
CIL: Infrastructure for C Program Analysis and

Transformation

May 20, 2006

1 Introduction

New: CIL now has a Source Forge page: http://sourceforge.net/projects/cil.
CIL (C Intermediate Language) is a high-level representation along with a

set of tools that permit easy analysis and source-to-source transformation of C
programs.

CIL is both lower-level than abstract-syntax trees, by clarifying ambigu-
ous constructs and removing redundant ones, and also higher-level than typical
intermediate languages designed for compilation, by maintaining types and a
close relationship with the source program. The main advantage of CIL is that
it compiles all valid C programs into a few core constructs with a very clean
semantics. Also CIL has a syntax-directed type system that makes it easy to
analyze and manipulate C programs. Furthermore, the CIL front-end is able to
process not only ANSI-C programs but also those using Microsoft C or GNU
C extensions. If you do not use CIL and want instead to use just a C parser
and analyze programs expressed as abstract-syntax trees then your analysis will
have to handle a lot of ugly corners of the language (let alone the fact that
parsing C itself is not a trivial task). See Section 16 for some examples of such
extreme programs that CIL simplifies for you.

In essence, CIL is a highly-structured, “clean” subset of C. CIL features a
reduced number of syntactic and conceptual forms. For example, all looping
constructs are reduced to a single form, all function bodies are given explicit
return statements, syntactic sugar like "->" is eliminated and function argu-
ments with array types become pointers. (For an extensive list of how CIL
simplifies C programs, see Section 4.) This reduces the number of cases that
must be considered when manipulating a C program. CIL also separates type
declarations from code and flattens scopes within function bodies. This struc-
tures the program in a manner more amenable to rapid analysis and transfor-
mation. CIL computes the types of all program expressions, and makes all type
promotions and casts explicit. CIL supports all GCC and MSVC extensions
except for nested functions and complex numbers. Finally, CIL organizes C’s
imperative features into expressions, instructions and statements based on the
presence and absence of side-effects and control-flow. Every statement can be

1

annotated with successor and predecessor information. Thus CIL provides an
integrated program representation that can be used with routines that require
an AST (e.g. type-based analyses and pretty-printers), as well as with routines
that require a CFG (e.g., dataflow analyses). CIL also supports even lower-level
representations (e.g., three-address code), see Section 8.

CIL comes accompanied by a number of Perl scripts that perform generally
useful operations on code:

• A driver which behaves as either the gcc or Microsoft VC compiler and can
invoke the preprocessor followed by the CIL application. The advantage
of this script is that you can easily use CIL and the analyses written for
CIL with existing make files.

• A whole-program merger that you can use as a replacement for your com-
piler and it learns all the files you compile when you make a project and
merges all of the preprocessed source files into a single one. This makes it
easy to do whole-program analysis.

• A patcher makes it easy to create modified copies of the system include
files. The CIL driver can then be told to use these patched copies instead
of the standard ones.

CIL has been tested very extensively. It is able to process the SPECINT95
benchmarks, the Linux kernel, GIMP and other open-source projects. All of
these programs are compiled to the simple CIL and then passed to gcc and
they still run! We consider the compilation of Linux a major feat especially
since Linux contains many of the ugly GCC extensions (see Section 16.2). This
adds to about 1,000,000 lines of code that we tested it on. It is also able to
process the few Microsoft NT device drivers that we have had access to. CIL
was tested against GCC’s c-torture testsuite and (except for the tests involving
complex numbers and inner functions, which CIL does not currently implement)
CIL passes most of the tests. Specifically CIL fails 23 tests out of the 904 c-
torture tests that it should pass. GCC itself fails 19 tests. A total of 1400
regression test cases are run automatically on each change to the CIL sources.

CIL is relatively independent on the underlying machine and compiler. When
you build it CIL will configure itself according to the underlying compiler. How-
ever, CIL has only been tested on Intel x86 using the gcc compiler on Linux and
cygwin and using the MS Visual C compiler. (See below for specific versions of
these compilers that we have used CIL for.)

The largest application we have used CIL for is CCured, a compiler that
compiles C code into type-safe code by analyzing your pointer usage and insert-
ing runtime checks in the places that cannot be guaranteed statically to be type
safe.

You can also use CIL to “compile” code that uses GCC extensions (e.g. the
Linux kernel) into standard C code.

CIL also comes accompanies by a growing library of extensions (see Sec-
tion 8). You can use these for your projects or as examples of using CIL.

2

PDF versions of this manual and the CIL API are available. However, we
recommend the HTML versions because the postprocessed code examples are
easier to view.

If you use CIL in your project, we would appreciate letting us know. If
you want to cite CIL in your research writings, please refer to the paper “CIL:
Intermediate Language and Tools for Analysis and Transformation of C Pro-
grams” by George C. Necula, Scott McPeak, S.P. Rahul and Westley Weimer,
in “Proceedings of Conference on Compilier Construction”, 2002.

2 Installation

You will need OCaml release 3.08 or higher to build CIL. CIL has been tested
on Linux and on Windows (where it can behave at either Microsoft Visual C or
gcc).

If you want to use CIL on Windows then you must get a complete installa-
tion of cygwin and the source-code OCaml distribution and compile it yourself
using the cygwin tools (as opposed to getting the Win32 native-code version of
OCaml). If you have not done this before then take a look here. (Don’t need to
worry about cvs and ssh unless you will need to use the master CVS repository
for CIL.)

1. Download the CIL distribution (latest version is distrib/cil-1.3.5.tar.gz).
See the Section 20 for recent changes to the CIL distribution.

2. Unzip and untar the source distribution. This will create a directory called
cil whose structure is explained below.
tar xvfz cil-1.3.5.tar.gz

3. Enter the cil directory and run the configure script and then GNU make
to build the distribution. If you are on Windows, at least the configure
step must be run from within bash.
cd cil
./configure
make
make quicktest

4. You should now find cilly.asm.exe in a subdirectory of obj. The name of
the subdirectory is either x86 WIN32 if you are using cygwin on Windows
or x86 LINUX if you are using Linux (although you should be using instead
the Perl wrapper bin/cilly). Note that we do not have an install make
target and you should use Cil from the development directory.

5. If you decide to use CIL, please send us a note. This will help recharge
our batteries after more than a year of development. And of course, do
send us your bug reports as well.

3

The configure script tries to find appropriate defaults for your system. You
can control its actions by passing the following arguments:

• CC=foo Specifies the path for the gcc executable. By default whichever
version is in the PATH is used. If CC specifies the Microsoft cl compiler,
then that compiler will be set as the default one. Otherwise, the gcc
compiler will be the default.

CIL requires an underlying C compiler and preprocessor. CIL depends on
the underlying compiler and machine for the sizes and alignment of types.The
installation procedure for CIL queries the underlying compiler for architecture
and compiler dependent configuration parameters, such as the size of a pointer
or the particular alignment rules for structure fields. (This means, of course,
that you should re-run ./configure when you move CIL to another machine.)

We have tested CIL on the following compilers:

• On Windows, cl compiler version 12.00.8168 (MSVC 6), 13.00.9466 (MSVC
.Net), and 13.10.3077 (MSVC .Net 2003). Run cl with no arguments to
get the compiler version.

• On Windows, using cygwin and gcc version 2.95.3, 3.0, 3.2, 3.3, and 3.4.

• On Linux, using gcc version 2.95.3, 3.0, 3.2, 3.3, and 4.0.

Others have successfully used CIL with Mac OS X (on both PowerPC and
x86), Solaris, and *BSD. If you make any changes to the build system in order
to run CIL on your platform, please send us a patch.

3 Distribution Contents

The file distrib/cil-1.3.5.tar.gz contains the complete source CIL distri-
bution, consisting of the following files:

4

Filename Description
Makefile.in configure source for the Makefile that builds CIL
configure The configure script
configure.in The autoconf source for configure
config.guess, config.sub, install-sh stuff required by configure

doc/ HTML documentation of the CIL API
obj/ Directory that will contain the compiled CIL modules and executables
bin/cilly.in The configure source for a Perl script that can be invoked with the same arguments as either gcc or Microsoft Visual C and will convert the program to CIL, perform some simple transformations, emit it and compile it as usual.
lib/CompilerStub.pm A Perl class that can be used to write code that impersonates a compiler. cilly uses it.
lib/Merger.pm A subclass of CompilerStub.pm that can be used to merge source files into a single source file.cilly uses it.
bin/patcher.in A Perl script that applies specified patches to standard include files.

src/check.ml,mli Checks the well-formedness of a CIL file
src/cil.ml,mli Definition of CIL abstract syntax and utilities for manipulating it
src/clist.ml,mli Utilities for efficiently managing lists that need to be concatenated often
src/errormsg.ml,mli Utilities for error reporting
src/ext/heapify.ml A CIL transformation that moves array local variables from the stack to the heap
src/ext/logcalls.ml,mli A CIL transformation that logs every function call
src/ext/sfi.ml A CIL transformation that can log every memory read and write
src/frontc/clexer.mll The lexer
src/frontc/cparser.mly The parser
src/frontc/cabs.ml The abstract syntax
src/frontc/cprint.ml The pretty printer for CABS
src/frontc/cabs2cil.ml The elaborator to CIL
src/main.ml The cilly application
src/pretty.ml,mli Utilities for pretty printing
src/rmtmps.ml,mli A CIL tranformation that removes unused types, variables and inlined functions
src/stats.ml,mli Utilities for maintaining timing statistics
src/testcil.ml A random test of CIL (against the resident C compiler)
src/trace.ml,mli Utilities useful for printing debugging information

ocamlutil/ Miscellaneous libraries that are not specific to CIL.
ocamlutil/Makefile.ocaml A file that is included by Makefile
ocamlutil/Makefile.ocaml.build A file that is included by Makefile
ocamlutil/perfcount.c C code that links with src/stats.ml and reads Intel performance counters.

obj/@ARCHOS@/feature config.ml File generated by the Makefile describing which extra “features” to compile. See Section 5
obj/@ARCHOS@/machdep.ml File generated by the Makefile containing information about your architecture, such as the size of a pointer
src/machdep.c C program that generates machdep.ml files

4 Compiling C to CIL

In this section we try to describe a few of the many transformations that are
applied to a C program to convert it to CIL. The module that implements this

5

conversion is about 5000 lines of OCaml code. In contrast a simple program
transformation that instruments all functions to keep a shadow stack of the true
return address (thus preventing stack smashing) is only 70 lines of code. This
example shows that the analysis is so much simpler because it has to handle only
a few simple C constructs and also because it can leverage on CIL infrastructure
such as visitors and pretty-printers.

In no particular order these are a few of the most significant ways in which
C programs are compiled into CIL:

1. CIL will eliminate all declarations for unused entities. This means that
just because your hello world program includes stdio.h it does not mean
that your analysis has to handle all the ugly stuff from stdio.h.

2. Type specifiers are interpreted and normalized:

int long signed x;
signed long extern x;
long static int long y;

// Some code that uses these declaration, so that CIL does not remove them
int main() { return x + y; }

See the CIL output for this code fragment

3. Anonymous structure and union declarations are given a name.

struct { int x; } s;

See the CIL output for this code fragment

4. Nested structure tag definitions are pulled apart. This means that all
structure tag definitions can be found by a simple scan of the globals.

struct foo {
struct bar {

union baz {
int x1;
double x2;

} u1;
int y;

} s1;
int z;

} f;

See the CIL output for this code fragment

5. All structure, union, enumeration definitions and the type definitions from
inners scopes are moved to global scope (with appropriate renaming). This
facilitates moving around of the references to these entities.

6

int main() {
struct foo {

int x; } foo;
{

struct foo {
double d;

};
return foo.x;

}
}

See the CIL output for this code fragment

6. Prototypes are added for those functions that are called before being de-
fined. Furthermore, if a prototype exists but does not specify the type of
parameters that is fixed. But CIL will not be able to add prototypes for
those functions that are neither declared nor defined (but are used!).

int f(); // Prototype without arguments
int f(double x) {

return g(x);
}
int g(double x) {

return x;
}

See the CIL output for this code fragment

7. Array lengths are computed based on the initializers or by constant fold-
ing.

int a1[] = {1,2,3};
int a2[sizeof(int) >= 4 ? 8 : 16];

See the CIL output for this code fragment

8. Enumeration tags are computed using constant folding:

int main() {
enum {

FIVE = 5,
SIX, SEVEN,
FOUR = FIVE - 1,
EIGHT = sizeof(double)

} x = FIVE;
return x;
}

7

See the CIL output for this code fragment

9. Initializers are normalized to include specific initialization for the missing
elements:

int a1[5] = {1,2,3};
struct foo { int x, y; } s1 = { 4 };

See the CIL output for this code fragment

10. Initializer designators are interpreted and eliminated. Subobjects are
properly marked with braces. CIL implements the whole ISO C99 specifi-
cation for initializer (neither GCC nor MSVC do) and a few GCC exten-
sions.

struct foo {
int x, y;
int a[5];
struct inner {

int z;
} inner;

} s = { 0, .inner.z = 3, .a[1 ... 2] = 5, 4, y : 8 };

See the CIL output for this code fragment

11. String initializers for arrays of characters are processed

char foo[] = "foo plus bar";

See the CIL output for this code fragment

12. String constants are concatenated

char *foo = "foo " " plus " " bar ";

See the CIL output for this code fragment

13. Initializers for local variables are turned into assignments. This is in order
to separate completely the declarative part of a function body from the
statements. This has the unfortunate effect that we have to drop the
const qualifier from local variables !

int x = 5;
struct foo { int f1, f2; } a [] = {1, 2, 3, 4, 5 };

See the CIL output for this code fragment

8

14. Local variables in inner scopes are pulled to function scope (with appro-
priate renaming). Local scopes thus disappear. This makes it easy to find
and operate on all local variables in a function.

int x = 5;
int main() {
int x = 6;
{
int x = 7;
return x;

}
return x;

}

See the CIL output for this code fragment

15. Global declarations in local scopes are moved to global scope:

int x = 5;
int main() {
int x = 6;
{
static int x = 7;
return x;

}
return x;

}

See the CIL output for this code fragment

16. Return statements are added for functions that are missing them. If the
return type is not a base type then a return without a value is added. The
guaranteed presence of return statements makes it easy to implement a
transformation that inserts some code to be executed immediately before
returning from a function.

int foo() {
int x = 5;

}

See the CIL output for this code fragment

17. One of the most significant transformations is that expressions that con-
tain side-effects are separated into statements.

int x, f(int);
return (x ++ + f(x));

9

See the CIL output for this code fragment

Internally, the x ++ statement is turned into an assignment which the
pretty-printer prints like the original. CIL has only three forms of basic
statements: assignments, function calls and inline assembly.

