(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Dynamic semantics for the Clight language *) Require Import Coqlib. Require Import Errors. Require Import Maps. Require Import Integers. Require Import Floats. Require Import Values. Require Import AST. Require Import Memory. Require Import Events. Require Import Globalenvs. Require Import Csyntax. Require Import Smallstep. (** * Semantics of type-dependent operations *) (** Interpretation of values as truth values. Non-zero integers, non-zero floats and non-null pointers are considered as true. The integer zero (which also represents the null pointer) and the float 0.0 are false. *) Inductive is_false: val -> type -> Prop := | is_false_int: forall sz sg, is_false (Vint Int.zero) (Tint sz sg) | is_false_pointer: forall t, is_false (Vint Int.zero) (Tpointer t) | is_false_float: forall sz, is_false (Vfloat Float.zero) (Tfloat sz). Inductive is_true: val -> type -> Prop := | is_true_int_int: forall n sz sg, n <> Int.zero -> is_true (Vint n) (Tint sz sg) | is_true_pointer_int: forall b ofs sz sg, is_true (Vptr b ofs) (Tint sz sg) | is_true_int_pointer: forall n t, n <> Int.zero -> is_true (Vint n) (Tpointer t) | is_true_pointer_pointer: forall b ofs t, is_true (Vptr b ofs) (Tpointer t) | is_true_float: forall f sz, f <> Float.zero -> is_true (Vfloat f) (Tfloat sz). Inductive bool_of_val : val -> type -> val -> Prop := | bool_of_val_true: forall v ty, is_true v ty -> bool_of_val v ty Vtrue | bool_of_val_false: forall v ty, is_false v ty -> bool_of_val v ty Vfalse. (** The following [sem_] functions compute the result of an operator application. Since operators are overloaded, the result depends both on the static types of the arguments and on their run-time values. Unlike in C, automatic conversions between integers and floats are not performed. For instance, [e1 + e2] is undefined if [e1] is a float and [e2] an integer. The Clight producer must have explicitly promoted [e2] to a float. *) Function sem_neg (v: val) (ty: type) : option val := match ty with | Tint _ _ => match v with | Vint n => Some (Vint (Int.neg n)) | _ => None end | Tfloat _ => match v with | Vfloat f => Some (Vfloat (Float.neg f)) | _ => None end | _ => None end. Function sem_notint (v: val) : option val := match v with | Vint n => Some (Vint (Int.xor n Int.mone)) | _ => None end. Function sem_notbool (v: val) (ty: type) : option val := match typeconv ty with | Tint _ _ => match v with | Vint n => Some (Val.of_bool (Int.eq n Int.zero)) | Vptr _ _ => Some Vfalse | _ => None end | Tpointer _ => match v with | Vint n => Some (Val.of_bool (Int.eq n Int.zero)) | Vptr _ _ => Some Vfalse | _ => None end | Tfloat _ => match v with | Vfloat f => Some (Val.of_bool (Float.cmp Ceq f Float.zero)) | _ => None end | _ => None end. Function sem_add (v1:val) (t1:type) (v2: val) (t2:type) : option val := match classify_add t1 t2 with | add_case_ii => (**r integer addition *) match v1, v2 with | Vint n1, Vint n2 => Some (Vint (Int.add n1 n2)) | _, _ => None end | add_case_ff => (**r float addition *) match v1, v2 with | Vfloat n1, Vfloat n2 => Some (Vfloat (Float.add n1 n2)) | _, _ => None end | add_case_pi ty => (**r pointer plus integer *) match v1,v2 with | Vptr b1 ofs1, Vint n2 => Some (Vptr b1 (Int.add ofs1 (Int.mul (Int.repr (sizeof ty)) n2))) | _, _ => None end | add_case_ip ty => (**r integer plus pointer *) match v1,v2 with | Vint n1, Vptr b2 ofs2 => Some (Vptr b2 (Int.add ofs2 (Int.mul (Int.repr (sizeof ty)) n1))) | _, _ => None end | add_default => None end. Function sem_sub (v1:val) (t1:type) (v2: val) (t2:type) : option val := match classify_sub t1 t2 with | sub_case_ii => (**r integer subtraction *) match v1,v2 with | Vint n1, Vint n2 => Some (Vint (Int.sub n1 n2)) | _, _ => None end | sub_case_ff => (**r float subtraction *) match v1,v2 with | Vfloat f1, Vfloat f2 => Some (Vfloat(Float.sub f1 f2)) | _, _ => None end | sub_case_pi ty => (**r pointer minus integer *) match v1,v2 with | Vptr b1 ofs1, Vint n2 => Some (Vptr b1 (Int.sub ofs1 (Int.mul (Int.repr (sizeof ty)) n2))) | _, _ => None end | sub_case_pp ty => (**r pointer minus pointer *) match v1,v2 with | Vptr b1 ofs1, Vptr b2 ofs2 => if zeq b1 b2 then if Int.eq (Int.repr (sizeof ty)) Int.zero then None else Some (Vint (Int.divu (Int.sub ofs1 ofs2) (Int.repr (sizeof ty)))) else None | _, _ => None end | sub_default => None end. Function sem_mul (v1:val) (t1:type) (v2: val) (t2:type) : option val := match classify_mul t1 t2 with | mul_case_ii => match v1,v2 with | Vint n1, Vint n2 => Some (Vint (Int.mul n1 n2)) | _, _ => None end | mul_case_ff => match v1,v2 with | Vfloat f1, Vfloat f2 => Some (Vfloat (Float.mul f1 f2)) | _, _ => None end | mul_default => None end. Function sem_div (v1:val) (t1:type) (v2: val) (t2:type) : option val := match classify_div t1 t2 with | div_case_I32unsi => match v1,v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then None else Some (Vint (Int.divu n1 n2)) | _,_ => None end | div_case_ii => match v1,v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then None else Some (Vint(Int.divs n1 n2)) | _,_ => None end | div_case_ff => match v1,v2 with | Vfloat f1, Vfloat f2 => Some (Vfloat(Float.div f1 f2)) | _, _ => None end | div_default => None end. Function sem_mod (v1:val) (t1:type) (v2: val) (t2:type) : option val := match classify_mod t1 t2 with | mod_case_I32unsi => match v1, v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then None else Some (Vint (Int.modu n1 n2)) | _, _ => None end | mod_case_ii => match v1,v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then None else Some (Vint (Int.mods n1 n2)) | _, _ => None end | mod_default => None end. Function sem_and (v1 v2: val) : option val := match v1, v2 with | Vint n1, Vint n2 => Some (Vint(Int.and n1 n2)) | _, _ => None end . Function sem_or (v1 v2: val) : option val := match v1, v2 with | Vint n1, Vint n2 => Some (Vint(Int.or n1 n2)) | _, _ => None end. Function sem_xor (v1 v2: val): option val := match v1, v2 with | Vint n1, Vint n2 => Some (Vint(Int.xor n1 n2)) | _, _ => None end. Function sem_shl (v1 v2: val): option val := match v1, v2 with | Vint n1, Vint n2 => if Int.ltu n2 Int.iwordsize then Some (Vint(Int.shl n1 n2)) else None | _, _ => None end. Function sem_shr (v1: val) (t1: type) (v2: val) (t2: type): option val := match classify_shr t1 t2 with | shr_case_I32unsi => match v1,v2 with | Vint n1, Vint n2 => if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shru n1 n2)) else None | _,_ => None end | shr_case_ii => match v1,v2 with | Vint n1, Vint n2 => if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shr n1 n2)) else None | _, _ => None end | shr_default=> None end. Function sem_cmp_mismatch (c: comparison): option val := match c with | Ceq => Some Vfalse | Cne => Some Vtrue | _ => None end. Function sem_cmp (c:comparison) (v1: val) (t1: type) (v2: val) (t2: type) (m: mem): option val := match classify_cmp t1 t2 with | cmp_case_I32unsi => match v1,v2 with | Vint n1, Vint n2 => Some (Val.of_bool (Int.cmpu c n1 n2)) | _, _ => None end | cmp_case_ipip => match v1,v2 with | Vint n1, Vint n2 => Some (Val.of_bool (Int.cmp c n1 n2)) | Vptr b1 ofs1, Vptr b2 ofs2 => if Mem.valid_pointer m b1 (Int.signed ofs1) && Mem.valid_pointer m b2 (Int.signed ofs2) then if zeq b1 b2 then Some (Val.of_bool (Int.cmp c ofs1 ofs2)) else sem_cmp_mismatch c else None | Vptr b ofs, Vint n => if Int.eq n Int.zero then sem_cmp_mismatch c else None | Vint n, Vptr b ofs => if Int.eq n Int.zero then sem_cmp_mismatch c else None | _, _ => None end | cmp_case_ff => match v1,v2 with | Vfloat f1, Vfloat f2 => Some (Val.of_bool (Float.cmp c f1 f2)) | _, _ => None end | cmp_default => None end. Definition sem_unary_operation (op: unary_operation) (v: val) (ty: type): option val := match op with | Onotbool => sem_notbool v ty | Onotint => sem_notint v | Oneg => sem_neg v ty end. Definition sem_binary_operation (op: binary_operation) (v1: val) (t1: type) (v2: val) (t2:type) (m: mem): option val := match op with | Oadd => sem_add v1 t1 v2 t2 | Osub => sem_sub v1 t1 v2 t2 | Omul => sem_mul v1 t1 v2 t2 | Omod => sem_mod v1 t1 v2 t2 | Odiv => sem_div v1 t1 v2 t2 | Oand => sem_and v1 v2 | Oor => sem_or v1 v2 | Oxor => sem_xor v1 v2 | Oshl => sem_shl v1 v2 | Oshr => sem_shr v1 t1 v2 t2 | Oeq => sem_cmp Ceq v1 t1 v2 t2 m | One => sem_cmp Cne v1 t1 v2 t2 m | Olt => sem_cmp Clt v1 t1 v2 t2 m | Ogt => sem_cmp Cgt v1 t1 v2 t2 m | Ole => sem_cmp Cle v1 t1 v2 t2 m | Oge => sem_cmp Cge v1 t1 v2 t2 m end. (** Semantic of casts. [cast v1 t1 t2 v2] holds if value [v1], viewed with static type [t1], can be cast to type [t2], resulting in value [v2]. *) Definition cast_int_int (sz: intsize) (sg: signedness) (i: int) : int := match sz, sg with | I8, Signed => Int.sign_ext 8 i | I8, Unsigned => Int.zero_ext 8 i | I16, Signed => Int.sign_ext 16 i | I16, Unsigned => Int.zero_ext 16 i | I32, _ => i end. Definition cast_int_float (si : signedness) (i: int) : float := match si with | Signed => Float.floatofint i | Unsigned => Float.floatofintu i end. Definition cast_float_int (si : signedness) (f: float) : int := match si with | Signed => Float.intoffloat f | Unsigned => Float.intuoffloat f end. Definition cast_float_float (sz: floatsize) (f: float) : float := match sz with | F32 => Float.singleoffloat f | F64 => f end. Inductive neutral_for_cast: type -> Prop := | nfc_int: forall sg, neutral_for_cast (Tint I32 sg) | nfc_ptr: forall ty, neutral_for_cast (Tpointer ty) | nfc_array: forall ty sz, neutral_for_cast (Tarray ty sz) | nfc_fun: forall targs tres, neutral_for_cast (Tfunction targs tres). Inductive cast : val -> type -> type -> val -> Prop := | cast_ii: forall i sz2 sz1 si1 si2, (**r int to int *) cast (Vint i) (Tint sz1 si1) (Tint sz2 si2) (Vint (cast_int_int sz2 si2 i)) | cast_fi: forall f sz1 sz2 si2, (**r float to int *) cast (Vfloat f) (Tfloat sz1) (Tint sz2 si2) (Vint (cast_int_int sz2 si2 (cast_float_int si2 f))) | cast_if: forall i sz1 sz2 si1, (**r int to float *) cast (Vint i) (Tint sz1 si1) (Tfloat sz2) (Vfloat (cast_float_float sz2 (cast_int_float si1 i))) | cast_ff: forall f sz1 sz2, (**r float to float *) cast (Vfloat f) (Tfloat sz1) (Tfloat sz2) (Vfloat (cast_float_float sz2 f)) | cast_nn_p: forall b ofs t1 t2, (**r no change in data representation *) neutral_for_cast t1 -> neutral_for_cast t2 -> cast (Vptr b ofs) t1 t2 (Vptr b ofs) | cast_nn_i: forall n t1 t2, (**r no change in data representation *) neutral_for_cast t1 -> neutral_for_cast t2 -> cast (Vint n) t1 t2 (Vint n). (** * Operational semantics *) (** The semantics uses two environments. The global environment maps names of functions and global variables to memory block references, and function pointers to their definitions. (See module [Globalenvs].) *) Definition genv := Genv.t fundef type. (** The local environment maps local variables to block references. The current value of the variable is stored in the associated memory block. *) Definition env := PTree.t (block * type). (* map variable -> location & type *) Definition empty_env: env := (PTree.empty (block * type)). (** [load_value_of_type ty m b ofs] computes the value of a datum of type [ty] residing in memory [m] at block [b], offset [ofs]. If the type [ty] indicates an access by value, the corresponding memory load is performed. If the type [ty] indicates an access by reference, the pointer [Vptr b ofs] is returned. *) Definition load_value_of_type (ty: type) (m: mem) (b: block) (ofs: int) : option val := match access_mode ty with | By_value chunk => Mem.loadv chunk m (Vptr b ofs) | By_reference => Some (Vptr b ofs) | By_nothing => None end. (** Symmetrically, [store_value_of_type ty m b ofs v] returns the memory state after storing the value [v] in the datum of type [ty] residing in memory [m] at block [b], offset [ofs]. This is allowed only if [ty] indicates an access by value. *) Definition store_value_of_type (ty_dest: type) (m: mem) (loc: block) (ofs: int) (v: val) : option mem := match access_mode ty_dest with | By_value chunk => Mem.storev chunk m (Vptr loc ofs) v | By_reference => None | By_nothing => None end. (** Allocation of function-local variables. [alloc_variables e1 m1 vars e2 m2] allocates one memory block for each variable declared in [vars], and associates the variable name with this block. [e1] and [m1] are the initial local environment and memory state. [e2] and [m2] are the final local environment and memory state. *) Inductive alloc_variables: env -> mem -> list (ident * type) -> env -> mem -> Prop := | alloc_variables_nil: forall e m, alloc_variables e m nil e m | alloc_variables_cons: forall e m id ty vars m1 b1 m2 e2, Mem.alloc m 0 (sizeof ty) = (m1, b1) -> alloc_variables (PTree.set id (b1, ty) e) m1 vars e2 m2 -> alloc_variables e m ((id, ty) :: vars) e2 m2. (** Initialization of local variables that are parameters to a function. [bind_parameters e m1 params args m2] stores the values [args] in the memory blocks corresponding to the variables [params]. [m1] is the initial