. auto. inv H. unfold alloc_variable; simpl. destruct (Mem.alloc m 0 (init_data_list_size init)). destruct (store_zeros m0 b (init_data_list_size init)); auto. rewrite store_init_data_list_match. destruct (store_init_data_list (globalenv p) m1 b 0 init); auto. change (perm_globvar (mkglobvar info2 init ro vo)) with (perm_globvar (mkglobvar info1 init ro vo)). destruct (Mem.drop_perm m2 b 0 (init_data_list_size init) (perm_globvar (mkglobvar info1 init ro vo))); auto. Qed. Theorem init_mem_match: forall m, init_mem p = Some m -> init_mem p' = Some m. Proof. intros. rewrite <- H. unfold init_mem. destruct progmatch. destruct H1. apply alloc_variables_match; auto. Qed. End MATCH_PROGRAMS. Section TRANSF_PROGRAM_PARTIAL2. Variable A B V W: Type. Variable transf_fun: A -> res B. Variable transf_var: V -> res W. Variable p: program A V. Variable p': program B W. Hypothesis transf_OK: transform_partial_program2 transf_fun transf_var p = OK p'. Remark prog_match: match_program (fun fd tfd => transf_fun fd = OK tfd) (fun info tinfo => transf_var info = OK tinfo) p p'. Proof. apply transform_partial_program2_match; auto. Qed. Theorem find_funct_ptr_transf_partial2: forall (b: block) (f: A), find_funct_ptr (globalenv p) b = Some f -> exists f', find_funct_ptr (globalenv p') b = Some f' /\ transf_fun f = OK f'. Proof. intros. exploit find_funct_ptr_match. eexact prog_match. eauto. intros [tf [X Y]]. exists tf; auto. Qed. Theorem find_funct_ptr_rev_transf_partial2: forall (b: block) (tf: B), find_funct_ptr (globalenv p') b = Some tf -> exists f, find_funct_ptr (globalenv p) b = Some f /\ transf_fun f = OK tf. Proof. intros. exploit find_funct_ptr_rev_match. eexact prog_match. eauto. auto. Qed. Theorem find_funct_transf_partial2: forall (v: val) (f: A), find_funct (globalenv p) v = Some f -> exists f', find_funct (globalenv p') v = Some f' /\ transf_fun f = OK f'. Proof. intros. exploit find_funct_match. eexact prog_match. eauto. intros [tf [X Y]]. exists tf; auto. Qed. Theorem find_funct_rev_transf_partial2: forall (v: val) (tf: B), find_funct (globalenv p') v = Some tf -> exists f, find_funct (globalenv p) v = Some f /\ transf_fun f = OK tf. Proof. intros. exploit find_funct_rev_match. eexact prog_match. eauto. auto. Qed. Theorem find_var_info_transf_partial2: forall (b: block) (v: globvar V), find_var_info (globalenv p) b = Some v -> exists v', find_var_info (globalenv p') b = Some v' /\ transf_globvar transf_var v = OK v'. Proof. intros. exploit find_var_info_match. eexact prog_match. eauto. intros [tv [X Y]]. exists tv; split; auto. inv Y. unfold transf_globvar; simpl. rewrite H0; simpl. auto. Qed. Theorem find_var_info_rev_transf_partial2: forall (b: block) (v': globvar W), find_var_info (globalenv p') b = Some v' -> exists v, find_var_info (globalenv p) b = Some v /\ transf_globvar transf_var v = OK v'. Proof. intros. exploit find_var_info_rev_match. eexact prog_match. eauto. intros [v [X Y]]. exists v; split; auto. inv Y. unfold transf_globvar; simpl. rewrite H0; simpl. auto. Qed. Theorem find_symbol_transf_partial2: forall (s: ident), find_symbol (globalenv p') s = find_symbol (globalenv p) s. Proof. intros. eapply find_symbol_match. eexact prog_match. Qed. Theorem init_mem_transf_partial2: forall m, init_mem p = Some m -> init_mem p' = Some m. Proof. intros. eapply init_mem_match. eexact prog_match. auto. Qed. End TRANSF_PROGRAM_PARTIAL2. Section TRANSF_PROGRAM_PARTIAL. Variable A B V: Type. Variable transf: A -> res B. Variable p: program A V. Variable p': program B V. Hypothesis transf_OK: transform_partial_program transf p = OK p'. Remark transf2_OK: transform_partial_program2 transf (fun x => OK x) p = OK p'. Proof. rewrite <- transf_OK. unfold transform_partial_program2, transform_partial_program. destruct (map_partial prefix_name transf (prog_funct p)); auto. simpl. replace (transf_globvar (fun (x : V) => OK x)) with (fun (v: globvar V) => OK v). rewrite map_partial_identity; auto. apply extensionality; intros. destruct