18. Shortcut evaluation of boolean expressions and the ?: operator are com-
piled into explicit conditionals:

int x;
int y = x ? 2 : 4;
int z = x || y;
// Here we duplicate the return statement
if(x && y) { return 0; } else { return 1; }
// To avoid excessive duplication, CIL uses goto’s for
// statement that have more than 5 instructions
if(x && y || z) { x ++; y ++; z ++; x ++; y ++; return z; }

See the CIL output for this code fragment

19. GCC’s conditional expression with missing operands are also compiled
into conditionals:

int f();;
return f() ? : 4;

See the CIL output for this code fragment

20. All forms of loops (while, for and do) are compiled internally as a single
while(1) looping construct with explicit break statement for termination.
For simple while loops the pretty printer is able to print back the original:

int x, y;
for(int i = 0; i<5; i++) {

if(i == 5) continue;
if(i == 4) break;
i += 2;

}
while(x < 5) {
if(x == 3) continue;
x ++;

}

See the CIL output for this code fragment

21. GCC’s block expressions are compiled away. (That’s right there is an
infinite loop in this code.)

10

int x = 5, y = x;
int z = ({ x++; L: y -= x; y;});
return ({ goto L; 0; });

See the CIL output for this code fragment

22. CIL contains support for both MSVC and GCC inline assembly (both in
one internal construct)

23. CIL compiles away the GCC extension that allows many kinds of con-
structs to be used as lvalues:

int x, y, z;
return &(x ? y : z) - & (x ++, x);

See the CIL output for this code fragment

24. All types are computed and explicit casts are inserted for all promotions
and conversions that a compiler must insert:

25. CIL will turn old-style function definition (without prototype) into new-
style definitions. This will make the compiler less forgiving when checking
function calls, and will catch for example cases when a function is called
with too few arguments. This happens in old-style code for the purpose
of implementing variable argument functions.

26. Since CIL sees the source after preprocessing the code after CIL does not
contain the comments and the preprocessing directives.

27. CIL will remove from the source file those type declarations, local variables
and inline functions that are not used in the file. This means that your
analysis does not have to see all the ugly stuff that comes from the header
files:

#include <stdio.h>

typedef int unused_type;

static char unused_static (void) { return 0; }

int main() {
int unused_local;
printf("Hello world\n"); // Only printf will be kept from stdio.h

}

See the CIL output for this code fragment

11

5 How to Use CIL

There are two predominant ways to use CIL to write a program analysis or
transformation. The first is to phrase your analysis as a module that is called
by our existing driver. The second is to use CIL as a stand-alone library. We
highly recommend that you use cilly, our driver.

5.1 Using cilly, the CIL driver

The most common way to use CIL is to write an Ocaml module containing
your analysis and transformation, which you then link into our boilerplate
driver application called cilly. cilly is a Perl script that processes and mim-
ics GCC and MSVC command-line arguments and then calls cilly.byte.exe or
cilly.asm.exe (CIL’s Ocaml executable).

An example of such module is logwrites.ml, a transformation that is dis-
tributed with CIL and whose purpose is to instrument code to print the ad-
dresses of memory locations being written. (We plan to release a C-language
interface to CIL so that you can write your analyses in C instead of Ocaml.)
See Section 8 for a survey of other example modules.

Assuming that you have written /home/necula/logwrites.ml, here is how
you use it:

1. Modify logwrites.ml so that it includes a CIL “feature descriptor” like
this:

let feature : featureDescr =
{ fd_name = "logwrites";
fd_enabled = ref false;
fd_description = "generation of code to log memory writes";
fd_extraopt = [];
fd_doit =
(function (f: file) ->
let lwVisitor = new logWriteVisitor in
visitCilFileSameGlobals lwVisitor f)

}

The fd name field names the feature and its associated command-line ar-
guments. The fd enabled field is a bool ref. “fd doit” will be invoked
if !fd enabled is true after argument parsing, so initialize the ref cell to
true if you want this feature to be enabled by default.

When the user passes the --dologwrites command-line option to cilly,
the variable associated with the fd enabled flag is set and the fd doit
function is called on the Cil.file that represents the merger (see Sec-
tion 13) of all C files listed as arguments.

2. Invoke configure with the arguments

12

./configure EXTRASRCDIRS=/home/necula EXTRAFEATURES=logwrites

This step works if each feature is packaged into its own ML file, and the
name of the entry point in the file is feature.

An alternative way to specify the new features is to change the build files
yourself, as explained below. You’ll need to use this method if a single
feature is split across multiple files.

(a) Put logwrites.ml in the src or src/ext directory. This will make
sure that make can find it. If you want to put it in some other di-
rectory, modify Makefile.in and add to SOURCEDIRS your directory.
Alternately, you can create a symlink from src or src/ext to your
file.

(b) Modify the Makefile.in and add your module to the CILLY MODULES
or CILLY LIBRARY MODULES variables. The order of the modules mat-
ters. Add your modules somewhere after cil and before main.

(c) If you have any helper files for your module, add those to the makefile
in the same way. e.g.:

CILLY_MODULES = $(CILLY_LIBRARY_MODULES) \
myutilities1 myutilities2 logwrites \
main

Again, order is important: myutilities2.ml will be able to refer to
Myutilities1 but not Logwrites. If you have any ocamllex or ocamly-
acc files, add them to both CILLY MODULES and either MLLS or MLYS.

(d) Modify main.ml so that your new feature descriptor appears in the
global list of CIL features.

let features : C.featureDescr list =
[Logcalls.feature;
Oneret.feature;
Heapify.feature1;
Heapify.feature2;
makeCFGFeature;
Partial.feature;
Simplemem.feature;
Logwrites.feature; (* add this line to include the logwrites feature! *)

]
@ Feature_config.features

Features are processed in the order they appear on this list. Put
your feature last on the list if you plan to run any of CIL’s built-in
features (such as makeCFGfeature) before your own.

Standard code in cilly takes care of adding command-line arguments,
printing the description, and calling your function automatically. Note:

13

do not worry about introducing new bugs into CIL by adding a single line
to the feature list.

3. Now you can invoke the cilly application on a preprocessed file, or instead
use the cilly driver which provides a convenient compiler-like interface
to cilly. See Section 7 for details using cilly. Remember to enable your
analysis by passing the right argument (e.g., --dologwrites).

5.2 Using CIL as a library

CIL can also be built as a library that is called from your stand-alone application.
Add cil/src, cil/src/frontc, cil/obj/x86 LINUX (or cil/obj/x86 WIN32)
to your Ocaml project -I include paths. Building CIL will also build the li-
brary cil/obj/*/cil.cma (or cil/obj/*/cil.cmxa). You can then link your
application against that library.

You can call the Frontc.parse: string -> unit -> Cil.file function
with the name of a file containing the output of the C preprocessor. The
Mergecil.merge: Cil.file list -> string -> Cil.file function merges
multiple files. You can then invoke your analysis function on the resulting
Cil.file data structure. You might want to call Rmtmps.removeUnusedTemps
first to clean up the prototypes and variables that are not used. Then you can
call the function Cil.dumpFile: cilPrinter -> out channel -> Cil.file
-> unit to print the file to a given output channel. A good cilPrinter to use
is defaultCilPrinter.

Check out src/main.ml and bin/cilly for other good ideas about high-
level file processing. Again, we highly recommend that you just our cilly
driver so that you can avoid spending time re-inventing the wheel to provide
drop-in support for standard makefiles.

Here is a concrete example of compiling and linking your project against
CIL. Imagine that your program analysis or transformation is contained in the
single file main.ml.

$ ocamlopt -c -I $(CIL)/obj/x86_LINUX/ main.ml
$ ocamlopt -ccopt -L$(CIL)/obj/x86_LINUX/ -o main unix.cmxa str.cmxa \

$(CIL)/obj/x86_LINUX/cil.cmxa main.cmx

The first line compiles your analysis, the second line links it against CIL (as a
library) and the Ocaml Unix library. For more information about compiling and
linking Ocaml programs, see the Ocaml home page at http://caml.inria.fr/ocaml/.

In the next section we give an overview of the API that you can use to write
your analysis and transformation.

6 CIL API Documentation

The CIL API is documented in the file src/cil.mli. We also have an online
documentation extracted from cil.mli. We index below the main types that
are used to represent C programs in CIL:

14

• An index of all types

• An index of all values

• Cil.file is the representation of a file.

• Cil.global is the representation of a global declaration or definitions. Val-
ues for operating on globals.

• Cil.typ is the representation of a type. Values for operating on types.

• Cil.compinfo is the representation of a structure or a union type

• Cil.fieldinfo is the representation of a field in a structure or a union

• Cil.enuminfo is the representation of an enumeration type.

• Cil.varinfo is the representation of a variable

• Cil.fundec is the representation of a function

• Cil.lval is the representation of an lvalue. Values for operating on lvalues.

• Cil.exp is the representation of an expression without side-effects. Values
for operating on expressions.

• Cil.instr is the representation of an instruction (with side-effects but with-
out control-flow)

• Cil.stmt is the representation of a control-flow statements. Values for
operating on statements.

• Cil.attribute is the representation of attributes. Values for operating on
attributes.

6.1 Using the visitor

One of the most useful tools exported by the CIL API is an implementation of
the visitor pattern for CIL programs. The visiting engine scans depth-first the
structure of a CIL program and at each node is queries a user-provided visitor
structure whether it should do one of the following operations:

• Ignore this node and all its descendants

• Descend into all of the children and when done rebuild the node if any of
the children have changed.

• Replace the subtree rooted at the node with another tree.

• Replace the subtree with another tree, then descend into the children and
rebuild the node if necessary and then invoke a user-specified function.

15

• In addition to all of the above actions then visitor can specify that some
instructions should be queued to be inserted before the current instruction
or statement being visited.

By writing visitors you can customize the program traversal and transforma-
tion. One major limitation of the visiting engine is that it does not propagate
information from one node to another. Each visitor must use its own private
data to achieve this effect if necessary.

Each visitor is an object that is an instance of a class of type Cil.cilVisitor..
The most convenient way to obtain such classes is to specialize the Cil.nopCilVisitor.class
(which just traverses the tree doing nothing). Any given specialization typically
overrides only a few of the methods. Take a look for example at the visitor
defined in the module logwrites.ml. Another, more elaborate example of a
visitor is the [copyFunctionVisitor] defined in cil.ml.

Once you have defined a visitor you can invoke it with one of the functions:

• Cil.visitCilFile or Cil.visitCilFileSameGlobals - visit a file

• Cil.visitCilGlobal - visit a global

• Cil.visitCilFunction - visit a function definition

• Cil.visitCilExp - visit an expression

• Cil.visitCilLval - visit an lvalue

• Cil.visitCilInstr - visit an instruction

• Cil.visitCilStmt - visit a statement

• Cil.visitCilType - visit a type. Note that this does not visit the files of a
composite type. use visitGlobal to visit the [GCompTag] that defines the
fields.

Some transformations may want to use visitors to insert additional instruc-
tions before statements and instructions. To do so, pass a list of instructions
to the Cil.queueInstr method of the specialized object. The instructions will
automatically be inserted before that instruction in the transformed code. The
Cil.unqueueInstr method should not normally be called by the user.

6.2 Interpreted Constructors and Deconstructors

Interpreted constructors and deconstructors are a facility for constructing and
deconstructing CIL constructs using a pattern with holes that can be filled with
a variety of kinds of elements. The pattern is a string that uses the C syntax to
represent C language elements. For example, the following code:

Formatcil.cType "void * const (*)(int x)"

is an alternative way to construct the internal representation of the type of
pointer to function with an integer argument and a void * const as result:

16

TPtr(TFun(TVoid [Attr("const", [])],
[("x", TInt(IInt, []), [])], false, []), [])

The advantage of the interpreted constructors is that you can use familiar
C syntax to construct CIL abstract-syntax trees.

You can construct this way types, lvalues, expressions, instructions and
statements. The pattern string can also contain a number of placeholders that
are replaced during construction with CIL items passed as additional argument
to the construction function. For example, the %e:id placeholder means that
the argument labeled “id” (expected to be of form Fe exp) will supply the ex-
pression to replace the placeholder. For example, the following code constructs
an increment instruction at location loc:

Formatcil.cInstr "%v:x = %v:x + %e:something"
loc
[("something", Fe some_exp);
("x", Fv some_varinfo)]

An alternative way to construct the same CIL instruction is:

Set((Var some_varinfo, NoOffset),
BinOp(PlusA, Lval (Var some_varinfo, NoOffset),

some_exp, intType),
loc)

See Cil.formatArg for a definition of the placeholders that are understood.
A dual feature is the interpreted deconstructors. This can be used to test

whether a CIL construct has a certain form:

Formatcil.dType "void * const (*)(int x)" t

will test whether the actual argument t is indeed a function pointer of the
required type. If it is then the result is Some [] otherwise it is None. Further-
more, for the purpose of the interpreted deconstructors placeholders in patterns
match anything of the right type. For example,

Formatcil.dType "void * (*)(%F:t)" t

will match any function pointer type, independent of the type and number
of the formals. If the match succeeds the result is Some [FF forms] where
forms is a list of names and types of the formals. Note that each member in
the resulting list corresponds positionally to a placeholder in the pattern.