memory state and [m2] the final memory state. *) Inductive bind_parameters: env -> mem -> list (ident * type) -> list val -> mem -> Prop := | bind_parameters_nil: forall e m, bind_parameters e m nil nil m | bind_parameters_cons: forall e m id ty params v1 vl b m1 m2, PTree.get id e = Some(b, ty) -> store_value_of_type ty m b Int.zero v1 = Some m1 -> bind_parameters e m1 params vl m2 -> bind_parameters e m ((id, ty) :: params) (v1 :: vl) m2. (** Return the list of blocks in the codomain of [e], with low and high bounds. *) Definition block_of_binding (id_b_ty: ident * (block * type)) := match id_b_ty with (id, (b, ty)) => (b, 0, sizeof ty) end. Definition blocks_of_env (e: env) : list (block * Z * Z) := List.map block_of_binding (PTree.elements e). (** Selection of the appropriate case of a [switch], given the value [n] of the selector expression. *) Fixpoint select_switch (n: int) (sl: labeled_statements) {struct sl}: labeled_statements := match sl with | LSdefault _ => sl | LScase c s sl' => if Int.eq c n then sl else select_switch n sl' end. (** Turn a labeled statement into a sequence *) Fixpoint seq_of_labeled_statement (sl: labeled_statements) : statement := match sl with | LSdefault s => s | LScase c s sl' => Ssequence s (seq_of_labeled_statement sl') end. Section SEMANTICS. Variable ge: genv. (** ** Evaluation of expressions *) Section EXPR. Variable e: env. Variable m: mem. (** [eval_expr ge e m a v] defines the evaluation of expression [a] in r-value position. [v] is the value of the expression. [e] is the current environment and [m] is the current memory state. *) Inductive eval_expr: expr -> val -> Prop := | eval_Econst_int: forall i ty, eval_expr (Expr (Econst_int i) ty) (Vint i) | eval_Econst_float: forall f ty, eval_expr (Expr (Econst_float f) ty) (Vfloat f) | eval_Elvalue: forall a ty loc ofs v, eval_lvalue (Expr a ty) loc ofs -> load_value_of_type ty m loc ofs = Some v -> eval_expr (Expr a ty) v | eval_Eaddrof: forall a ty loc ofs, eval_lvalue a loc ofs -> eval_expr (Expr (Eaddrof a) ty) (Vptr loc ofs) | eval_Esizeof: forall ty' ty, eval_expr (Expr (Esizeof ty') ty) (Vint (Int.repr (sizeof ty'))) | eval_Eunop: forall op a ty v1 v, eval_expr a v1 -> sem_unary_operation op v1 (typeof a) = Some v -> eval_expr (Expr (Eunop op a) ty) v | eval_Ebinop: forall op a1 a2 ty v1 v2 v, eval_expr a1 v1 -> eval_expr a2 v2 -> sem_binary_operation op v1 (typeof a1) v2 (typeof a2) m = Some v -> eval_expr (Expr (Ebinop op a1 a2) ty) v | eval_Econdition_true: forall a1 a2 a3 ty v1 v2, eval_expr a1 v1 -> is_true v1 (typeof a1) -> eval_expr a2 v2 -> eval_expr (Expr (Econdition a1 a2 a3) ty) v2 | eval_Econdition_false: forall a1 a2 a3 ty v1 v3, eval_expr a1 v1 -> is_false v1 (typeof a1) -> eval_expr a3 v3 -> eval_expr (Expr (Econdition a1 a2 a3) ty) v3 | eval_Eorbool_1: forall a1 a2 ty v1, eval_expr a1 v1 -> is_true v1 (typeof a1) -> eval_expr (Expr (Eorbool a1 a2) ty) Vtrue | eval_Eorbool_2: forall a1 a2 ty v1 v2 v, eval_expr a1 v1 -> is_false v1 (typeof a1) -> eval_expr a2 v2 -> bool_of_val v2 (typeof a2) v -> eval_expr (Expr (Eorbool a1 a2) ty) v | eval_Eandbool_1: forall a1 a2 ty v1, eval_expr a1 v1 -> is_false v1 (typeof a1) -> eval_expr (Expr (Eandbool a1 a2) ty) Vfalse | eval_Eandbool_2: forall a1 a2 ty v1 v2 v, eval_expr a1 v1 -> is_true v1 (typeof a1) -> eval_expr a2 v2 -> bool_of_val v2 (typeof a2) v -> eval_expr (Expr (Eandbool a1 a2) ty) v | eval_Ecast: forall a ty ty' v1 v, eval_expr a v1 -> cast v1 (typeof a) ty v -> eval_expr (Expr (Ecast ty a) ty') v (** [eval_lvalue ge e m a b ofs] defines the evaluation of expression [a] in l-value position. The result is the memory location [b, ofs] that contains the value of the expression [a]. *) with eval_lvalue: expr -> block -> int -> Prop := | eval_Evar_local: forall id l ty, e!id = Some(l, ty) -> eval_lvalue (Expr (Evar id) ty) l Int.zero | eval_Evar_global: forall id l ty, e!id = None -> Genv.find_symbol ge id = Some l -> eval_lvalue (Expr (Evar id) ty) l Int.zero | eval_Ederef: forall a ty l ofs, eval_expr a (Vptr l ofs) -> eval_lvalue (Expr (Ederef a) ty) l ofs | eval_Efield_struct: forall a i ty l ofs id fList delta, eval_lvalue a l ofs -> typeof a = Tstruct id fList -> field_offset i fList = OK delta -> eval_lvalue (Expr (Efield a i) ty) l (Int.add ofs (Int.repr delta)) | eval_Efield_union: forall a i ty l ofs id fList, eval_lvalue a l ofs -> typeof a = Tunion id fList -> eval_lvalue (Expr (Efield a i) ty) l ofs. Scheme eval_expr_ind2 := Minimality for eval_expr Sort Prop with eval_lvalue_ind2 := Minimality for eval_lvalue Sort Prop. (** [eval_exprlist ge e m al vl] evaluates a list of r-value expressions [al] to their values [vl]. *) Inductive eval_exprlist: list expr -> list val -> Prop := | eval_Enil: eval_exprlist nil nil | eval_Econs: forall a bl v vl, eval_expr a v -> eval_exprlist bl vl -> eval_exprlist (a :: bl) (v :: vl). End EXPR. (** ** Transition semantics for statements and functions *) (** Continuations *) Inductive cont: Type := | Kstop: cont | Kseq: statement -> cont -> cont (**r [Kseq s2 k] = after [s1] in [s1;s2] *) | Kwhile: expr -> statement -> cont -> cont (**r [Kwhile e s k] = after [s] in [while (e) s] *) | Kdowhile: expr -> statement -> cont -> cont (**r [Kdowhile e s k] = after [s] in [do s while (e)] *) | Kfor2: expr -> statement -> statement -> cont -> cont (**r [Kfor2 e2 e3 s k] = after [s] in [for(e1;e2;e3) s] *) | Kfor3: expr -> statement -> statement -> cont -> cont (**r [Kfor3 e2 e3 s k] = after [e3] in [for(e1;e2;e3) s] *) | Kswitch: cont -> cont (**r catches [break] statements arising out of [switch] *) | Kcall: option (block * int * type) -> (**r where to store result *) function -> (**r calling function *) env -> (**r local env of calling function *) cont -> cont. (** Pop continuation until a call or stop *) Fixpoint call_cont (k: cont) : cont := match k with | Kseq s k => call_cont k | Kwhile e s k => call_cont k | Kdowhile e s k => call_cont k | Kfor2 e2 e3 s k => call_cont k | Kfor3 e2 e3 s k => call_cont k | Kswitch k => call_cont k | _ => k end. Definition is_call_cont (k: cont) : Prop := match k with | Kstop => True | Kcall _ _ _ _ => True | _ => False end. (** States *) Inductive state: Type := | State (f: function) (s: statement) (k: cont) (e: env) (m: mem) : state | Callstate (fd: fundef) (args: list val) (k: cont) (m: mem) : state | Returnstate (res: val) (k: cont) (m: mem) : state. (** Find the statement and manufacture the continuation corresponding to a label *) Fixpoint