x; auto. Qed. Theorem find_funct_ptr_transf_partial: forall (b: block) (f: A), find_funct_ptr (globalenv p) b = Some f -> exists f', find_funct_ptr (globalenv p') b = Some f' /\ transf f = OK f'. Proof. exact (@find_funct_ptr_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). Qed. Theorem find_funct_ptr_rev_transf_partial: forall (b: block) (tf: B), find_funct_ptr (globalenv p') b = Some tf -> exists f, find_funct_ptr (globalenv p) b = Some f /\ transf f = OK tf. Proof. exact (@find_funct_ptr_rev_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). Qed. Theorem find_funct_transf_partial: forall (v: val) (f: A), find_funct (globalenv p) v = Some f -> exists f', find_funct (globalenv p') v = Some f' /\ transf f = OK f'. Proof. exact (@find_funct_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). Qed. Theorem find_funct_rev_transf_partial: forall (v: val) (tf: B), find_funct (globalenv p') v = Some tf -> exists f, find_funct (globalenv p) v = Some f /\ transf f = OK tf. Proof. exact (@find_funct_rev_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). Qed. Theorem find_symbol_transf_partial: forall (s: ident), find_symbol (globalenv p') s = find_symbol (globalenv p) s. Proof. exact (@find_symbol_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). Qed. Theorem find_var_info_transf_partial: forall (b: block), find_var_info (globalenv p') b = find_var_info (globalenv p) b. Proof. intros. case_eq (find_var_info (globalenv p) b); intros. exploit find_var_info_transf_partial2. eexact transf2_OK. eauto. intros [v' [P Q]]. monadInv Q. rewrite P. inv EQ. destruct g; auto. case_eq (find_var_info (globalenv p') b); intros. exploit find_var_info_rev_transf_partial2. eexact transf2_OK. eauto. intros [v' [P Q]]. monadInv Q. inv EQ. congruence. auto. Qed. Theorem init_mem_transf_partial: forall m, init_mem p = Some m -> init_mem p' = Some m. Proof. exact (@init_mem_transf_partial2 _ _ _ _ _ _ _ _ transf2_OK). Qed. End TRANSF_PROGRAM_PARTIAL. Section TRANSF_PROGRAM. Variable A B V: Type. Variable transf: A -> B. Variable p: program A V. Let tp := transform_program transf p. Remark transf_OK: transform_partial_program (fun x => OK (transf x)) p = OK tp. Proof. unfold tp, transform_program, transform_partial_program. rewrite map_partial_total. reflexivity. Qed. Theorem find_funct_ptr_transf: forall (b: block) (f: A), find_funct_ptr (globalenv p) b = Some f -> find_funct_ptr (globalenv tp) b = Some (transf f). Proof. intros. destruct (@find_funct_ptr_transf_partial _ _ _ _ _ _ transf_OK _ _ H) as [f' [X Y]]. congruence. Qed. Theorem find_funct_ptr_rev_transf: forall (b: block) (tf: B), find_funct_ptr (globalenv tp) b = Some tf -> exists f, find_funct_ptr (globalenv p) b = Some f /\ transf f = tf. Proof. intros. exploit find_funct_ptr_rev_transf_partial. eexact transf_OK. eauto. intros [f [X Y]]. exists f; split. auto. congruence. Qed. Theorem find_funct_transf: forall (v: val) (f: A), find_funct (globalenv p) v = Some f -> find_funct (globalenv tp) v = Some (transf f). Proof. intros. destruct (@find_funct_transf_partial _ _ _ _ _ _ transf_OK _ _ H) as [f' [X Y]]. congruence. Qed. Theorem find_funct_rev_transf: forall (v: val) (tf: B), find_funct (globalenv tp) v = Some tf -> exists f, find_funct (globalenv p) v = Some f /\ transf f = tf. Proof. intros. exploit find_funct_rev_transf_partial. eexact transf_OK. eauto. intros [f [X Y]]. exists f; split. auto. congruence. Qed. Theorem find_symbol_transf: forall (s: ident), find_symbol (globalenv tp) s = find_symbol (globalenv p) s. Proof. exact (@find_symbol_transf_partial _ _ _ _ _ _ transf_OK). Qed. Theorem find_var_info_transf: forall (b: block), find_var_info (globalenv tp) b = find_var_info (globalenv p) b. Proof. exact (@find_var_info_transf_partial _ _ _ _ _ _ transf_OK). Qed. Theorem init_mem_transf: forall m, init_mem p = Some m -> init_mem tp = Some m. Proof. exact (@init_mem_transf_partial _ _ _ _ _ _ transf_OK). Qed. End TRANSF_PROGRAM. End Genv.