The interpreted constructors and deconstructors do not support the complete
C syntax, but only a substantial fragment chosen to simplify the parsing. The
following is the syntax that is supported:

Expressions:
E ::= %e:ID | %d:ID | %g:ID | n | L | (E) | Unop E | E Binop E

| sizeof E | sizeof (T) | alignof E | alignof (T)

17

| & L | (T) E

Unary operators:
Unop ::= + | - | ~ | %u:ID

Binary operators:
Binop ::= + | - | * | / | << | >> | & | ‘‘|’’ | ^

| == | != | < | > | <= | >= | %b:ID

Lvalues:
L ::= %l:ID | %v:ID Offset | * E | (* E) Offset | E -> ident Offset

Offsets:
Offset ::= empty | %o:ID | . ident Offset | [E] Offset

Types:
T ::= Type_spec Attrs Decl

Type specifiers:
Type_spec ::= void | char | unsigned char | short | unsigned short

| int | unsigned int | long | unsigned long | %k:ID | float
| double | struct %c:ID | union %c:ID

Declarators:
Decl ::= * Attrs Decl | Direct_decl

Direct declarators:
Direct_decl ::= empty | ident | (Attrs Decl)

| Direct_decl [Exp_opt]
| (Attrs Decl)(Parameters)

Optional expressions
Exp_opt ::= empty | E | %eo:ID

Formal parameters
Parameters ::= empty | ... | %va:ID | %f:ID | T | T , Parameters

List of attributes
Attrs ::= empty | %A:ID | Attrib Attrs

Attributes
Attrib ::= const | restrict | volatile | __attribute__ ((GAttr))

GCC Attributes

18

GAttr ::= ident | ident (AttrArg_List)

Lists of GCC Attribute arguments:
AttrArg_List ::= AttrArg | %P:ID | AttrArg , AttrArg_List

GCC Attribute arguments
AttrArg ::= %p:ID | ident | ident (AttrArg_List)

Instructions
Instr ::= %i:ID ; | L = E ; | L Binop= E | Callres L (Args)

Actual arguments
Args ::= empty | %E:ID | E | E , Args

Call destination
Callres ::= empty | L = | %lo:ID

Statements
Stmt ::= %s:ID | if (E) then Stmt ; | if (E) then Stmt else Stmt ;

| return Exp_opt | break ; | continue ; | { Stmt_list }
| while (E) Stmt | Instr_list

Lists of statements
Stmt_list ::= empty | %S:ID | Stmt Stmt_list

| Type_spec Attrs Decl ; Stmt_list
| Type_spec Attrs Decl = E ; Stmt_list
| Type_spec Attrs Decl = L (Args) ; Stmt_list

List of instructions
Instr_list ::= Instr | %I:ID | Instr Instr_list

Notes regarding the syntax:

• In the grammar description above non-terminals are written with upper-
case initial

• All of the patterns consist of the % character followed by one or two let-
ters, followed by “:” and an indentifier. For each such pattern there is a
corresponding constructor of the Cil.formatArg type, whose name is the
letter ’F’ followed by the same one or two letters as in the pattern. That
constructor is used by the user code to pass a Cil.formatArg actual argu-
ment to the interpreted constructor and by the interpreted deconstructor
to return what was matched for a pattern.

• If the pattern name is uppercase, it designates a list of the elements des-
ignated by the corresponding lowercase pattern. E.g. %E designated lists
of expressions (as in the actual arguments of a call).

19

• The two-letter patterns whose second letter is “o” designate an optional
element. E.g. %eo designates an optional expression (as in the length of
an array).

• Unlike in calls to printf, the pattern %g is used for strings.

• The usual precedence and associativity rules as in C apply

• The pattern string can contain newlines and comments, using both the /*
... */ style as well as the // one.

• When matching a “cast” pattern of the form (T) E, the deconstructor
will match even expressions that do not have the actual cast but in that
case the type is matched against the type of the expression. E.g. the
patters "(int)%e" will match any expression of type int whether it has
an explicit cast or not.

• The %k pattern is used to construct and deconstruct an integer type of
any kind.

• Notice that the syntax of types and declaration are the same (in order to
simplify the parser). This means that technically you can write a whole
declaration instead of a type in the cast. In this case the name that you
declare is ignored.

• In lists of formal parameters and lists of attributes, an empty list in the
pattern matches any formal parameters or attributes.

• When matching types, uses of named types are unrolled to expose a real
type before matching.

• The order of the attributes is ignored during matching. The the pattern for
a list of attributes contains %A then the resulting formatArg will be bound
to all attributes in the list. For example, the pattern "const %A" matches
any list of attributes that contains const and binds the corresponding
placeholder to the entire list of attributes, including const.

• All instruction-patterns must be terminated by semicolon

• The autoincrement and autodecrement instructions are not supported.
Also not supported are complex expressions, the && and || shortcut op-
erators, and a number of other more complex instructions or statements.
In general, the patterns support only constructs that can be represented
directly in CIL.

• The pattern argument identifiers are not used during deconstruction. In-
stead, the result contains a sequence of values in the same order as the
appearance of pattern arguments in the pattern.

20

• You can mix statements with declarations. For each declaration a new
temporary will be constructed (using a function you provive). You can
then refer to that temporary by name in the rest of the pattern.

• The %v: pattern specifier is optional.

The following function are defined in the Formatcil module for constructing
and deconstructing:

• Formatcil.cExp constructs Cil.exp.

• Formatcil.cType constructs Cil.typ.

• Formatcil.cLval constructs Cil.lval.

• Formatcil.cInstr constructs Cil.instr.

• Formatcil.cStmt and Formatcil.cStmts construct Cil.stmt.

• Formatcil.dExp deconstructs Cil.exp.

• Formatcil.dType deconstructs Cil.typ.

• Formatcil.dLval deconstructs Cil.lval.

• Formatcil.dInstr deconstructs Cil.lval.

Below is an example using interpreted constructors. This example generates
the CIL representation of code that scans an array backwards and initializes
every even-index element with an expression:

Formatcil.cStmts
loc
"int idx = sizeof(array) / sizeof(array[0]) - 1;
while(idx >= 0) {
// Some statements to be run for all the elements of the array
%S:init
if(! (idx & 1))
array[idx] = %e:init_even;

/* Do not forget to decrement the index variable */
idx = idx - 1;

}"
(fun n t -> makeTempVar myfunc ~name:n t)
[("array", Fv myarray);
("init", FS [stmt1; stmt2; stmt3]);
("init_even", Fe init_expr_for_even_elements)]

To write the same CIL statement directly in CIL would take much more
effort. Note that the pattern is parsed only once and the result (a function that
takes the arguments and constructs the statement) is memoized.

21

6.2.1 Performance considerations for interpreted constructors

Parsing the patterns is done with a LALR parser and it takes some time. To
improve performance the constructors and deconstructors memoize the parsed
patterns and will only compile a pattern once. Also all construction and de-
construction functions can be applied partially to the pattern string to produce
a function that can be later used directly to construct or deconstruct. This
function appears to be about two times slower than if the construction is done
using the CIL constructors (without memoization the process would be one or-
der of magnitude slower.) However, the convenience of interpreted constructor
might make them a viable choice in many situations when performance is not
paramount (e.g. prototyping).

6.3 Printing and Debugging support

The Modules Pretty and Errormsg contain respectively utilities for pretty print-
ing and reporting errors and provide a convenient printf-like interface.

Additionally, CIL defines for each major type a pretty-printing function that
you can use in conjunction with the Pretty interface. The following are some of
the pretty-printing functions:

• Cil.d exp - print an expression

• Cil.d type - print a type

• Cil.d lval - print an lvalue

• Cil.d global - print a global

• Cil.d stmt - print a statment

• Cil.d instr - print an instruction

• Cil.d init - print an initializer

• Cil.d attr - print an attribute

• Cil.d attrlist - print a set of attributes

• Cil.d loc - print a location

• Cil.d ikind - print an integer kind

• Cil.d fkind - print a floating point kind

• Cil.d const - print a constant

• Cil.d storage - print a storage specifier

You can even customize the pretty-printer by creating instances of Cil.cilPrinter..
Typically such an instance extends Cil.defaultCilPrinter. Once you have a cus-
tomized pretty-printer you can use the following printing functions:

22

• Cil.printExp - print an expression

• Cil.printType - print a type

• Cil.printLval - print an lvalue

• Cil.printGlobal - print a global

• Cil.printStmt - print a statment

• Cil.printInstr - print an instruction

• Cil.printInit - print an initializer

• Cil.printAttr - print an attribute

• Cil.printAttrs - print a set of attributes

CIL has certain internal consistency invariants. For example, all references
to a global variable must point to the same varinfo structure. This ensures
that one can rename the variable by changing the name in the varinfo. These
constraints are mentioned in the API documentation. There is also a consis-
tency checker in file src/check.ml. If you suspect that your transformation is
breaking these constraints then you can pass the --check option to cilly and
this will ensure that the consistency checker is run after each transformation.

6.4 Attributes

In CIL you can attach attributes to types and to names (variables, functions and
fields). Attributes are represented using the type Cil.attribute. An attribute
consists of a name and a number of arguments (represented using the type
Cil.attrparam). Almost any expression can be used as an attribute argument.
Attributes are stored in lists sorted by the name of the attribute. To maintain
list ordering, use the functions Cil.typeAttrs to retrieve the attributes of a type
and the functions Cil.addAttribute and Cil.addAttributes to add attributes.
Alternatively you can use Cil.typeAddAttributes to add an attribute to a type
(and return the new type).

GCC already has extensive support for attributes, and CIL extends this
support to user-defined attributes. A GCC attribute has the syntax:

gccattribute ::= __attribute__((attribute)) (Note the double parentheses)

Since GCC and MSVC both support various flavors of each attribute (with
or without leading or trailing) we first strip ALL leading and trailing from the
attribute name (but not the identified in [ACons] parameters in Cil.attrparam).
When we print attributes, for GCC we add two leading and two trailing ; for
MSVC we add just two leading .

23

There is support in CIL so that you can control the printing of attributes (see
Cil.setCustomPrintAttribute and Cil.setCustomPrintAttributeScope). This custom-
printing support is now used to print the ”const” qualifier as ”const” and not
as ” attribute ((const))”.

The attributes are specified in declarations. This is unfortunate since the
C syntax for declarations is already quite complicated and after writing the
parser and elaborator for declarations I am convinced that few C programmers
understand it completely. Anyway, this seems to be the easiest way to support
attributes.

Name attributes must be specified at the very end of the declaration, just
before the = for the initializer or before the , the separates a declaration in
a group of declarations or just before the ; that terminates the declaration.
A name attribute for a function being defined can be specified just before the
brace that starts the function body.

For example (in the following examples A1,...,An are type attributes and N is
a name attribute (each of these uses the attribute syntax):

int x N;
int x N, * y N = 0, z[] N;
extern void exit() N;
int fact(int x) N { ... }

Type attributes can be specified along with the type using the following
rules:

1. The type attributes for a base type (int, float, named type, reference to
struct or union or enum) must be specified immediately following the type
(actually it is Ok to mix attributes with the specification of the type, in
between unsigned and int for example).

For example:

int A1 x N; /* A1 applies to the type int. An example is an attribute
"even" restricting the type int to even values. */

struct foo A1 A2 x; // Both A1 and A2 apply to the struct foo type

2. The type attributes for a pointer type must be specified immediately after
the * symbol.

/* A pointer (A1) to an int (A2) */
int A2 * A1 x;
/* A pointer (A1) to a pointer (A2) to a float (A3) */
float A3 * A2 * A1 x;

Note: The attributes for base types and for pointer types are a strict
extension of the ANSI C type qualifiers (const, volatile and restrict). In
fact CIL treats these qualifiers as attributes.

24

3. The attributes for a function type or for an array type can be specified
using parenthesized declarators.

For example:

/* A function (A1) from int (A2) to float (A3) */
float A3 (A1 f)(int A2);

/* A pointer (A1) to a function (A2) that returns an int (A3) */
int A3 (A2 * A1 pfun)(void);

/* An array (A1) of int (A2) */
int A2 (A1 x0)[]

/* Array (A1) of pointers (A2) to functions (A3) that take an int (A4) and
* return a pointer (A5) to int (A6) */

int A6 * A5 (A3 * A2 (A1 x1)[5])(int A4);

/* A function (A4) that takes a float (A5) and returns a pointer (A6) to an
* int (A7) */

extern int A7 * A6 (A4 x2)(float A5 x);

/* A function (A1) that takes a int (A2) and that returns a pointer (A3) to
* a function (A4) that takes a float (A5) and returns a pointer (A6) to an
* int (A7) */

int A7 * A6 (A4 * A3 (A1 x3)(int A2 x))(float A5) {
return & x2;

}

Note: ANSI C does not allow the specification of type qualifiers for function
and array types, although it allows for the parenthesized declarator. With
just a bit of thought (looking at the first few examples above) I hope that the
placement of attributes for function and array types will seem intuitive.

This extension is not without problems however. If you want to refer just
to a type (in a cast for example) then you leave the name out. But this leads
to strange conflicts due to the parentheses that we introduce to scope the at-
tributes. Take for example the type of x0 from above. It should be written
as:

int A2 (A1)[]

But this will lead most C parsers into deep confusion because the parentheses
around A1 will be confused for parentheses of a function designator. To push
this problem around (I don’t know a solution) whenever we are about to print
a parenthesized declarator with no name but with attributes, we comment out
the attributes so you can see them (for whatever is worth) without confusing
the compiler. For example, here is how we would print the above type:

25

int A2 /*(A1)*/[]

Handling of predefined GCC attributes GCC already supports attributes
in a lot of places in declarations. The only place where we support attributes
and GCC does not is right before the { that starts a function body.