find_label (lbl: label) (s: statement) (k: cont) {struct s}: option (statement * cont) := match s with | Ssequence s1 s2 => match find_label lbl s1 (Kseq s2 k) with | Some sk => Some sk | None => find_label lbl s2 k end | Sifthenelse a s1 s2 => match find_label lbl s1 k with | Some sk => Some sk | None => find_label lbl s2 k end | Swhile a s1 => find_label lbl s1 (Kwhile a s1 k) | Sdowhile a s1 => find_label lbl s1 (Kdowhile a s1 k) | Sfor a1 a2 a3 s1 => match find_label lbl a1 (Kseq (Sfor Sskip a2 a3 s1) k) with | Some sk => Some sk | None => match find_label lbl s1 (Kfor2 a2 a3 s1 k) with | Some sk => Some sk | None => find_label lbl a3 (Kfor3 a2 a3 s1 k) end end | Sswitch e sl => find_label_ls lbl sl (Kswitch k) | Slabel lbl' s' => if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k | _ => None end with find_label_ls (lbl: label) (sl: labeled_statements) (k: cont) {struct sl}: option (statement * cont) := match sl with | LSdefault s => find_label lbl s k | LScase _ s sl' => match find_label lbl s (Kseq (seq_of_labeled_statement sl') k) with | Some sk => Some sk | None => find_label_ls lbl sl' k end end. (** Transition relation *) Inductive step: state -> trace -> state -> Prop := | step_assign: forall f a1 a2 k e m loc ofs v2 m', eval_lvalue e m a1 loc ofs -> eval_expr e m a2 v2 -> store_value_of_type (typeof a1) m loc ofs v2 = Some m' -> step (State f (Sassign a1 a2) k e m) E0 (State f Sskip k e m') | step_call_none: forall f a al k e m vf vargs fd, eval_expr e m a vf -> eval_exprlist e m al vargs -> Genv.find_funct ge vf = Some fd -> type_of_fundef fd = typeof a -> step (State f (Scall None a al) k e m) E0 (Callstate fd vargs (Kcall None f e k) m) | step_call_some: forall f lhs a al k e m loc ofs vf vargs fd, eval_lvalue e m lhs loc ofs -> eval_expr e m a vf -> eval_exprlist e m al vargs -> Genv.find_funct ge vf = Some fd -> type_of_fundef fd = typeof a -> step (State f (Scall (Some lhs) a al) k e m) E0 (Callstate fd vargs (Kcall (Some(loc, ofs, typeof lhs)) f e k) m) | step_seq: forall f s1 s2 k e m, step (State f (Ssequence s1 s2) k e m) E0 (State f s1 (Kseq s2 k) e m) | step_skip_seq: forall f s k e m, step (State f Sskip (Kseq s k) e m) E0 (State f s k e m) | step_continue_seq: forall f s k e m, step (State f Scontinue (Kseq s k) e m) E0 (State f Scontinue k e m) | step_break_seq: forall f s k e m, step (State f Sbreak (Kseq s k) e m) E0 (State f Sbreak k e m) | step_ifthenelse_true: forall f a s1 s2 k e m v1, eval_expr e m a v1 -> is_true v1 (typeof a) -> step (State f (Sifthenelse a s1 s2) k e m) E0 (State f s1 k e m) | step_ifthenelse_false: forall f a s1 s2 k e m v1, eval_expr e m a v1 -> is_false v1 (typeof a) -> step (State f (Sifthenelse a s1 s2) k e m) E0 (State f s2 k e m) | step_while_false: forall f a s k e m v, eval_expr e m a v -> is_false v (typeof a) -> step (State f (Swhile a s) k e m) E0 (State f Sskip k e m) | step_while_true: forall f a s k e m v, eval_expr e m a v -> is_true v (typeof a) -> step (State f (Swhile a s) k e m) E0 (State f s (Kwhile a s k) e m) | step_skip_or_continue_while: forall f x a s k e m, x = Sskip \/ x = Scontinue -> step (State f x (Kwhile a s k) e m) E0 (State f (Swhile a s) k e m) | step_break_while: forall f a s k e m, step (State f Sbreak (Kwhile a s k) e m) E0 (State f Sskip k e m) | step_dowhile: forall f a s k e m, step (State f (Sdowhile a s) k e m) E0 (State f s (Kdowhile a s k) e m) | step_skip_or_continue_dowhile_false: forall f x a s k e m v, x = Sskip \/ x = Scontinue -> eval_expr e m a v -> is_false v (typeof a) -> step (State f x (Kdowhile a s k) e m) E0 (State f Sskip k e m) | step_skip_or_continue_dowhile_true: forall f x a s k e m v, x = Sskip \/ x = Scontinue -> eval_expr e m a v -> is_true v (typeof a) -> step (State f x (Kdowhile a s k) e m) E0 (State f (Sdowhile a s) k e m) | step_break_dowhile: forall f a s k e m, step (State f Sbreak (Kdowhile a s k) e m) E0 (State f Sskip k e m) | step_for_start: forall f a1 a2 a3 s k e m, a1 <> Sskip -> step (State f (Sfor a1 a2 a3 s) k e m) E0 (State f a1 (Kseq (Sfor Sskip a2 a3 s) k) e m) | step_for_false: forall f a2 a3 s k e m v, eval_expr e m a2 v -> is_false v (typeof a2) -> step (State f (Sfor Sskip a2 a3 s) k e m) E0 (State f Sskip k e m) | step_for_true: forall f a2 a3 s k e m v, eval_expr e m a2 v -> is_true v (typeof a2) -> step (State f (Sfor Sskip a2 a3 s) k e m) E0 (State f s (Kfor2 a2 a3 s k) e m) | step_skip_or_continue_for2: forall f x a2 a3 s k e m, x = Sskip \/ x = Scontinue -> step (State f x (Kfor2 a2 a3 s k) e m) E0 (State f a3 (Kfor3 a2 a3 s k) e m) | step_break_for2: forall f a2 a3 s k e m, step (State f Sbreak (Kfor2 a2 a3 s k) e m) E0 (State f Sskip k e m) | step_skip_for3: forall f a2 a3 s k e m, step (State f Sskip (Kfor3 a2 a3 s k) e m) E0 (State f (Sfor Sskip a2 a3 s) k e m) | step_return_0: forall f k e m m', f.(fn_return) = Tvoid -> Mem.free_list m (blocks_of_env e) = Some m' -> step (State f (Sreturn None) k e m) E0 (Returnstate Vundef (call_cont k) m') | step_return_1: forall f a k e m v m', f.(fn_return) <> Tvoid -> eval_expr e m a v -> Mem.free_list m (blocks_of_env e) = Some m' -> step (State f (Sreturn (Some a)) k e m) E0 (Returnstate v (call_cont k) m') | step_skip_call: forall f k e m m', is_call_cont k -> f.(fn_return) = Tvoid -> Mem.free_list m (blocks_of_env e) = Some m' -> step (State f Sskip k e m) E0 (Returnstate Vundef k m') | step_switch: forall f a sl k e m n, eval_expr e m a (Vint n) -> step (State f (Sswitch a sl) k e m) E0 (State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch k) e m) | step_skip_break_switch: forall f x k e m, x = Sskip \/ x = Sbreak -> step (State f x (Kswitch k) e m) E0 (State f Sskip k e m) | step_continue_switch: forall f k e m, step (State f Scontinue (Kswitch k) e m) E0 (State f Scontinue k e m) | step_label: forall f lbl s k e m, step (State f (Slabel lbl s) k e m) E0 (State f s k e m) | step_goto: forall f lbl k e m s' k', find_label lbl f.(fn_body) (call_cont k) = Some (s', k') -> step (State f (Sgoto lbl) k e m) E0 (State f s' k' e m) | step_internal_function: forall f vargs k m e m1 m2, alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 -> bind_parameters e m1 f.(fn_params) vargs m2 -> step (Callstate (Internal f) vargs k m) E0 (State f f.