GCC classifies its attributes in attributes for functions, for variables and for
types, although the latter category is only usable in definition of struct or union
types and is not nearly as powerful as the CIL type attributes. We have made
an effort to reclassify GCC attributes as name and type attributes (they only
apply for function types). Here is what we came up with:

• GCC name attributes:

section, constructor, destructor, unused, weak, no instrument function,
noreturn, alias, no check memory usage, dllinport, dllexport, exception,
model

Note: the ”noreturn” attribute would be more appropriately qualified as
a function type attribute. But we classify it as a name attribute to make
it easier to support a similarly named MSVC attribute.

• GCC function type attributes:

fconst (printed as ”const”), format, regparm, stdcall, cdecl, longcall

I was not able to completely decipher the position in which these at-
tributes must go. So, the CIL elaborator knows these names and applies
the following rules:

– All of the name attributes that appear in the specifier part (i.e. at the
beginning) of a declaration are associated with all declared names.

– All of the name attributes that appear at the end of a declarator are
associated with the particular name being declared.

– More complicated is the handling of the function type attributes,
since there can be more than one function in a single declaration
(a function returning a pointer to a function). Lacking any real
understanding of how GCC handles this, I attach the function type
attribute to the ”nearest” function. This means that if a pointer to
a function is ”nearby” the attribute will be correctly associated with
the function. In truth I pray that nobody uses declarations as that
of x3 above.

Handling of predefined MSVC attributes MSVC has two kinds of at-
tributes, declaration modifiers to be printed before the storage specifier using
the notation ” declspec(...)” and a few function type attributes, printed
almost as our CIL function type attributes.

The following are the name attributes that are printed using declspec
right before the storage designator of the declaration: thread, naked, dllimport,
dllexport, noreturn

26

The following are the function type attributes supported by MSVC: fastcall,
cdecl, stdcall

It is not worth going into the obscure details of where MSVC accepts these
type attributes. The parser thinks it knows these details and it pulls these
attributes from wherever they might be placed. The important thing is that
MSVC will accept if we print them according to the rules of the CIL attributes
!

7 The CIL Driver

We have packaged CIL as an application cilly that contains certain exam-
ple modules, such as logwrites.ml (a module that instruments code to print
the addresses of memory locations being written). Normally, you write another
module like that, add command-line options and an invocation of your module in
src/main.ml. Once you compile CIL you will obtain the file obj/cilly.asm.exe.

We wrote a driver for this executable that makes it easy to invoke your
analysis on existing C code with very little manual intervention. This driver
is bin/cilly and is quite powerful. Note that the cilly script is configured
during installation with the path where CIL resides. This means that you can
move it to any place you want.

A simple use of the driver is:

bin/cilly --save-temps -D HAPPY_MOOD -I myincludes hello.c -o hello

--save-temps tells CIL to save the resulting output files in the current direc-
tory. Otherwise, they’ll be put in /tmp and deleted automatically. Not that this
is the only CIL-specific flag in the list – the other flags use gcc’s syntax.

This performs the following actions:

• preprocessing using the -D and -I arguments with the resulting file left in
hello.i,

• the invocation of the cilly.asm application which parses hello.i con-
verts it to CIL and the pretty-prints it to hello.cil.c

• another round of preprocessing with the result placed in hello.cil.i

• the true compilation with the result in hello.cil.o

• a linking phase with the result in hello

Note that cilly behaves like the gcc compiler. This makes it easy to use it
with existing Makefiles:

make CC="bin/cilly" LD="bin/cilly"

cilly can also behave as the Microsoft Visual C compiler, if the first argu-
ment is --mode=MSVC:

27

bin/cilly --mode=MSVC /D HAPPY_MOOD /I myincludes hello.c /Fe hello.exe

(This in turn will pass a --MSVC flag to the underlying cilly.asm process
which will make it understand the Microsoft Visual C extensions)

cilly can also behave as the archiver ar, if it is passed an argument --mode=AR.
Note that only the cr mode is supported (create a new archive and replace all
files in there). Therefore the previous version of the archive is lost.

Furthermore, cilly allows you to pass some arguments on to the underlying
cilly.asm process. As a general rule all arguments that start with -- and that
cilly itself does not process, are passed on. For example,

bin/cilly --dologwrites -D HAPPY_MOOD -I myincludes hello.c -o hello.exe

will produce a file hello.cil.c that prints all the memory addresses written
by the application.

The most powerful feature of cilly is that it can collect all the sources in
your project, merge them into one file and then apply CIL. This makes it a
breeze to do whole-program analysis and transformation. All you have to do is
to pass the --merge flag to cilly:

make CC="bin/cilly --save-temps --dologwrites --merge"

You can even leave some files untouched:

make CC="bin/cilly --save-temps --dologwrites --merge --leavealone=foo --leavealone=bar"

This will merge all the files except those with the basename foo and bar.
Those files will be compiled as usual and then linked in at the very end.

The sequence of actions performed by cilly depends on whether merging
is turned on or not:

• If merging is off

1. For every file file.c to compile

(a) Preprocess the file with the given arguments to produce file.i

(b) Invoke cilly.asm to produce a file.cil.c

(c) Preprocess to file.cil.i

(d) Invoke the underlying compiler to produce file.cil.o

2. Link the resulting objects

• If merging is on

1. For every file file.c to compile

(a) Preprocess the file with the given arguments to produce file.i

(b) Save the preprocessed source as file.o

2. When linking executable hello.exe, look at every object file that
must be linked and see if it actually contains preprocessed source.
Pass all those files to a special merging application (described in
Section 13) to produce hello.exe comb.c

28

3. Invoke cilly.asm to produce a hello.exe comb.cil.c

4. Preprocess to hello.exe comb.cil.i

5. Invoke the underlying compiler to produce hello.exe comb.cil.o

6. Invoke the actual linker to produce hello.exe

Note that files that you specify with --leavealone are not merged and never
presented to CIL. They are compiled as usual and then are linked in at the end.

And a final feature of cilly is that it can substitute copies of the system’s
include files:

make CC="bin/cilly --includedir=myinclude"

This will force the preprocessor to use the file myinclude/xxx/stdio.h (if it
exists) whenever it encounters #include <stdio.h>. The xxx is a string that
identifies the compiler version you are using. This modified include files should
be produced with the patcher script (see Section 14).

7.1 cilly Options

Among the options for the cilly you can put anything that can normally go in
the command line of the compiler that cilly is impersonating. cilly will do
its best to pass those options along to the appropriate subprocess. In addition,
the following options are supported (a complete and up-to-date list can always
be obtained by running cilly --help):

• --mode=mode This must be the first argument if present. It makes cilly
behave as a given compiled. The following modes are recognized:

– GNUCC - the GNU C Compiler. This is the default.

– MSVC - the Microsoft Visual C compiler. Of course, you should pass
only MSVC valid options in this case.

– AR - the archiver ar. Only the mode cr is supported and the original
version of the archive is lost.

• --help Prints a list of the options supported.

• --verbose Prints lots of messages about what is going on.

• --stages Less than --verbose but lets you see what cilly is doing.

• --merge This tells cilly to first attempt to collect into one source file all
of the sources that make your application, and then to apply cilly.asm
on the resulting source. The sequence of actions in this case is described
above and the merger itself is described in Section 13.

• --leavealone=xxx. Do not merge and do not present to CIL the files
whose basename is ”xxx”. These files are compiled as usual and linked in
at the end.

29

• --includedir=xxx. Override the include files with those in the given
directory. The given directory is the same name that was given an an ar-
gument to the patcher (see Section 14). In particular this means that that
directory contains subdirectories named based on the current compiler
version. The patcher creates those directories.

• --usecabs. Do not CIL, but instead just parse the source and print its
AST out. This should looked like the preprocessed file. This is useful
when you suspect that the conversion to CIL phase changes the meaning
of the program.

• --save-temps=xxx. Temporary files are preserved in the xxx directory.
For example, the output of CIL will be put in a file named *.cil.c.

• --save-temps. Temporay files are preserved in the current directory.

7.2 cilly.asm Options

All of the options that start with -- and are not understood by cilly are passed
on to cilly.asm. cilly also passes along to cilly.asm flags such as --MSVC
that both need to know about. The following options are supported:

General Options:

• --version output version information and exit

• --verbose Print lots of random stuff. This is passed on from cilly

• --warnall Show all warnings.

• --debug=xxx turns on debugging flag xxx

• --nodebug=xxx turns off debugging flag xxx

• --flush Flush the output streams often (aids debugging).

• --check Run a consistency check over the CIL after every operation.

• --nocheck turns off consistency checking of CIL.

• --noPrintLn Don’t output #line directives in the output.

• --commPrintLn Print #line directives in the output, but put them in
comments.

• --log=xxx Set the name of the log file. By default stderr is used

• --MSVC Enable MSVC compatibility. Default is GNU.

• --ignore-merge-conflicts ignore merging conflicts.

• --extrafiles=filename: the name of a file that contains a list of addi-
tional files to process, separated by whitespace.

30

• --stats Print statistics about the running time of the parser, conversion
to CIL, etc. Also prints memory-usage statistics. You can time parts
of your own code as well. Calling (Stats.time ‘‘label’’ func arg)
will evaluate (func arg) and remember how long this takes. If you call
Stats.time repeatedly with the same label, CIL will report the aggregate
time.

If available, CIL uses the x86 performance counters for these stats. This
is very precise, but results in “wall-clock time.” To report only user-
mode time, find the call to Stats.reset in main.ml, and change it to
Stats.reset false.

Lowering Options

• --noLowerConstants do not lower constant expressions.

• --noInsertImplicitCasts do not insert implicit casts.

• --forceRLArgEval Forces right to left evaluation of function arguments.

• --disallowDuplication Prevent small chunks of code from being dupli-
cated.

• --keepunused Do not remove the unused variables and types.

• --rmUnusedInlines Delete any unused inline functions. This is the de-
fault in MSVC mode.

Output Options:

• --printCilAsIs Do not try to simplify the CIL when printing. Without
this flag, CIL will attempt to produce prettier output by e.g. changing
while(1) into more meaningful loops.

• --noWrap do not wrap long lines when printing

• --out=xxx the name of the output CIL file. cilly sets this for you.

• --mergedout=xxx specify the name of the merged file

• --cabsonly=xxx CABS output file name

Selected features. See Section 8 for more information.

• --dologcalls. Insert code in the processed source to print the name of
functions as are called. Implemented in src/ext/logcalls.ml.

• --dologwrites. Insert code in the processed source to print the address
of all memory writes. Implemented in src/ext/logwrites.ml.

• --dooneRet. Make each function have at most one ’return’. Implemented
in src/ext/oneret.ml.

31

• --dostackGuard. Instrument function calls and returns to maintain a
separate stack for return addresses. Implemeted in src/ext/heapify.ml.

• --domakeCFG. Make the program look more like a CFG. Implemented in
src/cil.ml.

• --dopartial. Do interprocedural partial evaluation and constant folding.
Implemented in src/ext/partial.ml.

• --dosimpleMem. Simplify all memory expressions. Implemented in src/ext/simplemem.ml.

For an up-to-date list of available options, run cilly.asm --help.

8 Library of CIL Modules

We are developing a suite of modules that use CIL for program analyses and
transformations that we have found useful. You can use these modules di-
rectly on your code, or generally as inspiration for writing similar modules.
A particularly big and complex application written on top of CIL is CCured
(../ccured/index.html).

8.1 Control-Flow Graphs

The Cil.stmt datatype includes fields for intraprocedural control-flow informa-
tion: the predecessor and successor statements of the current statement. This
information is not computed by default. If you want to use the control-flow
graph, or any of the extensions in this section that require it, you have to ex-
plicitly ask CIL to compute the CFG.

8.1.1 The CFG module (new in CIL 1.3.5)

The best way to compute the CFG is with the CFG module. Just invoke
Cfg.computeFileCFG on your file. The Cfg API describes the rest of actions
you can take with this module, including computing the CFG for one function
at a time, or printing the CFG in dot form.

8.1.2 Simplified control flow

CIL can reduce high-level C control-flow constructs like switch and continue
to lower-level gotos. This completely eliminates some possible classes of state-
ments from the program and may make the result easier to analyze (e.g., it
simplifies data-flow analysis).

You can invoke this transformation on the command line with --domakeCFG
or programatically with Cil.prepareCFG. After calling Cil.prepareCFG, you can
use Cil.computeCFGInfo to compute the CFG information and find the succes-
sor and predecessor of each statement.

For a concrete example, you can see how cilly --domakeCFG transforms
the following code (note the fall-through in case 1):

32

int foo (int predicate) {
int x = 0;
switch (predicate) {
case 0: return 111;
case 1: x = x + 1;
case 2: return (x+3);
case 3: break;
default: return 222;

}
return 333;

}

See the CIL output for this code fragment

8.2 Data flow analysis framework

The Dataflow module (click for the ocamldoc) contains a parameterized frame-
work for forward and backward data flow analyses. You provide the transfer
functions and this module does the analysis. You must compute control-flow
information (Section 8.1) before invoking the Dataflow module.

8.3 Dominators

The module Dominators contains the computation of immediate dominators. It
uses the Dataflow module.

8.4 Points-to Analysis

The module ptranal.ml contains two interprocedural points-to analyses for
CIL: Olf and Golf. Olf is the default. (Switching from olf.ml to golf.ml
requires a change in Ptranal and a recompiling cilly.)

The analyses have the following characteristics:

• Not based on C types (inferred pointer relationships are sound despite
most kinds of C casts)

• One level of subtyping

• One level of context sensitivity (Golf only)

• Monomorphic type structures

• Field insensitive (fields of structs are conflated)

• Demand-driven (points-to queries are solved on demand)

• Handle function pointers

33

The analysis itself is factored into two components: Ptranal, which walks
over the CIL file and generates constraints, and Olf or Golf, which solve the
constraints. The analysis is invoked with the function Ptranal.analyze file:
Cil.file -> unit. This function builds the points-to graph for the CIL file
and stores it internally. There is currently no facility for clearing internal state,
so Ptranal.analyze file should only be called once.

The constructed points-to graph supports several kinds of queries, including
alias queries (may two expressions be aliased?) and points-to queries (to what
set of locations may an expression point?).

The main interface with the alias analysis is as follows:

• Ptranal.may alias: Cil.exp -> Cil.exp -> bool. If true, the two
expressions may have the same value.

• Ptranal.resolve lval: Cil.lval -> (Cil.varinfo list). Returns
the list of variables to which the given left-hand value may point.

• Ptranal.resolve exp: Cil.exp -> (Cil.varinfo list). Returns the
list of variables to which the given expression may point.

• Ptranal.resolve funptr: Cil.exp -> (Cil.fundec list). Returns
the list of functions to which the given expression may point.

The precision of the analysis can be customized by changing the values of
several flags:

• Ptranal.no sub: bool ref. If true, subtyping is disabled. Associated
commandline option: --ptr unify.

• Ptranal.analyze mono: bool ref. (Golf only) If true, context sensi-
tivity is disabled and the analysis is effectively monomorphic. Command-
line option: --ptr mono.

• Ptranal.smart aliases: bool ref. (Golf only) If true, “smart” dis-
ambiguation of aliases is enabled. Otherwise, aliases are computed by
intersecting points-to sets. This is an experimental feature.

• Ptranal.model strings: bool ref. Make the alias analysis model string
constants by treating them as pointers to chars. Commandline option: --
ptr model strings

• Ptranal.conservative undefineds: bool ref. Make the most pes-
simistic assumptions about globals if an undefined function is present.
Such a function can write to every global variable. Commandline option:
--ptr conservative

In practice, the best precision/efficiency tradeoff is achieved by setting Ptranal.no sub
to false, Ptranal.analyze mono to true, and Ptranal.smart aliases to
false. These are the default values of the flags.

There are also a few flags that can be used to inspect or serialize the results
of the analysis.

34

• Ptranal.debug may aliases. Print the may-alias relationship of each
pair of expressions in the program. Commandline option: --ptr may aliases.

• Ptranal.print constraints: bool ref. If true, the analysis will print
each constraint as it is generated.

• Ptranal.print types: bool ref. If true, the analysis will print the
inferred type of each variable in the program.

If Ptranal.analyze mono and Ptranal.no sub are both true, this output
is sufficient to reconstruct the points-to graph. One nice feature is that
there is a pretty printer for recursive types, so the print routine does not
loop.

• Ptranal.compute results: bool ref. If true, the analysis will print
out the points-to set of each variable in the program. This will essentially
serialize the points-to graph.

8.5 StackGuard

The module heapify.ml contains a transformation similar to the one described
in “StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks”, Proceedings of the 7th USENIX Security Conference. In essence it
modifies the program to maintain a separate stack for return addresses. Even
if a buffer overrun attack occurs the actual correct return address will be taken
from the special stack.

Although it does work, this CIL module is provided mainly as an example of
how to perform a simple source-to-source program analysis and transformation.
As an optimization only functions that contain a dangerous local array make
use of the special return address stack.

For a concrete example, you can see how cilly --dostackGuard transforms
the following dangerous code:

int dangerous() {
char array[10];
scanf("%s",array); // possible buffer overrun!

}

int main () {
return dangerous();

}

See the CIL output for this code fragment

8.6 Heapify

The module heapify.ml also contains a transformation that moves all danger-
ous local arrays to the heap. This also prevents a number of buffer overruns.

35

For a concrete example, you can see how cilly --doheapify transforms
the following dangerous code:

int dangerous() {
char array[10];
scanf("%s",array); // possible buffer overrun!

}

int main () {
return dangerous();

}

See the CIL output for this code fragment

8.7 One Return

The module oneret.ml contains a transformation the ensures that all function
bodies have at most one return statement. This simplifies a number of analyses
by providing a canonical exit-point.

For a concrete example, you can see how cilly --dooneRet transforms the
following code:

int foo (int predicate) {
if (predicate <= 0) {
return 1;

} else {
if (predicate > 5)
return 2;

return 3;
}

}

See the CIL output for this code fragment

8.8 Partial Evaluation and Constant Folding

The partial.ml module provides a simple interprocedural partial evaluation
and constant folding data-flow analysis and transformation. This transforma-
tion requires the --domakeCFG option.

For a concrete example, you can see how cilly --domakeCFG --dopartial
transforms the following code (note the eliminated if branch and the partial
optimization of foo):

int foo(int x, int y) {
int unknown;
if (unknown)
return y+2;

36

return x+3;
}

int main () {
int a,b,c;
a = foo(5,7) + foo(6,7);
b = 4;
c = b * b;
if (b > c)
return b-c;

else
return b+c;

}

See the CIL output for this code fragment

8.9 Reaching Definitions

The reachingdefs.ml module uses the dataflow framework and CFG infor-
mation to calculate the definitions that reach each statement. After comput-
ing the CFG (Section 8.1) and calling computeRDs on a function declaration,
ReachingDef.stmtStartData will contain a mapping from statement IDs to
data about which definitions reach each statement. In particular, it is a map-
ping from statement IDs to a triple the first two members of which are used
internally. The third member is a mapping from variable IDs to Sets of integer
options. If the set contains Some(i), then the definition of that variable with ID
i reaches that statement. If the set contains None, then there is a path to that
statement on which there is no definition of that variable. Also, if the variable
ID is unmapped at a statement, then no definition of that variable reaches that
statement.

To summarize, reachingdefs.ml has the following interface:

• computeRDs – Computes reaching definitions. Requires that CFG infor-
mation has already been computed for each statement.

• ReachingDef.stmtStartData – contains reaching definition data after
computeRDs is called.

• ReachingDef.defIdStmtHash – Contains a mapping from definition IDs
to the ID of the statement in which the definition occurs.

• getRDs – Takes a statement ID and returns reaching definition data for
that statement.

• instrRDs – Takes a list of instructions and the definitions that reach the
first instruction, and for each instruction calculates the definitions that
reach either into or out of that instruction.

37

• rdVisitorClass – A subclass of nopCilVisitor that can be extended such
that the current reaching definition data is available when expressions are
visited through the get cur iosh method of the class.

8.10 Available Expressions

The availexps.ml module uses the dataflow framework and CFG informa-
tion to calculate something similar to a traditional available expressions anal-
ysis. After computeAEs is called following a CFG calculation (Section 8.1),
AvailableExps.stmtStartData will contain a mapping from statement IDs to
data about what expressions are available at that statement. The data for each
statement is a mapping for each variable ID to the whole expression available at
that point(in the traditional sense) which the variable was last defined to be. So,
this differs from a traditional available expressions analysis in that only whole
expressions from a variable definition are considered rather than all expressions.

The interface is as follows:

• computeAEs – Computes available expressions. Requires that CFG infor-
mation has already been comptued for each statement.

• AvailableExps.stmtStartData – Contains available expressions data for
each statement after computeAEs has been called.

• getAEs – Takes a statement ID and returns available expression data for
that statement.

• instrAEs – Takes a list of instructions and the availalbe expressions at
the first instruction, and for each instruction calculates the expressions
available on entering or exiting each instruction.

• aeVisitorClass – A subclass of nopCilVisitor that can be extended such
that the current available expressions data is available when expressions
are visited through the get cur eh method of the class.

8.11 Liveness Analysis

The liveness.ml module uses the dataflow framework and CFG information to
calculate which variables are live at each program point. After computeLiveness
is called following a CFG calculation (Section 8.1), LiveFlow.stmtStartData
will contain a mapping for each statement ID to a set of varinfos for varialbes
live at that program point.

The interface is as follows:

• computeLiveness – Computes live variables. Requires that CFG infor-
mation has already been computed for each statement.

• LiveFlow.stmtStartData – Contains live variable data for each statement
after computeLiveness has been called.

38

Also included in this module is a command line interface that will cause
liveness data to be printed to standard out for a particular function or label.

• --doliveness – Instructs cilly to comptue liveness information and to
print on standard out the variables live at the points specified by --live func
and live label. If both are ommitted, then nothing is printed.

• --live func – The name of the function whose liveness data is of interest.
If --live label is ommitted, then data for each statement is printed.

• --live label – The name of the label at which the liveness data will be
printed.

8.12 Dead Code Elimination

The module deadcodeelim.ml uses the reaching definitions analysis to eliminate
assignment instructions whose results are not used. The interface is as follows:

• elim dead code – Performs dead code elimination on a function. Requires
that CFG information has already been computed (Section 8.1).

• dce – Performs dead code elimination on an entire file. Requires that CFG
information has already been computed.

8.13 Simple Memory Operations

The simplemem.ml module allows CIL lvalues that contain memory accesses to
be even futher simplified via the introduction of well-typed temporaries. After
this transformation all lvalues involve at most one memory reference.

For a concrete example, you can see how cilly --dosimpleMem transforms
the following code:

int main () {
int ***three;
int **two;
***three = **two;

}

See the CIL output for this code fragment

8.14 Simple Three-Address Code

The simplify.ml module further reduces the complexity of program expres-
sions and gives you a form of three-address code. After this transformation all
expressions will adhere to the following grammar:

39

basic::=
Const _
Addrof(Var v, NoOffset)
StartOf(Var v, NoOffset)
Lval(Var v, off), where v is a variable whose address is not taken

and off contains only "basic"

exp::=
basic
Lval(Mem basic, NoOffset)
BinOp(bop, basic, basic)
UnOp(uop, basic)
CastE(t, basic)

lval ::=
Mem basic, NoOffset
Var v, off, where v is a variable whose address is not taken and off

contains only "basic"

In addition, all sizeof and alignof forms are turned into constants. Accesses
to arrays and variables whose address is taken are turned into ”Mem” accesses.
All field and index computations are turned into address arithmetic.

For a concrete example, you can see how cilly --dosimplify transforms
the following code:

int main() {
struct mystruct {
int a;
int b;

} m;
int local;
int arr[3];
int *ptr;

ptr = &local;
m.a = local + sizeof(m) + arr[2];
return m.a;

}

See the CIL output for this code fragment

8.15 Converting C to C++

The module canonicalize.ml performs several transformations to correct differ-
ences between C and C++, so that the output is (hopefully) valid C++ code.
This may be incomplete — certain fixes which are necessary for some programs
are not yet implemented.

40

Using the --doCanonicalize option with CIL will perform the following
changes to your program:

1. Any variables that use C++ keywords as identifiers are renamed.

2. C allows global variables to have multiple declarations and multiple (equiv-
alent) definitions. This transformation removes all but one declaration and
all but one definition.

3. inline is #defined to inline, and restrict is #defined to nothing.

4. C allows function pointers with no specified arguments to be used on any
argument list. To make C++ accept this code, we insert a cast from the
function pointer to a type that matches the arguments. Of course, this
does nothing to guarantee that the pointer actually has that type.

5. Makes casts from int to enum types explicit. (CIL changes enum constants
to int constants, but doesn’t use a cast.)

9 Controlling CIL

In the process of converting a C file to CIL we drop the unused prototypes and
even inline function definitions. This results in much smaller files. If you do not
want this behavior then you must pass the --keepunused argument to the CIL
application.

Alternatively you can put the following pragma in the code (instructing CIL
to specifically keep the declarations and definitions of the function func1 and
variable var2, the definition of type foo and of structure bar):

#pragma cilnoremove("func1", "var2", "type foo", "struct bar")

10 GCC Extensions

The CIL parser handles most of the gcc extensions and compiles them to CIL.
The following extensions are not handled (note that we are able to compile a
large number of programs, including the Linux kernel, without encountering
these):

1. Nested function definitions.

2. Constructing function calls.

3. Naming an expression’s type.

4. Complex numbers

5. Hex floats

6. Subscripts on non-lvalue arrays.

41

7. Forward function parameter declarations

The following extensions are handled, typically by compiling them away:

1. Attributes for functions, variables and types. In fact, we have a clear
specification (see Section 6.4) of how attributes are interpreted. The spec-
ification extends that of gcc.

2. Old-style function definitions and prototypes. These are translated to
new-style.

3. Locally-declared labels. As part of the translation to CIL, we generate
new labels as needed.

4. Labels as values and computed goto. This allows a program to take the
address of a label and to manipulate it as any value and also to perform
a computed goto. We compile this by assigning each label whose address
is taken a small integer that acts as its address. Every computed goto in
the body of the function is replaced with a switch statement. If you want
to invoke the label from another function, you are on your own (the gcc
documentation says the same.)

5. Generalized lvalues. You can write code like (a, b) += 5 and it gets
translated to CIL.

6. Conditionals with omitted operands. Things like x ? : y are translated
to CIL.

7. Double word integers. The type long long and the LL suffix on constants
is understood. This is currently interpreted as 64-bit integers.

8. Local arrays of variable length. These are converted to uses of alloca,
the array variable is replaced with a pointer to the allocated array and the
instances of sizeof(a) are adjusted to return the size of the array and
not the size of the pointer.

9. Non-constant local initializers. Like all local initializers these are compiled
into assignments.

10. Compound literals. These are also turned into assignments.

11. Designated initializers. The CIL parser actually supports the full ISO
syntax for initializers, which is more than both gcc and MSVC. I (George)
think that this is the most complicated part of the C language and whoever
designed it should be banned from ever designing languages again.

12. Case ranges. These are compiled into separate cases. There is no code
duplication, just a larger number of case statements.

42

13. Transparent unions. This is a strange feature that allows you to define a
function whose formal argument has a (tranparent) union type, but the
argument is called as if it were the first element of the union. This is
compiled away by saying that the type of the formal argument is that of
the first field, and the first thing in the function body we copy the formal
into a union.