(fn_body) k e m2) | step_external_function: forall id targs tres vargs k m vres t m', external_call (external_function id targs tres) vargs m t vres m' -> step (Callstate (External id targs tres) vargs k m) t (Returnstate vres k m') | step_returnstate_0: forall v f e k m, step (Returnstate v (Kcall None f e k) m) E0 (State f Sskip k e m) | step_returnstate_1: forall v f e k m m' loc ofs ty, store_value_of_type ty m loc ofs v = Some m' -> step (Returnstate v (Kcall (Some(loc, ofs, ty)) f e k) m) E0 (State f Sskip k e m'). (** * Alternate big-step semantics *) (** ** Big-step semantics for terminating statements and functions *) (** The execution of a statement produces an ``outcome'', indicating how the execution terminated: either normally or prematurely through the execution of a [break], [continue] or [return] statement. *) Inductive outcome: Type := | Out_break: outcome (**r terminated by [break] *) | Out_continue: outcome (**r terminated by [continue] *) | Out_normal: outcome (**r terminated normally *) | Out_return: option val -> outcome. (**r terminated by [return] *) Inductive out_normal_or_continue : outcome -> Prop := | Out_normal_or_continue_N: out_normal_or_continue Out_normal | Out_normal_or_continue_C: out_normal_or_continue Out_continue. Inductive out_break_or_return : outcome -> outcome -> Prop := | Out_break_or_return_B: out_break_or_return Out_break Out_normal | Out_break_or_return_R: forall ov, out_break_or_return (Out_return ov) (Out_return ov). Definition outcome_switch (out: outcome) : outcome := match out with | Out_break => Out_normal | o => o end. Definition outcome_result_value (out: outcome) (t: type) (v: val) : Prop := match out, t with | Out_normal, Tvoid => v = Vundef | Out_return None, Tvoid => v = Vundef | Out_return (Some v'), ty => ty <> Tvoid /\ v'=v | _, _ => False end. (** [exec_stmt ge e m1 s t m2 out] describes the execution of the statement [s]. [out] is the outcome for this execution. [m1] is the initial memory state, [m2] the final memory state. [t] is the trace of input/output events performed during this evaluation. *) Inductive exec_stmt: env -> mem -> statement -> trace -> mem -> outcome -> Prop := | exec_Sskip: forall e m, exec_stmt e m Sskip E0 m Out_normal | exec_Sassign: forall e m a1 a2 loc ofs v2 m', eval_lvalue e m a1 loc ofs -> eval_expr e m a2 v2 -> store_value_of_type (typeof a1) m loc ofs v2 = Some m' -> exec_stmt e m (Sassign a1 a2) E0 m' Out_normal | exec_Scall_none: forall e m a al vf vargs f t m' vres, eval_expr e m a vf -> eval_exprlist e m al vargs -> Genv.find_funct ge vf = Some f -> type_of_fundef f = typeof a -> eval_funcall m f vargs t m' vres -> exec_stmt e m (Scall None a al) t m' Out_normal | exec_Scall_some: forall e m lhs a al loc ofs vf vargs f t m' vres m'', eval_lvalue e m lhs loc ofs -> eval_expr e m a vf -> eval_exprlist e m al vargs -> Genv.find_funct ge vf = Some f -> type_of_fundef f = typeof a -> eval_funcall m f vargs t m' vres -> store_value_of_type (typeof lhs) m' loc ofs vres = Some m'' -> exec_stmt e m (Scall (Some lhs) a al) t m'' Out_normal | exec_Sseq_1: forall e m s1 s2 t1 m1 t2 m2 out, exec_stmt e m s1 t1 m1 Out_normal -> exec_stmt e m1 s2 t2 m2 out -> exec_stmt e m (Ssequence s1 s2) (t1 ** t2) m2 out | exec_Sseq_2: forall e m s1 s2 t1 m1 out, exec_stmt e m s1 t1 m1 out -> out <> Out_normal -> exec_stmt e m (Ssequence s1 s2) t1 m1 out | exec_Sifthenelse_true: forall e m a s1 s2 v1 t m' out, eval_expr e m a v1 -> is_true v1 (typeof a) -> exec_stmt e m s1 t m' out -> exec_stmt e m (Sifthenelse a s1 s2) t m' out | exec_Sifthenelse_false: forall e m a s1 s2 v1 t m' out, eval_expr e m a v1 -> is_false v1 (typeof a) -> exec_stmt e m s2 t m' out -> exec_stmt e m (Sifthenelse a s1 s2) t m' out | exec_Sreturn_none: forall e m, exec_stmt e m (Sreturn None) E0 m (Out_return None) | exec_Sreturn_some: forall e m a v, eval_expr e m a v -> exec_stmt e m (Sreturn (Some a)) E0 m (Out_return (Some v)) | exec_Sbreak: forall e m, exec_stmt e m Sbreak E0 m Out_break | exec_Scontinue: forall e m, exec_stmt e m Scontinue E0 m Out_continue | exec_Swhile_false: forall e m a s v, eval_expr e m a v -> is_false v (typeof a) -> exec_stmt e m (Swhile a s) E0 m Out_normal | exec_Swhile_stop: forall e m a v s t m' out' out, eval_expr e m a v -> is_true v (typeof a) -> exec_stmt e m s t m' out' -> out_break_or_return out' out -> exec_stmt e m (Swhile a s) t m' out | exec_Swhile_loop: forall e m a s v t1 m1 out1 t2 m2 out, eval_expr e m a v -> is_true v (typeof a) -> exec_stmt e m s t1 m1 out1 -> out_normal_or_continue out1 -> exec_stmt e m1 (Swhile a s) t2 m2 out -> exec_stmt e m (Swhile a s) (t1 ** t2) m2 out | exec_Sdowhile_false: forall e m s a t m1 out1 v, exec_stmt e m s t m1 out1 -> out_normal_or_continue out1 -> eval_expr e m1 a v -> is_false v (typeof a) -> exec_stmt e m (Sdowhile a s) t m1 Out_normal | exec_Sdowhile_stop: forall e m s a t m1 out1 out, exec_stmt e m s t m1 out1 -> out_break_or_return out1 out -> exec_stmt e m (Sdowhile a s) t m1 out | exec_Sdowhile_loop: forall e m s a m1 m2 t1 t2 out out1 v, exec_stmt e m s t1 m1 out1 -> out_normal_or_continue out1 -> eval_expr e m1 a v -> is_true v (typeof a) -> exec_stmt e m1 (Sdowhile a s) t2 m2 out -> exec_stmt e m (Sdowhile a s) (t1 ** t2) m2 out | exec_Sfor_start: forall e m s a1 a2 a3 out m1 m2 t1 t2, a1 <> Sskip -> exec_stmt e m a1 t1 m1 Out_normal -> exec_stmt e m1 (Sfor Sskip a2 a3 s) t2 m2 out -> exec_stmt e m (Sfor a1 a2 a3 s) (t1 ** t2) m2 out | exec_Sfor_false: forall e m s a2 a3 v, eval_expr e m a2 v -> is_false v (typeof a2) -> exec_stmt e m (Sfor Sskip a2 a3 s) E0 m Out_normal | exec_Sfor_stop: forall e m s a2 a3 v m1 t out1 out, eval_expr e m a2 v -> is_true v (typeof a2) -> exec_stmt e m s t m1 out1 -> out_break_or_return out1 out -> exec_stmt e m (Sfor Sskip a2 a3 s) t m1 out | exec_Sfor_loop: forall e m s a2 a3 v m1 m2 m3 t1 t2 t3 out1 out, eval_expr e m a2 v -> is_true v (typeof a2) -> exec_stmt e m s t1 m1 out1 -> out_normal_or_continue out1 -> exec_stmt e m1 a3 t2 m2 Out_normal -> exec_stmt e m2 (Sfor Sskip a2 a3 s) t3 m3 out -> exec_stmt e m (Sfor Sskip a2 a3 s) (t1 ** t2 ** t3) m3 out | exec_Sswitch: forall e m a t n sl m1 out, eval_expr e m a (Vint n) -> exec_stmt e m (seq_of_labeled_statement (select_switch n sl)) t m1 out -> exec_stmt e m (Sswitch a sl) t m1 (outcome_switch out) (** [eval_funcall m1 fd args t m2 res] describes the invocation of function [fd] with arguments [args]. [res] is the value returned by the call. *) with eval_funcall: mem -> fundef -> list val -> trace -> mem -> val -> Prop := | eval_funcall_internal: forall m f vargs t e m1 m2 m3 out vres m4, alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 -> bind_parameters e m1 f.(fn_params) vargs m2 -> exec_stmt e m2 f.