14. Inline assembly-language. The full syntax is supported and it is carried
as such in CIL.

15. Function names as strings. The identifiers FUNCTION and PRETTY FUNCTION
are replaced with string literals.

16. Keywords typeof, alignof, inline are supported.

11 CIL Limitations

There are several implementation details of CIL that might make it unusable or
less than ideal for certain tasks:

• CIL operates after preprocessing. If you need to see comments, for exam-
ple, you cannot use CIL. But you can use attributes and pragmas instead.
And there is some support to help you patch the include files before they
are seen by the preprocessor. For example, this is how we turn some
#defines that we don’t like into function calls.

• CIL does transform the code in a non-trivial way. This is done in order
to make most analyses easier. But if you want to see the code e1, e2++
exactly as it appears in the code, then you should not use CIL.

• CIL removes all local scopes and moves all variables to function scope.
It also separates a declaration with an initializer into a declaration plus
an assignment. The unfortunate effect of this transformation is that local
variables cannot have the const qualifier.

12 Known Bugs and Limitations

• In the new versions of glibc there is a function builtin va arg that
takes a type as its second argument. CIL handles that through a slight
trick. As it parses the function it changes a call like:

mytype x = __builtin_va_arg(marker, mytype)

into

mytype x;
__builtin_va_arg(marker, sizeof(mytype), &x);

43

The latter form is used internally in CIL. However, the CIL pretty printer
will try to emit the original code.

Similarly, builtin types compatible p(t1, t2), which takes types as
arguments, is represented internally as builtin types compatible p(sizeof
t1, sizeof t2), but the sizeofs are removed when printing.

• The implementation of bitsSizeOf does not take into account the packing
pragmas. However it was tested to be accurate on cygwin/gcc-2.95.3,
Linux/gcc-2.95.3 and on Windows/MSVC.

• We do not support tri-graph sequences (ISO 5.2.1.1).

• GCC has a strange feature called “extern inline”. Such a function can
be defined twice: first with the “extern inline” specifier and the second
time without it. If optimizations are turned off then the “extern inline”
definition is considered a prototype (its body is ignored). If optimizations
are turned on then the extern inline function is inlined at all of its occur-
rences from the point of its definition all the way to the point where the
(optional) second definition appears. No body is generated for an extern
inline function. A body is generated for the real definition and that one
is used in the rest of the file.

CIL will rename your extern inline function (and its uses) with the suffix
extinline. This means that if you have two such definition, that do

different things and the optimizations are not on, then the CIL version
might compute a different answer !

Also, if you have multiple extern inline declarations then CIL will ignore
but the first one. This is not so bad because GCC itself would not like it.

• There are still a number of bugs in handling some obscure features of GCC.
For example, when you use variable-length arrays, CIL turns them into
calls to alloca. This means that they are deallocated when the function
returns and not when the local scope ends.

Variable-length arrays are not supported as fields of a struct or union.

• CIL cannot parse arbitrary #pragma directives. Their syntax must follow
gcc’s attribute syntax to be understood. If you need a pragma that does
not follow gcc syntax, add that pragma’s name to no parse pragma in
src/frontc/clexer.mll to indicate that CIL should treat that pragma
as a monolithic string rather than try to parse its arguments.

CIL cannot parse a line containing an empty #pragma.

• CIL only parses #pragma directives at the ”top level”, this is, outside of
any enum, structure, union, or function definitions.

If your compiler uses pragmas in places other than the top-level, you may
have to preprocess the sources in a special way (sed, perl, etc.) to remove
pragmas from these locations.

44

• CIL cannot parse the following code (fixing this problem would require
extensive hacking of the LALR grammar):

int bar(int ()); // This prototype cannot be parsed
int bar(int x()); // If you add a name to the function, it works
int bar(int (*)()); // This also works (and it is more appropriate)

• CIL also cannot parse certain K&R old-style prototypes with missing re-
turn type:

g(); // This cannot be parsed
int g(); // This is Ok

• CIL does not understand some obscure combinations of type specifiers
(“signed” and “unsigned” applied to typedefs that themselves contain a
sign specification; you could argue that this should not be allowed any-
way):

typedef signed char __s8;
__s8 unsigned uchartest; // This is unsigned char for gcc

• The statement x = 3 + x ++ will perform the increment of x before the
assignment, while gcc delays the increment after the assignment. It turned
out that this behavior is much easier to implement than gcc’s one, and
either way is correct (since the behavior is unspecified in this case). Simi-
larly, if you write x = x ++; then CIL will perform the increment before
the assignment, whereas GCC and MSVC will perform it after the assign-
ment.

13 Using the merger

There are many program analyses that are more effective when done on the
whole program.

The merger is a tool that combines all of the C source files in a project into
a single C file. There are two tasks that a merger must perform:

1. Detect what are all the sources that make a project and with what compiler
arguments they are compiled.

2. Merge all of the source files into a single file.

For the first task the merger impersonates a compiler and a linker (both
a GCC and a Microsoft Visual C mode are supported) and it expects to be
invoked (from a build script or a Makefile) on all sources of the project. When
invoked to compile a source the merger just preprocesses the source and saves
the result using the name of the requested object file. By preprocessing at this

45

time the merger is able to take into account variations in the command line
arguments that affect preprocessing of different source files.

When the merger is invoked to link a number of object files it collects the
preprocessed sources that were stored with the names of the object files, and
invokes the merger proper. Note that arguments that affect the compilation or
linking must be the same for all source files.

For the second task, the merger essentially concatenates the preprocessed
sources with care to rename conflicting file-local declarations (we call this pro-
cess alpha-conversion of a file). The merger also attempts to remove duplicate
global declarations and definitions. Specifically the following actions are taken:

• File-scope names (static globals, names of types defined with typedef,
and structure/union/enumeration tags) are given new names if they con-
flict with declarations from previously processed sources. The new name is
formed by appending the suffix n, where n is a unique integer identifier.
Then the new names are applied to their occurrences in the file.

• Non-static declarations and definitions of globals are never renamed. But
we try to remove duplicate ones. Equality of globals is detected by com-
paring the printed form of the global (ignoring the line number directives)
after the body has been alpha-converted. This process is intended to re-
move those declarations (e.g. function prototypes) that originate from the
same include file. Similarly, we try to eliminate duplicate definitions of
inline functions, since these occasionally appear in include files.

• The types of all global declarations with the same name from all files are
compared for type isomorphism. During this process, the merger detects
all those isomorphisms between structures and type definitions that are
required for the merged program to be legal. Such structure tags and
typenames are coalesced and given the same name.

• Besides the structure tags and type names that are required to be isomor-
phic, the merger also tries to coalesce definitions of structures and types
with the same name from different file. However, in this case the merger
will not give an error if such definitions are not isomorphic; it will just use
different names for them.

• In rare situations, it can happen that a file-local global in encountered
first and it is not renamed, only to discover later when processing another
file that there is an external symbol with the same name. In this case, a
second pass is made over the merged file to rename the file-local symbol.

Here is an example of using the merger:
The contents of file1.c is:

struct foo; // Forward declaration
extern struct foo *global;

The contents of file2.c is:

46

struct bar {
int x;
struct bar *next;
};
extern struct bar *global;
struct foo {
int y;
};
extern struct foo another;
void main() {
}

There are several ways in which one might create an executable from these
files:

• gcc file1.c file2.c -o a.out

• gcc -c file1.c -o file1.o
gcc -c file2.c -o file2.o
ld file1.o file2.o -o a.out

• gcc -c file1.c -o file1.o
gcc -c file2.c -o file2.o
ar r libfile2.a file2.o
gcc file1.o libfile2.a -o a.out

• gcc -c file1.c -o file1.o
gcc -c file2.c -o file2.o
ar r libfile2.a file2.o
gcc file1.o -lfile2 -o a.out

In each of the cases above you must replace all occurrences of gcc and ld with
cilly --merge, and all occurrences of ar with cilly --merge --mode=AR. It
is very important that the --merge flag be used throughout the build process.
If you want to see the merged source file you must also pass the --keepmerged
flag to the linking phase.

The result of merging file1.c and file2.c is:

// from file1.c
struct foo; // Forward declaration
extern struct foo *global;

// from file2.c
struct foo {
int x;
struct foo *next;
};
struct foo___1 {

47

int y;
};
extern struct foo___1 another;

14 Using the patcher

Occasionally we have needed to modify slightly the standard include files. So,
we developed a simple mechanism that allows us to create modified copies of
the include files and use them instead of the standard ones. For this purpose we
specify a patch file and we run a program caller Patcher which makes modified
copies of include files and applies the patch.

The patcher is invoked as follows:

bin/patcher [options]

Options:
--help Prints this help message
--verbose Prints a lot of information about what is being done
--mode=xxx What tool to emulate:

GNUCC - GNU CC
MSVC - MS VC cl compiler

--dest=xxx The destination directory. Will make one if it does not exist
--patch=xxx Patch file (can be specified multiple times)
--ppargs=xxx An argument to be passed to the preprocessor (can be specified

multiple times)

--ufile=xxx A user-include file to be patched (treated as \#include "xxx")
--sfile=xxx A system-include file to be patched (treated as \#include <xxx>)

--clean Remove all files in the destination directory
--dumpversion Print the version name used for the current compiler

All of the other arguments are passed to the preprocessor. You should pass
enough arguments (e.g., include directories) so that the patcher can find the
right include files to be patched.

Based on the given mode and the current version of the compiler (which the
patcher can print when given the dumpversion argument) the patcher will create
a subdirectory of the dest directory (say /usr/home/necula/cil/include),
such as:

/usr/home/necula/cil/include/gcc_2.95.3-5

In that file the patcher will copy the modified versions of the include files
specified with the ufile and sfile options. Each of these options can be
specified multiple times.

48

The patch file (specified with the patch option) has a format inspired by
the Unix patch tool. The file has the following grammar:

<<< flags
patterns
===
replacement
>>>

The flags are a comma separated, case-sensitive, sequence of keywords or
keyword = value. The following flags are supported:

• file=foo.h - will only apply the patch on files whose name is foo.h.

• optional - this means that it is Ok if the current patch does not match
any of the processed files.

• group=foo - will add this patch to the named group. If this is not specified
then a unique group is created to contain just the current patch. When all
files specified in the command line have been patched, an error message
is generated for all groups for whom no member patch was used. We use
this mechanism to receive notice when the patch triggers are out-dated
with respect to the new include files.

• system=sysname - will only consider this pattern on a given operating
system. The “sysname” is reported by the “$Ô” variable in Perl, except
that Windows is always considered to have sysname “cygwin.” For Linux
use “linux” (capitalization matters).

• ateof - In this case the patterns are ignored and the replacement text is
placed at the end of the patched file. Use the file flag if you want to
restrict the files in which this replacement is performed.

• atsof - The patterns are ignored and the replacement text is placed at
the start of the patched file. Uf the file flag to restrict the application
of this patch to a certain file.

• disabled - Use this flag if you want to disable the pattern.

The patterns can consist of several groups of lines separated by the |||
marker. Each of these group of lines is a multi-line pattern that if found in the
file will be replaced with the text given at the end of the block.

The matching is space-insensitive.
All of the markers <<<, |||, === and >>> must appear at the beginning of a

line but they can be followed by arbitrary text (which is ignored).
The replacement text can contain the special keyword @ pattern @, which

is substituted with the pattern that matched.

49

15 Debugging support

Most of the time we debug our code using the Errormsg module along with the
pretty printer. But if you want to use the Ocaml debugger here is an easy way
to do it. Say that you want to debug the invocation of cilly that arises out of
the following command:

cilly -c hello.c

You must follow the installation instructions to install the Elist support files
for ocaml and to extend your .emacs appropriately. Then from within Emacs
you do

ALT-X my-camldebug

This will ask you for the command to use for running the Ocaml debugger
(initially the default will be “ocamldebug” or the last command you introduced).
You use the following command:

cilly --ocamldebug -c hello.c

This will run cilly as usual and invoke the Ocaml debugger when the cilly
engine starts. The advantage of this way of invoking the debugger is that the
directory search paths are set automatically and the right set or arguments is
passed to the debugger.

16 Who Says C is Simple?

When I (George) started to write CIL I thought it was going to take two weeks.
Exactly a year has passed since then and I am still fixing bugs in it. This gross
underestimate was due to the fact that I thought parsing and making sense of
C is simple. You probably think the same. What I did not expect was how
many dark corners this language has, especially if you want to parse real-world
programs such as those written for GCC or if you are more ambitious and you
want to parse the Linux or Windows NT sources (both of these were written
without any respect for the standard and with the expectation that compilers
will be changed to accommodate the program).

The following examples were actually encountered either in real programs
or are taken from the ISO C99 standard or from the GCC’s testcases. My first
reaction when I saw these was: Is this C?. The second one was : What the hell
does it mean?.

If you are contemplating doing program analysis for C on abstract-syntax
trees then your analysis ought to be able to handle these things. Or, you can
use CIL and let CIL translate them into clean C code.

50

16.1 Standard C

1. Why does the following code return 0 for most values of x? (This should
be easy.)

int x;
return x == (1 && x);

See the CIL output for this code fragment

2. Why does the following code return 0 and not -1? (Answer: because
sizeof is unsigned, thus the result of the subtraction is unsigned, thus
the shift is logical.)

return ((1 - sizeof(int)) >> 32);

See the CIL output for this code fragment

3. Scoping rules can be tricky. This function returns 5.

int x = 5;
int f() {
int x = 3;
{
extern int x;
return x;

}
}

See the CIL output for this code fragment

4. Functions and function pointers are implicitly converted to each other.

int (*pf)(void);
int f(void) {

pf = &f; // This looks ok
pf = ***f; // Dereference a function?
pf(); // Invoke a function pointer?
(****pf)(); // Looks strange but Ok
(***************f)(); // Also Ok

}

See the CIL output for this code fragment

51

5. Initializer with designators are one of the hardest parts about ISO C.
Neither MSVC or GCC implement them fully. GCC comes close though.
What is the final value of i.nested.y and i.nested.z? (Answer: 2 and
respectively 6).

struct {
int x;
struct {

int y, z;
} nested;

} i = { .nested.y = 5, 6, .x = 1, 2 };

See the CIL output for this code fragment

6. This is from c-torture. This function returns 1.

typedef struct
{
char *key;
char *value;

} T1;

typedef struct
{
long type;
char *value;

} T3;

T1 a[] =
{
{
"",
((char *)&((T3) {1, (char *) 1}))

}
};
int main() {

T3 *pt3 = (T3*)a[0].value;
return pt3->value;

}

See the CIL output for this code fragment

7. Another one with constructed literals. This one is legal according to
the GCC documentation but somehow GCC chokes on (it works in CIL
though). This code returns 2.

return ((int []){1,2,3,4})[1];

52

See the CIL output for this code fragment

8. In the example below there is one copy of “bar” and two copies of “pbar”
(static prototypes at block scope have file scope, while for all other types
they have block scope).

int foo() {
static bar();
static (*pbar)() = bar;

}

static bar() {
return 1;

}

static (*pbar)() = 0;

See the CIL output for this code fragment

9. Two years after heavy use of CIL, by us and others, I discovered a bug in
the parser. The return value of the following function depends on what
precedence you give to casts and unary minus:

unsigned long foo() {
return (unsigned long) - 1 / 8;

}

See the CIL output for this code fragment

The correct interpretation is ((unsigned long) - 1) / 8, which is a rel-
atively large number, as opposed to (unsigned long) (- 1 / 8), which
is 0.

16.2 GCC ugliness

1. GCC has generalized lvalues. You can take the address of a lot of strange
things:

int x, y, z;
return &(x ? y : z) - & (x++, x);

See the CIL output for this code fragment

2. GCC lets you omit the second component of a conditional expression.

extern int f();
return f() ? : -1; // Returns the result of f unless it is 0

53

See the CIL output for this code fragment

3. Computed jumps can be tricky. CIL compiles them away in a fairly clean
way but you are on your own if you try to jump into another function this
way.

static void *jtab[2]; // A jump table
static int doit(int x){

static int jtab_init = 0;
if(!jtab_init) { // Initialize the jump table
jtab[0] = &&lbl1;
jtab[1] = &&lbl2;
jtab_init = 1;

}
goto *jtab[x]; // Jump through the table

lbl1:
return 0;

lbl2:
return 1;

}

int main(void){
if (doit(0) != 0) exit(1);
if (doit(1) != 1) exit(1);
exit(0);

}

See the CIL output for this code fragment

4. A cute little example that we made up. What is the returned value?
(Answer: 1);

return ({goto L; 0;}) && ({L: 5;});

See the CIL output for this code fragment

5. extern inline is a strange feature of GNU C. Can you guess what the
following code computes?

extern inline foo(void) { return 1; }
int firstuse(void) { return foo(); }

// A second, incompatible definition of foo
int foo(void) { return 2; }

54

int main() {
return foo() + firstuse();

}

See the CIL output for this code fragment

The answer depends on whether the optimizations are turned on. If they
are then the answer is 3 (the first definition is inlined at all occurrences
until the second definition). If the optimizations are off, then the first
definition is ignore (treated like a prototype) and the answer is 4.

CIL will misbehave on this example, if the optimizations are turned off (it
always returns 3).

6. GCC allows you to cast an object of a type T into a union as long as the
union has a field of that type:

union u {
int i;
struct s {

int i1, i2;
} s;

};

union u x = (union u)6;

int main() {
struct s y = {1, 2};
union u z = (union u)y;

}

See the CIL output for this code fragment

7. GCC allows you to use the mode attribute to specify the size of the
integer instead of the standard char, short and so on:

int __attribute__ ((__mode__ (__QI__))) i8;
int __attribute__ ((__mode__ (__HI__))) i16;
int __attribute__ ((__mode__ (__SI__))) i32;
int __attribute__ ((__mode__ (__DI__))) i64;

See the CIL output for this code fragment

8. The “alias” attribute on a function declaration tells the linker to treat this
declaration as another name for the specified function. CIL will replace
the declaration with a trampoline function pointing to the specified target.

55

static int bar(int x, char y) {
return x + y;

}

//foo is considered another name for bar.
int foo(int x, char y) __attribute__((alias("bar")));

See the CIL output for this code fragment

16.3 Microsoft VC ugliness

This compiler has few extensions, so there is not much to say here.

1. Why does the following code return 0 and not -1? (Answer: because of a
bug in Microsoft Visual C. It thinks that the shift is unsigned just because
the second operator is unsigned. CIL reproduces this bug when in MSVC
mode.)

return -3 >> (8 * sizeof(int));

2. Unnamed fields in a structure seem really strange at first. It seems that
Microsoft Visual C introduced this extension, then GCC picked it up (but
in the process implemented it wrongly: in GCC the field y overlaps with
x!).

struct {
int x;
struct {

int y, z;
struct {
int u, v;

};
};

} a;
return a.x + a.y + a.z + a.u + a.v;

See the CIL output for this code fragment

17 Authors

The CIL parser was developed starting from Hugues Casse’s frontc front-end
for C although all the files from the frontc distribution have been changed very
extensively. The intermediate language and the elaboration stage are all written
from scratch. The main author is George Necula, with significant contributions
from Scott McPeak, Westley Weimer, Ben Liblit, Matt Harren, Raymond To
and Aman Bhargava.

56

This work is based upon work supported in part by the National Science
Foundation under Grants No. 9875171, 0085949 and 0081588, and gifts from
Microsoft Research. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation or the other sponsors.

18 License

Copyright (c) 2001-2005,

• George C. Necula ¡necula@cs.berkeley.edu¿

• Scott McPeak ¡smcpeak@cs.berkeley.edu¿

• Wes Weimer ¡weimer@cs.berkeley.edu¿

• Ben Liblit ¡liblit@cs.wisc.edu¿

All rights reserved.
Redistribution and use in source and binary forms, with or without modifi-

cation, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. The names of the contributors may not be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

19 Bug reports

We are certain that there are still some remaining bugs in CIL. If you find one
please file a bug report in our Source Forge space http://sourceforge.net/projects/cil.

57

You can find there the latest announcements, a source distribution, bug re-
port submission instructions and a mailing list: cil-users[at sign]lists.sourceforge.net.
Please use this list to ask questions about CIL, as it will ensure your message
is viewed by a broad audience.

20 Changes

• May 20, 2006: Released version 1.3.5

• May 19, 2006: Makefile.cil.in/Makefile.cil have been renamed
Makefile.in/Makefile. And maincil.ml has been renamed main.ml.

• May 18, 2006: Added a new module Cfg to compute the control-flow
graph. Unlike the older Cil.computeCFGInfo, the new version does not
modify the code.

• May 18, 2006: Added several new analyses: reaching definitions, avail-
able expressions, liveness analysis, and dead code elimination. See Sec-
tion 8.

• May 2, 2006: Added a flag --noInsertImplicitCasts. When this flag
is used, CIL code will only include casts inserted by the programmer.
Implicit coercions are not changed to explicit casts.

• April 16, 2006: Minor improvements to the --stats flag (Section 7.2).
We now use Pentium performance counters by default, if your processor
supports them.

• April 10, 2006: Extended machdep.c to support microcontroller com-
pilers where the struct alignment of integer types does not match the size
of the type. Thanks to Nathan Cooprider for the patch.

• April 6, 2006: Fix for global initializers of unions when the union field
being initialized is not the first one, and for missing initializers of unions
when the first field is not the largest field.

• April 6, 2006: Fix for bitfields in the SFI module.

• April 6, 2006: Various fixes for gcc attributes. packed, section, and
always inline attributes are now parsed correctly. Also fixed printing of
attributes on enum types.

• March 30, 2006: Fix for rmtemps.ml, which deletes unused inline func-
tions. When in gcc mode CIL now leaves all inline functions in place,
since gcc treats these as externally visible.

• March 15, 2006: Fix for typeof(e) when e has type void.

58

• March 3, 2006: Assume inline assembly instructions can fall through for
the purposes of adding return statements. Thanks to Nathan Cooprider
for the patch.

• February 27, 2006: Fix for extern inline functions when the output of
CIL is fed back into CIL.

• January 30, 2006: Fix parsing of switch without braces.

• January 30, 2006: Allow ‘$’ to appear in identifiers.

• January 13, 2006: Added support for gcc’s alias attribute on functions.
See Section 16.2, item 8.

• December 9, 2005: Christoph Spiel fixed the Golf and Olf modules so
that Golf can be used with the points-to analysis. He also added perfor-
mance fixes and cleaned up the documentation.

• December 1, 2005: Major rewrite of the ext/callgraph module.

• December 1, 2005: Preserve enumeration constants in CIL. Default is
the old behavior to replace them with integers.

• November 30, 2005: Added support for many GCC builtin func-
tions.

• November 30, 2005: Added the EXTRAFEATURES configure option,
making it easier to add Features to the build process.

• November 23, 2005: In MSVC mode do not remove any locals whose
name appears as a substring in an inline assembly.

• November 23, 2005: Do not add a return to functions that have the
noreturn attribute.

• November 22, 2005: Released version 1.3.4

• November 21, 2005: Performance and correctness fixes for the Points-to
Analysis module. Thanks to Christoph Spiel for the patches.

• October 5, 2005: CIL now builds on SPARC/Solaris. Thanks to Nick
Petroni and Remco van Engelen for the patches.

• September 26, 2005: CIL no longer uses the ‘-I-’ flag by default when
preprocessing with gcc.

• August 24, 2005: Added a command-line option “--forceRLArgEval”
that forces function arguments to be evaluated right-to-left. This is the
default behavior in unoptimized gcc and MSVC, but the order of evalu-
ation is undefined when using optimizations, unless you apply this CIL
transformation. This flag does not affect the order of evaluation of e.g.
binary operators, which remains undefined. Thanks to Nathan Cooprider
for the patch.

59

• August 9, 2005: Fixed merging when there are more than 20 input files.

• August 3, 2005: When merging, it is now an error to declare the same
global variable twice with different initializers.

• July 27, 2005: Fixed bug in transparent unions.

• July 27, 2005: Fixed bug in collectInitializer. Thanks to Benjamin
Monate for the patch.

• July 26, 2005: Better support for extended inline assembly in gcc.

• July 26, 2005: Added many more gcc builtin* functions to CIL. Most
are treated as Call instructions, but a few are translated into expressions so
that they can be used in global initializers. For example, “ builtin offsetof(t,
field)” is rewritten as “&((t*)0)->field”, the traditional way of cal-
culating an offset.

• July 18, 2005: Fixed bug in the constant folding of shifts when the
second argument was negative or too large.

• July 18, 2005: Fixed bug where casts were not always inserted in func-
tion calls.

• June 10, 2005: Fixed bug in the code that makes implicit returns ex-
plicit. We weren’t handling switch blocks correctly.

• June 1, 2005: Released version 1.3.3

• May 31, 2005: Fixed handling of noreturn attribute for function point-
ers.

• May 30, 2005: Fixed bugs in the handling of constructors in gcc.

• May 30, 2005: Fixed bugs in the generation of global variable IDs.

• May 27, 2005: Reimplemented the translation of function calls so that
we can intercept some builtins. This is important for the uses of builtin constant p
in constants.

• May 27, 2005: Export the plainCilPrinter, for debugging.

• May 27, 2005: Fixed bug with printing of const attribute for arrays.

• May 27, 2005: Fixed bug in generation of type signatures. Now they
should not contain expressions anymore, so you can use structural equality.
This used to lead to Out of Memory exceptions.

• May 27, 2005: Fixed bug in type comparisons using TBuiltin va list.

• May 27, 2005: Improved the constant folding in array lengths and case
expressions.

60

• May 27, 2005: Added the builtin frame address to the set of gcc
builtins.

• May 27, 2005: Added the CIL project to SourceForge.

• April 23, 2005: The cattr field was not visited.

• March 6, 2005: Debian packaging support

• February 16, 2005: Merger fixes.

• February 11, 2005: Fixed a bug in --dopartial. Thanks to Nathan
Cooprider for this fix.

• January 31, 2005: Make sure the input file is closed even if a parsing
error is encountered.

• January 11, 2005: Released version 1.3.2

• January 11, 2005: Fixed printing of integer constants whose integer
kind is shorter than an int.

• January 11, 2005: Added checks for negative size arrays and arrays too
big.

• January 10, 2005: Added support for GCC attribute “volatile” for tunc-
tions (as a synonim for noreturn).

• January 10, 2005: Improved the comparison of array sizes when com-
paring array types.

• January 10, 2005: Fixed handling of shell metacharacters in the cilly
command lione.

• January 10, 2005: Fixed dropping of cast in initialization of local vari-
able with the result of a function call.

• January 10, 2005: Fixed some structural comparisons that were broken
in the Ocaml 3.08.

• January 10, 2005: Fixed the unrollType function to not forget at-
tributes.

• January 10, 2005: Better keeping track of locations of function proto-
types and definitions.

• January 10, 2005: Fixed bug with the expansion of enumeration con-
stants in attributes.

• October 18, 2004: Fixed a bug in cabsvisit.ml. CIl would wrap a
BLOCK around a single atom unnecessarily.

61

• August 7, 2004: Released version 1.3.1

• August 4, 2004: Fixed a bug in splitting of structs using --dosimplify

• July 29, 2004: Minor changes to the type typeSig (type signatures)
to ensure that they do not contain types, so that you can do structural
comparison without danger of nontermination.

• July 28, 2004: Ocaml version 3.08 is required. Numerous small changes
while porting to Ocaml 3.08.

• July 7, 2004: Released version 1.2.6

• July 2, 2004: Character constants such as ’c’ should have type int, not
char. Added a utility function Cil.charConstToInt that sign-extends
chars greater than 128, if needed.

• July 2, 2004: Fixed a bug that was casting values to int before applying
the logical negation operator !. This caused problems for floats, and for
integer types bigger than int.

• June 13, 2004: Added the field sallstmts to a function description, to
hold all statements in the function.