(fn_body) t m3 out -> outcome_result_value out f.(fn_return) vres -> Mem.free_list m3 (blocks_of_env e) = Some m4 -> eval_funcall m (Internal f) vargs t m4 vres | eval_funcall_external: forall m id targs tres vargs t vres m', external_call (external_function id targs tres) vargs m t vres m' -> eval_funcall m (External id targs tres) vargs t m' vres. Scheme exec_stmt_ind2 := Minimality for exec_stmt Sort Prop with eval_funcall_ind2 := Minimality for eval_funcall Sort Prop. (** ** Big-step semantics for diverging statements and functions *) (** Coinductive semantics for divergence. [execinf_stmt ge e m s t] holds if the execution of statement [s] diverges, i.e. loops infinitely. [t] is the possibly infinite trace of observable events performed during the execution. *) CoInductive execinf_stmt: env -> mem -> statement -> traceinf -> Prop := | execinf_Scall_none: forall e m a al vf vargs f t, eval_expr e m a vf -> eval_exprlist e m al vargs -> Genv.find_funct ge vf = Some f -> type_of_fundef f = typeof a -> evalinf_funcall m f vargs t -> execinf_stmt e m (Scall None a al) t | execinf_Scall_some: forall e m lhs a al loc ofs vf vargs f t, eval_lvalue e m lhs loc ofs -> eval_expr e m a vf -> eval_exprlist e m al vargs -> Genv.find_funct ge vf = Some f -> type_of_fundef f = typeof a -> evalinf_funcall m f vargs t -> execinf_stmt e m (Scall (Some lhs) a al) t | execinf_Sseq_1: forall e m s1 s2 t, execinf_stmt e m s1 t -> execinf_stmt e m (Ssequence s1 s2) t | execinf_Sseq_2: forall e m s1 s2 t1 m1 t2, exec_stmt e m s1 t1 m1 Out_normal -> execinf_stmt e m1 s2 t2 -> execinf_stmt e m (Ssequence s1 s2) (t1 *** t2) | execinf_Sifthenelse_true: forall e m a s1 s2 v1 t, eval_expr e m a v1 -> is_true v1 (typeof a) -> execinf_stmt e m s1 t -> execinf_stmt e m (Sifthenelse a s1 s2) t | execinf_Sifthenelse_false: forall e m a s1 s2 v1 t, eval_expr e m a v1 -> is_false v1 (typeof a) -> execinf_stmt e m s2 t -> execinf_stmt e m (Sifthenelse a s1 s2) t | execinf_Swhile_body: forall e m a v s t, eval_expr e m a v -> is_true v (typeof a) -> execinf_stmt e m s t -> execinf_stmt e m (Swhile a s) t | execinf_Swhile_loop: forall e m a s v t1 m1 out1 t2, eval_expr e m a v -> is_true v (typeof a) -> exec_stmt e m s t1 m1 out1 -> out_normal_or_continue out1 -> execinf_stmt e m1 (Swhile a s) t2 -> execinf_stmt e m (Swhile a s) (t1 *** t2) | execinf_Sdowhile_body: forall e m s a t, execinf_stmt e m s t -> execinf_stmt e m (Sdowhile a s) t | execinf_Sdowhile_loop: forall e m s a m1 t1 t2 out1 v, exec_stmt e m s t1 m1 out1 -> out_normal_or_continue out1 -> eval_expr e m1 a v -> is_true v (typeof a) -> execinf_stmt e m1 (Sdowhile a s) t2 -> execinf_stmt e m (Sdowhile a s) (t1 *** t2) | execinf_Sfor_start_1: forall e m s a1 a2 a3 t, execinf_stmt e m a1 t -> execinf_stmt e m (Sfor a1 a2 a3 s) t | execinf_Sfor_start_2: forall e m s a1 a2 a3 m1 t1 t2, a1 <> Sskip -> exec_stmt e m a1 t1 m1 Out_normal -> execinf_stmt e m1 (Sfor Sskip a2 a3 s) t2 -> execinf_stmt e m (Sfor a1 a2 a3 s) (t1 *** t2) | execinf_Sfor_body: forall e m s a2 a3 v t, eval_expr e m a2 v -> is_true v (typeof a2) -> execinf_stmt e m s t -> execinf_stmt e m (Sfor Sskip a2 a3 s) t | execinf_Sfor_next: forall e m s a2 a3 v m1 t1 t2 out1, eval_expr e m a2 v -> is_true v (typeof a2) -> exec_stmt e m s t1 m1 out1 -> out_normal_or_continue out1 -> execinf_stmt e m1 a3 t2 -> execinf_stmt e m (Sfor Sskip a2 a3 s) (t1 *** t2) | execinf_Sfor_loop: forall e m s a2 a3 v m1 m2 t1 t2 t3 out1, eval_expr e m a2 v -> is_true v (typeof a2) -> exec_stmt e m s t1 m1 out1 -> out_normal_or_continue out1 -> exec_stmt e m1 a3 t2 m2 Out_normal -> execinf_stmt e m2 (Sfor Sskip a2 a3 s) t3 -> execinf_stmt e m (Sfor Sskip a2 a3 s) (t1 *** t2 *** t3) | execinf_Sswitch: forall e m a t n sl, eval_expr e m a (Vint n) -> execinf_stmt e m (seq_of_labeled_statement (select_switch n sl)) t -> execinf_stmt e m (Sswitch a sl) t (** [evalinf_funcall ge m fd args t] holds if the invocation of function [fd] on arguments [args] diverges, with observable trace [t]. *) with evalinf_funcall: mem -> fundef -> list val -> traceinf -> Prop := | evalinf_funcall_internal: forall m f vargs t e m1 m2, alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 -> bind_parameters e m1 f.(fn_params) vargs m2 -> execinf_stmt e m2 f.(fn_body) t -> evalinf_funcall m (Internal f) vargs t. End SEMANTICS. (** * Whole-program semantics *) (** Execution of whole programs are described as sequences of transitions from an initial state to a final state. An initial state is a [Callstate] corresponding to the invocation of the ``main'' function of the program without arguments and with an empty continuation. *) Inductive initial_state (p: program): state -> Prop := | initial_state_intro: forall b f m0, let ge := Genv.globalenv p in Genv.init_mem p = Some m0 -> Genv.find_symbol ge p.(prog_main) = Some b -> Genv.find_funct_ptr ge b = Some f -> initial_state p (Callstate f nil Kstop m0). (** A final state is a [Returnstate] with an empty continuation. *) Inductive final_state: state -> int -> Prop := | final_state_intro: forall r m, final_state (Returnstate (Vint r) Kstop m) r. (** Execution of a whole program: [exec_program p beh] holds if the application of [p]'s main function to no arguments in the initial memory state for [p] has [beh] as observable behavior. *) Definition exec_program (p: program) (beh: program_behavior) : Prop := program_behaves step (initial_state p) final_state (Genv.globalenv p) beh. (** Big-step execution of a whole program. *) Inductive bigstep_program_terminates (p: program): trace -> int -> Prop := | bigstep_program_terminates_intro: forall b f m0 m1 t r, let ge := Genv.globalenv p in Genv.init_mem p = Some m0 -> Genv.find_symbol ge p.(prog_main) = Some b -> Genv.find_funct_ptr ge b = Some f -> eval_funcall ge m0 f nil t m1 (Vint r) -> bigstep_program_terminates p t r. Inductive bigstep_program_diverges (p: program): traceinf -> Prop := | bigstep_program_diverges_intro: forall b f m0 t, let ge := Genv.globalenv p in Genv.init_mem p = Some m0 -> Genv.find_symbol ge p.