• June 13, 2004: Added new extensions for data flow analyses, and for
computing dominators.

• June 10, 2004: Force initialization of CIL at the start of Cabs2cil.

• June 9, 2004: Added support for GCC attribute used

• April 7, 2004: Released version 1.2.5

• April 7, 2004: Allow now to run ./configure CC=cl and set the MSVC
compiler to be the default. The MSVC driver will now select the default
name of the .exe file like the CL compiler.

• April 7, 2004: Fixed a bug in the driver. The temporary files are deleted
by the Perl script before the CL compiler gets to them?

• April 7, 2004: Added the - form of arguments to the MSVC driver.

• April 7, 2004: Added a few more GCC-specific string escapes, (, [, {, %,
E.

• April 7, 2004: Fixed bug with continuation lines in MSVC.

• April 6, 2004: Fixed embarassing bug in the parser: the precedence of
casts and unary operators was switched.

• April 5, 2004: Fixed a bug involving statements mixed between decla-
rations containing initializers. Now we make sure that the initializers are
run in the proper order with respect to the statements.

62

• April 5, 2004: Fixed a bug in the merger. The merger was keeping
separate alpha renaming talbes (namespaces) for variables and types. This
means that it might end up with a type and a variable named the same
way, if they come from different files, which breaks an important CIL
invariant.

• March 11, 2004 : Fixed a bug in the Cil.copyFunction function. The
new local variables were not getting fresh IDs.

• March 5, 2004: Fixed a bug in the handling of static function prototypes
in a block scope. They used to be renamed. Now we just consider them
global.

• February 20, 2004: Released version 1.2.4

• February 15, 2004: Changed the parser to allow extra semicolons after
field declarations.

• February 14, 2004: Changed the Errormsg functions: error, unimp, bug
to not raise an exception. Instead they just set Errormsg.hadErrors.

• February 13, 2004: Change the parsing of attributes to recognize enu-
meration constants.

• February 10, 2004: In some versions of gcc the identifier {thread is an
identifier and in others it is a keyword. Added code during configuration
to detect which is the case.

• January 7, 2004: Released version 1.2.3

• January 7, 2004: Changed the alpha renamer to be less conservative. It
will remember all versions of a name that were seen and will only create
a new name if we have not seen one.

• December 30, 2003 : Extended the cilly command to understand
better linker command options -lfoo.

• December 5, 2003: Added markup commands to the pretty-printer
module. Also, changed the “@¡” left-flush command into “@’̂’.

• December 4, 2003: Wide string literals are now handled directly by
Cil (rather than being exploded into arrays). This is apparently handy
for Microsoft Device Driver APIs that use intrinsic functions that require
literal constant wide-string arguments.

• December 3, 2003: Added support for structured exception handling
extensions for the Microsoft compilers.

• December 1, 2003: Fixed a Makefile bug in the generation of the Cil
library (e.g., cil.cma) that was causing it to be unusable. Thanks to
KEvin Millikin for pointing out this bug.

63

• November 26, 2003: Added support for linkage specifications (extern
“C”).

• November 26, 2003: Added the ocamlutil directory to contain some
utilities shared with other projects.

• November 25, 2003: Released version 1.2.2

• November 24, 2003: Fixed a bug that allowed a static local to conflict
with a global with the same name that is declared later in the file.

• November 24, 2003: Removed the --keep option of the cilly driver
and replaced it with --save-temps.

• November 24, 2003: Added printing of what CIL features are being
run.

• November 24, 2003: Fixed a bug that resulted in attributes being
dropped for integer types.

• November 11, 2003: Fixed a bug in the visitor for enumeration defini-
tions.

• October 24, 2003: Fixed a problem in the configuration script. It was
not recognizing the Ocaml version number for beta versions.

• October 15, 2003: Fixed a problem in version 1.2.1 that was preventing
compilation on OCaml 3.04.

• September 17, 2003: Released version 1.2.1.

• September 7, 2003: Redesigned the interface for choosing #line di-
rective printing styles. Cil.printLn and Cil.printLnComment have been
merged into Cil.lineDirectiveStyle.

• August 8, 2003: Do not silently pad out functions calls with arguments
to match the prototype.

• August 1, 2003: A variety of fixes suggested by Steve Chamberlain: ini-
tializers for externs, prohibit float literals in enum, initializers for unsized
arrays were not working always, an overflow problem in Ocaml, changed
the processing of attributes before struct specifiers

• July 14, 2003: Add basic support for GCC’s ” thread” storage qualifier.
If given, it will appear as a ”thread” attribute at the top of the type of the
declared object. Treatment is very similar to ” declspec(...)” in MSVC

• July 8, 2003: Fixed some of the alignof computations. Fixed bug in
the designated initializers for arrays (Array.get error).

• July 8, 2003: Fixed infinite loop bug (Stack Overflow) in the visitor for
alignof.

64

• July 8, 2003: Fixed bug in the conversion to CIL. A function or array
argument of the GCC typeof() was being converted to pointer type.
Instead, it should be left alone, just like for sizeof.

• July 7, 2003: New Escape module provides utility functions for escaping
characters and strings in accordance with C lexical rules.

• July 2, 2003: Relax CIL’s rules for when two enumeration types are
considered compatible. Previously CIL considered two enums to be com-
patible if they were the same enum. Now we follow the C99 standard.

• June 28, 2003: In the Formatparse module, Eric Haugh found and fixed
a bug in the handling of lvalues of the form “lv-¿field.more”.

• June 28, 2003: Extended the handling of gcc command lines arguments
in the Perl scripts.

• June 23, 2003: In Rmtmps module, simplified the API for customizing
the root set. Clients may supply a predicate that returns true for each
root global. Modifying various “referenced” fields directly is no longer
supported.

• June 17, 2003: Reimplement internal utility routine Cil.escape char.
Faster and better.

• June 14, 2003: Implemented support for attribute s appearing be-
tween ”struct” and the struct tag name (also for unions and enums), since
gcc supports this as documented in section 4.30 of the gcc (2.95.3) manual

• May 30, 2003: Released the regression tests.

• May 28, 2003: Released version 1.1.2

• May 26, 2003: Add the simplify module that compiles CIL expres-
sions into simpler expressions, similar to those that appear in a 3-address
intermediate language.

• May 26, 2003: Various fixes and improvements to the pointer analysis
modules.

• May 26, 2003: Added optional consistency checking for transformations.

• May 25, 2003: Added configuration support for big endian machines.
Now Cil.little endian can be used to test whether the machine is little
endian or not.

• May 22, 2003: Fixed a bug in the handling of inline functions. The CIL
merger used to turn these functions into “static”, which is incorrect.

• May 22, 2003: Expanded the CIL consistency checker to verify undesired
sharing relationships between data structures.

65

• May 22, 2003: Fixed bug in the oneret CIL module: it was mishandling
certain labeled return statements.

• May 5, 2003: Released version 1.0.11

• May 5, 2003: OS X (powerpc/darwin) support for CIL. Special thanks
to Jeff Foster, Andy Begel and Tim Leek.

• April 30, 2003: Better description of how to use CIL for your analysis.

• April 28, 2003: Fixed a bug with --dooneRet and --doheapify. Thanks,
Manos Renieris.

• April 16, 2003: Reworked management of temporary/intermediate out-
put files in Perl driver scripts. Default behavior is now to remove all such
files. To keep intermediate files, use one of the following existing flags:

– --keepmerged for the single-file merge of all sources

– --keep=<dir > for various other CIL and CCured output files

– --save-temps for various gcc intermediate files; MSVC has no equiv-
alent option

As part of this change, some intermediate files have changed their names
slightly so that new suffixes are always preceded by a period. For example,
CCured output that used to appear in “foocured.c” now appears in
“foo.cured.c”.

• April 7, 2003: Changed the representation of the Cil.GVar global con-
structor. Now it is possible to update the initializer without reconstructing
the global (which in turn it would require reconstructing the list of glob-
als that make up a program). We did this because it is often tempting
to use Cil.visitCilFileSameGlobals and the Cil.GVar was the only global
that could not be updated in place.

• April 6, 2003: Reimplemented parts of the cilly.pl script to make it more
robust in the presence of complex compiler arguments.

• March 10, 2003: Released version 1.0.9

• March 10, 2003: Unified and documented a large number of CIL Library
Modules: oneret, simplemem, makecfg, heapify, stackguard, partial. Also
documented the main client interface for the pointer analysis.

• February 18, 2003: Fixed a bug in logwrites that was causing it to
produce invalid C code on writes to bitfields. Thanks, David Park.

• February 15, 2003: Released version 1.0.8

• February 15, 2003: PDF versions of the manual and API are available
for those who would like to print them out.

66

• February 14, 2003: CIL now comes bundled with alias analyses.

• February 11, 2003: Added support for adding/removing options from
./configure.

• February 3, 2003: Released version 1.0.7

• February 1, 2003: Some bug fixes in the handling of variable argument
functions in new versions of gcc And glibc.

• January 29, 2003: Added the logical AND and OR operators. Exa-
panded the translation to CIL to handle more complicated initializers
(including those that contain logical operators).

• January 28, 2003: Released version 1.0.6

• January 28, 2003: Added support for the new handling of variable-
argument functions in new versions of glibc.

• January 19, 2003: Added support for declarations in interpreted con-
structors. Relaxed the semantics of the patterns for variables.

• January 17, 2003: Added built-in prototypes for the gcc built-in func-
tions. Changed the pGlobal method in the printers to print the carriage
return as well.

• January 9, 2003: Reworked lexer and parser’s strategy for tracking
source file names and line numbers to more closely match typical native
compiler behavior. The visible CIL interface is unchanged.

• January 9, 2003: Changed the interface to the alpha convertor. Now
you can pass a list where it will record undo information that you can use
to revert the changes that it makes to the scope tables.

• January 6, 2003: Released version 1.0.5

• January 4, 2003: Changed the interface for the Formatcil module. Now
the placeholders in the pattern have names. Also expanded the documen-
tation of the Formatcil module. Now the placeholders in the pattern have
names.

• January 3, 2003: Extended the rmtmps module to also remove unused
labels that are generated in the conversion to CIL. This reduces the num-
ber of warnings that you get from cgcc afterwards.

• December 17, 2002: Fixed a few bugs in CIL related to the representa-
tion of string literals. The standard says that a string literal is an array. In
CIL, a string literal has type pointer to character. This is Ok, except as an
argument of sizeof. To support this exception, we have added to CIL the
expression constructor SizeOfStr. This allowed us to fix bugs with com-
puting sizeof("foo bar") and sizeof((char*)"foo bar") (the former
is 8 and the latter is 4).

67

• December 8, 2002: Fixed a few bugs in the lexer and parser relating
to hex and octal escapes in string literals. Also fixed the dependencies
between the lexer and parser.

• December 5, 2002: Fixed visitor bugs that were causing some attributes
not to be visited and some queued instructions to be dropped.

• December 3, 2002: Added a transformation to catch stack overflows.
Fixed the heapify transformation.

• October 14, 2002: CIL is now available under the BSD license (see the
License section or the file LICENSE). Released version 1.0.4

• October 9, 2002: More FreeBSD configuration changes, support for the
GCC-ims signed and volatile. Thanks to Axel Simon for pointing
out these problems. Released version 1.0.3

• October 8, 2002: FreeBSD configuration and porting fixes. Thanks to
Axel Simon for pointing out these problems.

• September 10, 2002: Fixed bug in conversion to CIL. Now we drop all
“const” qualifiers from the types of locals, even from the fields of local
structures or elements of arrays.

• September 7, 2002: Extended visitor interface to distinguish visitng
offsets inside lvalues from offsets inside initializer lists.

• September 7, 2002: Released version 1.0.1

• September 6, 2002: Extended the patcher with the ateof flag.

• September 4, 2002: Fixed bug in the elaboration to CIL. In some cases
constant folding of || and && was computed wrong.

• September 3, 2002: Fixed the merger documentation.

• August 29, 2002: Released version 1.0.0.

• August 29, 2002: Started numbering versions with a major nubmer,
minor and revisions. Released version 1.0.0.

• August 25, 2002: Fixed the implementation of the unique identifiers for
global variables and composites. Now those identifiers are globally unique.

• August 24, 2002: Added to the machine-dependent configuration the
sizeofvoid. It is 1 on gcc and 0 on MSVC. Extended the implementation
of Cil.bitsSizeOf to handle this (it was previously returning an error
when trying to compute the size of void).

68

• August 24, 2002: Changed the representation of structure and unions
to distinguish between undefined structures and those that are defined to
be empty (allowed on gcc). The sizeof operator is undefined for the former
and returns 0 for the latter.

• August 22, 2002: Apply a patch from Richard H. Y. to support FreeBSD
installations. Thanks, Richard!

• August 12, 2002: Fixed a bug in the translation of wide-character
strings. Now this translation matches that of the underlying compiler.
Changed the implementation of the compiler dependencies.

• May 25, 2002: Added interpreted constructors and destructors.

• May 17, 2002: Changed the representation of functions to move the
“inline” information to the varinfo. This way we can print the “inline”
even in declarations which is what gcc does.

• May 15, 2002: Changed the visitor for initializers to make two tail-
recursive passes (the second is a List.rev and only done if one of the
initializers change). This prevents Stack Overflow for large initializers.
Also improved the processing of initializers when converting to CIL.

• May 15, 2002: Changed the front-end to allow the use of MSVC mode even
on machines that do not have MSVC. The machine-dependent parameters
for GCC will be used in that case.

• May 11, 2002: Changed the representation of formals in function types.
Now the function type is purely functional.

• May 4, 2002: Added the function Cil.visitCilFileSameGlobals and changed
Cil.visitCilFile to be tail recursive. This prevents stack overflow on huge
files.

• February 28, 2002: Changed the significance of the CompoundInit in
Cil.init to allow for missing initializers at the end of an array initializer.
Added the API function Cil.foldLeftCompoundAll.

69