(prog_main) = Some b -> Genv.find_funct_ptr ge b = Some f -> evalinf_funcall ge m0 f nil t -> bigstep_program_diverges p t. (** * Implication from big-step semantics to transition semantics *) Section BIGSTEP_TO_TRANSITIONS. Variable prog: program. Let ge : genv := Genv.globalenv prog. Definition exec_stmt_eval_funcall_ind (PS: env -> mem -> statement -> trace -> mem -> outcome -> Prop) (PF: mem -> fundef -> list val -> trace -> mem -> val -> Prop) := fun a b c d e f g h i j k l m n o p q r s t u v w x y => conj (exec_stmt_ind2 ge PS PF a b c d e f g h i j k l m n o p q r s t u v w x y) (eval_funcall_ind2 ge PS PF a b c d e f g h i j k l m n o p q r s t u v w x y). Inductive outcome_state_match (e: env) (m: mem) (f: function) (k: cont): outcome -> state -> Prop := | osm_normal: outcome_state_match e m f k Out_normal (State f Sskip k e m) | osm_break: outcome_state_match e m f k Out_break (State f Sbreak k e m) | osm_continue: outcome_state_match e m f k Out_continue (State f Scontinue k e m) | osm_return_none: forall k', call_cont k' = call_cont k -> outcome_state_match e m f k (Out_return None) (State f (Sreturn None) k' e m) | osm_return_some: forall a v k', call_cont k' = call_cont k -> eval_expr ge e m a v -> outcome_state_match e m f k (Out_return (Some v)) (State f (Sreturn (Some a)) k' e m). Lemma is_call_cont_call_cont: forall k, is_call_cont k -> call_cont k = k. Proof. destruct k; simpl; intros; contradiction || auto. Qed. Lemma exec_stmt_eval_funcall_steps: (forall e m s t m' out, exec_stmt ge e m s t m' out -> forall f k, exists S, star step ge (State f s k e m) t S /\ outcome_state_match e m' f k out S) /\ (forall m fd args t m' res, eval_funcall ge m fd args t m' res -> forall k, is_call_cont k -> star step ge (Callstate fd args k m) t (Returnstate res k m')). Proof. apply exec_stmt_eval_funcall_ind; intros. (* skip *) econstructor; split. apply star_refl. constructor. (* assign *) econstructor; split. apply star_one. econstructor; eauto. constructor. (* call none *) econstructor; split. eapply star_left. econstructor; eauto. eapply star_right. apply H4. simpl; auto. econstructor. reflexivity. traceEq. constructor. (* call some *) econstructor; split. eapply star_left. econstructor; eauto. eapply star_right. apply H5. simpl; auto. econstructor; eauto. reflexivity. traceEq. constructor. (* sequence 2 *) destruct (H0 f (Kseq s2 k)) as [S1 [A1 B1]]. inv B1. destruct (H2 f k) as [S2 [A2 B2]]. econstructor; split. eapply star_left. econstructor. eapply star_trans. eexact A1. eapply star_left. constructor. eexact A2. reflexivity. reflexivity. traceEq. auto. (* sequence 1 *) destruct (H0 f (Kseq s2 k)) as [S1 [A1 B1]]. set (S2 := match out with | Out_break => State f Sbreak k e m1 | Out_continue => State f Scontinue k e m1 | _ => S1 end). exists S2; split. eapply star_left. econstructor. eapply star_trans. eexact A1. unfold S2; inv B1. congruence. apply star_one. apply step_break_seq. apply star_one. apply step_continue_seq. apply star_refl. apply star_refl. reflexivity. traceEq. unfold S2; inv B1; congruence || econstructor; eauto. (* ifthenelse true *) destruct (H2 f k) as [S1 [A1 B1]]. exists S1; split. eapply star_left. eapply step_ifthenelse_true; eauto. eexact A1. traceEq. auto. (* ifthenelse false *) destruct (H2 f k) as [S1 [A1 B1]]. exists S1; split. eapply star_left. eapply step_ifthenelse_false; eauto. eexact A1. traceEq. auto. (* return none *) econstructor; split. apply star_refl. constructor. auto. (* return some *) econstructor; split. apply star_refl. econstructor; eauto. (* break *) econstructor; split. apply star_refl. constructor. (* continue *) econstructor; split. apply star_refl. constructor. (* while false *) econstructor; split. apply star_one. eapply step_while_false; eauto. constructor. (* while stop *) destruct (H2 f (Kwhile a s k)) as [S1 [A1 B1]]. set (S2 := match out' with | Out_break => State f Sskip k e m' | _ => S1 end). exists S2; split. eapply star_left. eapply step_while_true; eauto. eapply star_trans. eexact A1. unfold S2. inversion H3; subst. inv B1. apply star_one. constructor. apply star_refl. reflexivity. traceEq. unfold S2. inversion H3; subst. constructor. inv B1; econstructor; eauto. (* while loop *) destruct (H2 f (Kwhile a s k)) as [S1 [A1 B1]]. destruct (H5 f k) as [S2 [A2 B2]]. exists S2; split. eapply star_left. eapply step_while_true; eauto. eapply star_trans. eexact A1. eapply star_left. inv H3; inv B1; apply step_skip_or_continue_while; auto. eexact A2. reflexivity. reflexivity. traceEq. auto. (* dowhile false *) destruct (H0 f (Kdowhile a s k)) as [S1 [A1 B1]]. exists (State f Sskip k e m1); split. eapply star_left. constructor. eapply star_right. eexact A1. inv H1; inv B1; eapply step_skip_or_continue_dowhile_false; eauto. reflexivity. traceEq. constructor. (* dowhile stop *) destruct (H0 f (Kdowhile a s k)) as [S1 [A1 B1]]. set (S2 := match out1 with | Out_break => State f Sskip k e m1 | _ => S1 end). exists S2; split. eapply star_left. apply step_dowhile. eapply star_trans. eexact A1. unfold S2. inversion H1; subst. inv B1. apply star_one. constructor. apply star_refl. reflexivity. traceEq. unfold S2. inversion H1; subst. constructor. inv B1; econstructor; eauto. (* dowhile loop *) destruct (H0 f (Kdowhile a s k)) as [S1 [A1 B1]]. destruct (H5 f k) as [S2 [A2 B2]]. exists S2; split. eapply star_left. apply step_dowhile. eapply star_trans. eexact A1. eapply star_left. inv H1; inv B1; eapply step_skip_or_continue_dowhile_true; eauto. eexact A2. reflexivity. reflexivity. traceEq. auto. (* for start *) destruct (H1 f (Kseq (Sfor Sskip a2 a3 s) k)) as [S1 [A1 B1]]. inv B1. destruct (H3 f k) as [S2 [A2 B2]]. exists S2; split. eapply star_left. apply step_for_start; auto. eapply star_trans. eexact A1. eapply star_left. constructor. eexact A2. reflexivity. reflexivity. traceEq. auto. (* for false *) econstructor; split. eapply star_one. eapply step_for_false; eauto. constructor. (* for stop *) destruct (H2 f (Kfor2 a2 a3 s k)) as [S1 [A1 B1]]. set (S2 := match out1 with | Out_break => State f Sskip k e m1 | _ => S1 end). exists S2; split. eapply star_left. eapply step_for_true; eauto. eapply star_trans. eexact A1. unfold S2. inversion H3; subst. inv B1. apply star_one. constructor. apply star_refl. reflexivity. traceEq. unfold S2. inversion H3; subst. constructor. inv B1; econstructor; eauto. (* for loop *) destruct (H2 f (Kfor2 a2 a3 s k)) as [S1 [A1 B1]]. destruct (H5 f (Kfor3 a2 a3 s k)) as [S2 [A2 B2]]. inv B2. destruct (H7 f k) as [S3 [A3 B3]]. exists S3; split. eapply star_left. eapply step_for_true; eauto. eapply star_trans. eexact A1. eapply star_trans with (s2 := State f a3 (Kfor3 a2 a3 s k) e m1). inv H3; inv B1. apply star_one. constructor. auto. apply star_one. constructor. auto. eapply star_trans. eexact A2. eapply star_left. constructor. eexact A3. reflexivity. reflexivity. reflexivity. reflexivity. traceEq. auto. (* switch *) destruct (H1 f (Kswitch k)) as [S1 [A1 B1]]. set (S2 := match out with | Out_normal => State f Sskip k e m1 | Out_break => State f Sskip k e m1 | Out_continue => State f Scontinue k e m1 | _ => S1 end). exists S2; split. eapply star_left. eapply step_switch; eauto. eapply star_trans. eexact A1. unfold S2; inv B1. apply star_one. constructor. auto. apply star_one. constructor. auto. apply star_one. constructor. apply star_refl. apply star_refl. reflexivity. traceEq. unfold S2. inv B1; simpl; econstructor; eauto. (* call internal *) destruct (H2 f k) as [S1 [A1 B1]]. eapply star_left. eapply step_internal_function; eauto. eapply star_right. eexact A1. inv B1; simpl in H3; try contradiction. (* Out_normal *) assert (fn_return f = Tvoid /\ vres = Vundef). destruct (fn_return f); auto || contradiction. destruct H6. subst vres. apply step_skip_call; auto. (* Out_return None *) assert (fn_return f = Tvoid /\ vres = Vundef). destruct (fn_return f); auto || contradiction. destruct H7. subst vres. rewrite <- (is_call_cont_call_cont k H5). rewrite <- H6. apply step_return_0; auto. (* Out_return Some *) destruct H3. subst vres. rewrite <- (is_call_cont_call_cont k H5). rewrite <- H6. eapply step_return_1; eauto. reflexivity. traceEq. (* call external *) apply star_one. apply step_external_function; auto. Qed. Lemma exec_stmt_steps: forall e m s t m' out, exec_stmt ge e m s t m' out -> forall f k, exists S, star step ge (State f s k e m) t S /\ outcome_state_match e m' f k out S. Proof (proj1 exec_stmt_eval_funcall_steps). Lemma eval_funcall_steps: forall m fd args t m' res, eval_funcall ge m fd args t m' res -> forall k, is_call_cont k -> star step ge (Callstate fd args k m) t (Returnstate res k m'). Proof (proj2 exec_stmt_eval_funcall_steps). Definition order (x y: unit) := False. Lemma evalinf_funcall_forever: forall m fd args T k, evalinf_funcall ge m fd args T -> forever_N step order ge tt (Callstate fd args k m) T. Proof. cofix CIH_FUN. assert (forall e m s T f k, execinf_stmt ge e m s T -> forever_N step order ge tt (State f s k e m) T). cofix CIH_STMT. intros. inv H. (* call none *) eapply forever_N_plus. apply plus_one. eapply step_call_none; eauto. apply CIH_FUN. eauto. traceEq. (* call some *) eapply forever_N_plus. apply plus_one. eapply step_call_some; eauto. apply CIH_FUN. eauto. traceEq. (* seq 1 *) eapply forever_N_plus. apply plus_one. econstructor. apply CIH_STMT; eauto. traceEq. (* seq 2 *) destruct (exec_stmt_steps _ _ _ _ _ _ H0 f (Kseq s2 k)) as [S1 [A1 B1]]. inv B1. eapply forever_N_plus. eapply plus_left. constructor. eapply star_trans. eexact A1. apply star_one. constructor. reflexivity. reflexivity. apply CIH_STMT; eauto. traceEq. (* ifthenelse true *) eapply forever_N_plus. apply plus_one. eapply step_ifthenelse_true; eauto. apply CIH_STMT; eauto. traceEq. (* ifthenelse false *) eapply forever_N_plus. apply plus_one. eapply step_ifthenelse_false; eauto. apply CIH_STMT; eauto. traceEq. (* while body *) eapply forever_N_plus. eapply plus_one. eapply step_while_true; eauto. apply CIH_STMT; eauto. traceEq. (* while loop *) destruct (exec_stmt_steps _ _ _ _ _ _ H2 f (Kwhile a s0 k)) as [S1 [A1 B1]]. eapply forever_N_plus with (s2 := State f (Swhile a s0) k e m1). eapply plus_left. eapply step_while_true; eauto. eapply star_right. eexact A1. inv H3; inv B1; apply step_skip_or_continue_while; auto. reflexivity. reflexivity. apply CIH_STMT; eauto. traceEq. (* dowhile body *) eapply forever_N_plus. eapply plus_one. eapply step_dowhile. apply CIH_STMT; eauto. traceEq. (* dowhile loop *) destruct (exec_stmt_steps _ _ _ _ _ _ H0 f (Kdowhile a s0 k)) as [S1 [A1 B1]]. eapply forever_N_plus with (s2 := State f (Sdowhile a s0) k e m1). eapply plus_left. eapply step_dowhile. eapply star_right. eexact A1. inv H1; inv B1; eapply step_skip_or_continue_dowhile_true; eauto. reflexivity. reflexivity. apply CIH_STMT. eauto. traceEq. (* for start 1 *) assert (a1 <> Sskip). red; intros; subst. inv H0. eapply forever_N_plus. eapply plus_one. apply step_for_start; auto. apply CIH_STMT; eauto. traceEq. (* for start 2 *) destruct (exec_stmt_steps _ _ _ _ _ _ H1 f (Kseq (Sfor Sskip a2 a3 s0) k)) as [S1 [A1 B1]]. inv B1. eapply forever_N_plus. eapply plus_left. eapply step_for_start; eauto. eapply star_right. eexact A1. apply step_skip_seq. reflexivity. reflexivity. apply CIH_STMT; eauto. traceEq. (* for body *) eapply forever_N_plus. apply plus_one. eapply step_for_true; eauto. apply CIH_STMT; eauto. traceEq. (* for next *) destruct (exec_stmt_steps _ _ _ _ _ _ H2 f (Kfor2 a2 a3 s0 k)) as [S1 [A1 B1]]. eapply forever_N_plus. eapply plus_left. eapply step_for_true; eauto. eapply star_trans. eexact A1. apply star_one. inv H3; inv B1; apply step_skip_or_continue_for2; auto. reflexivity. reflexivity. apply CIH_STMT; eauto. traceEq. (* for body *) destruct (exec_stmt_steps _ _ _ _ _ _ H2 f (Kfor2 a2 a3 s0 k)) as [S1 [A1 B1]]. destruct (exec_stmt_steps _ _ _ _ _ _ H4 f (Kfor3 a2 a3 s0 k)) as [S2 [A2 B2]]. inv B2. eapply forever_N_plus. eapply plus_left. eapply step_for_true; eauto. eapply star_trans. eexact A1. eapply star_left. inv H3; inv B1; apply step_skip_or_continue_for2; auto. eapply star_right. eexact A2. constructor. reflexivity. reflexivity. reflexivity. reflexivity. apply CIH_STMT; eauto. traceEq. (* switch *) eapply forever_N_plus. eapply plus_one. eapply step_switch; eauto. apply CIH_STMT; eauto. traceEq. (* call internal *) intros. inv H0. eapply forever_N_plus. eapply plus_one. econstructor; eauto. apply H; eauto. traceEq. Qed. Theorem bigstep_program_terminates_exec: forall t r, bigstep_program_terminates prog t r -> exec_program prog (Terminates t r). Proof. intros. inv H. econstructor. econstructor. eauto. eauto. eauto. apply eval_funcall_steps. eauto. red; auto. econstructor. Qed. Theorem bigstep_program_diverges_exec: forall T, bigstep_program_diverges prog T -> exec_program prog (Reacts T) \/ exists t, exec_program prog (Diverges t) /\ traceinf_prefix t T. Proof. intros. inv H. set (st := Callstate f nil Kstop m0). assert (forever step ge0 st T). eapply forever_N_forever with (order := order). red; intros. constructor; intros. red in H. elim H. eapply evalinf_funcall_forever; eauto. destruct (forever_silent_or_reactive _ _ _ _ _ _ H) as [A | [t [s' [T' [B [C D]]]]]]. left. econstructor. econstructor; eauto. eauto. right. exists t. split. econstructor. econstructor; eauto. eauto. auto. subst T. rewrite <- (E0_right t) at 1. apply traceinf_prefix_app. constructor. Qed. End BIGSTEP_TO_TRANSITIONS.