(** * Dynamic semantics for the Clight language *) Require Import Coqlib. Require Import Errors. Require Import Maps. Require Import Integers. Require Import Floats. Require Import Values. Require Import AST. Require Import Mem. Require Import Events. Require Import Globalenvs. Require Import Csyntax. (** ** Semantics of type-dependent operations *) Inductive is_false: val -> type -> Prop := | is_false_int: forall sz sg, is_false (Vint Int.zero) (Tint sz sg) | is_false_pointer: forall t, is_false (Vint Int.zero) (Tpointer t) | is_false_float: forall sz, is_false (Vfloat Float.zero) (Tfloat sz). Inductive is_true: val -> type -> Prop := | is_true_int_int: forall n sz sg, n <> Int.zero -> is_true (Vint n) (Tint sz sg) | is_true_pointer_int: forall b ofs sz sg, is_true (Vptr b ofs) (Tint sz sg) | is_true_int_pointer: forall n t, n <> Int.zero -> is_true (Vint n) (Tpointer t) | is_true_pointer_pointer: forall b ofs t, is_true (Vptr b ofs) (Tpointer t) | is_true_float: forall f sz, f <> Float.zero -> is_true (Vfloat f) (Tfloat sz). Inductive bool_of_val : val -> type -> val -> Prop := | bool_of_val_true: forall v ty, is_true v ty -> bool_of_val v ty Vtrue | bool_of_val_false: forall v ty, is_false v ty -> bool_of_val v ty Vfalse. Function sem_neg (v: val) (ty: type) : option val := match ty with | Tint _ _ => match v with | Vint n => Some (Vint (Int.neg n)) | _ => None end | Tfloat _ => match v with | Vfloat f => Some (Vfloat (Float.neg f)) | _ => None end | _ => None end. Function sem_notint (v: val) : option val := match v with | Vint n => Some (Vint (Int.xor n Int.mone)) | _ => None end. Function sem_notbool (v: val) (ty: type) : option val := match ty with | Tint _ _ => match v with | Vint n => Some (Val.of_bool (Int.eq n Int.zero)) | Vptr _ _ => Some Vfalse | _ => None end | Tpointer _ => match v with | Vint n => Some (Val.of_bool (Int.eq n Int.zero)) | Vptr _ _ => Some Vfalse | _ => None end | Tfloat _ => match v with | Vfloat f => Some (Val.of_bool (Float.cmp Ceq f Float.zero)) | _ => None end | _ => None end. Function sem_add (v1:val) (t1:type) (v2: val) (t2:type) : option val := match classify_add t1 t2 with | add_case_ii => match v1, v2 with | Vint n1, Vint n2 => Some (Vint (Int.add n1 n2)) | _, _ => None end | add_case_ff => match v1, v2 with | Vfloat n1, Vfloat n2 => Some (Vfloat (Float.add n1 n2)) | _, _ => None end | add_case_pi ty=> match v1,v2 with | Vptr b1 ofs1, Vint n2 => Some (Vptr b1 (Int.add ofs1 (Int.mul (Int.repr (sizeof ty)) n2))) | _, _ => None end | add_default => None end. Function sem_sub (v1:val) (t1:type) (v2: val) (t2:type) : option val := match classify_sub t1 t2 with | sub_case_ii => (* integer subtraction *) match v1,v2 with | Vint n1, Vint n2 => Some (Vint (Int.sub n1 n2)) | _, _ => None end | sub_case_ff => (* float subtraction *) match v1,v2 with | Vfloat f1, Vfloat f2 => Some (Vfloat(Float.sub f1 f2)) | _, _ => None end | sub_case_pi ty => (*array| pointer - offset *) match v1,v2 with | Vptr b1 ofs1, Vint n2 => Some (Vptr b1 (Int.sub ofs1 (Int.mul (Int.repr (sizeof ty)) n2))) | _, _ => None end | sub_case_pp ty => (* array|pointer - array|pointer *) match v1,v2 with | Vptr b1 ofs1, Vptr b2 ofs2 => if zeq b1 b2 then if Int.eq (Int.repr (sizeof ty)) Int.zero then None else Some (Vint (Int.divu (Int.sub ofs1 ofs2) (Int.repr (sizeof ty)))) else None | _, _ => None end | sub_default => None end. Function sem_mul (v1:val) (t1:type) (v2: val) (t2:type) : option val := match classify_mul t1 t2 with | mul_case_ii => match v1,v2 with | Vint n1, Vint n2 => Some (Vint (Int.mul n1 n2)) | _, _ => None end | mul_case_ff => match v1,v2 with | Vfloat f1, Vfloat f2 => Some (Vfloat (Float.mul f1 f2)) | _, _ => None end | mul_default => None end. Function sem_div (v1:val) (t1:type) (v2: val) (t2:type) : option val := match classify_div t1 t2 with | div_case_I32unsi => match v1,v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then None else Some (Vint (Int.divu n1 n2)) | _,_ => None end | div_case_ii => match v1,v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then None else Some (Vint(Int.divs n1 n2)) | _,_ => None end | div_case_ff => match v1,v2 with | Vfloat f1, Vfloat f2 => Some (Vfloat(Float.div f1 f2)) | _, _ => None end | div_default => None end. Function sem_mod (v1:val) (t1:type) (v2: val) (t2:type) : option val := match classify_mod t1 t2 with | mod_case_I32unsi => match v1, v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then None else Some (Vint (Int.modu n1 n2)) | _, _ => None end | mod_case_ii => match v1,v2 with | Vint n1, Vint n2 => if Int.eq n2 Int.zero then None else Some (Vint (Int.mods n1 n2)) | _, _ => None end | mod_default => None end. Function sem_and (v1 v2: val) : option val := match v1, v2 with | Vint n1, Vint n2 => Some (Vint(Int.and n1 n2)) | _, _ => None end . Function sem_or (v1 v2: val) : option val := match v1, v2 with | Vint n1, Vint n2 => Some (Vint(Int.or n1 n2)) | _, _ => None end. Function sem_xor (v1 v2: val): option val := match v1, v2 with | Vint n1, Vint n2 => Some (Vint(Int.xor n1 n2)) | _, _ => None end. Function sem_shl (v1 v2: val): option val := match v1, v2 with | Vint n1, Vint n2 => if Int.ltu n2 (Int.repr 32) then Some (Vint(Int.shl n1 n2)) else None | _, _ => None end. Function sem_shr (v1: val) (t1: type) (v2: val) (t2: type): option val := match classify_shr t1 t2 with | shr_case_I32unsi => match v1,v2 with | Vint n1, Vint n2 => if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shru n1 n2)) else None | _,_ => None end | shr_case_ii => match v1,v2 with | Vint n1, Vint n2 => if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shr n1 n2)) else None | _, _ => None end | shr_default=> None end. Function sem_cmp_mismatch (c: comparison): option val := match c with | Ceq => Some Vfalse | Cne => Some Vtrue | _ => None end. Function sem_cmp (c:comparison) (v1: val) (t1: type) (v2: val) (t2: type) (m: mem): option val := match classify_cmp t1 t2 with | cmp_case_I32unsi => match v1,v2 with | Vint n1, Vint n2 =>Some (Val.of_bool (Int.cmpu c n1 n2)) | _, _ => None end | cmp_case_ii => match v1,v2 with | Vint n1, Vint n2 =>Some (Val.of_bool (Int.cmp c n1 n2)) | _, _ => None end | cmp_case_ff => match v1,v2 with | Vfloat f1, Vfloat f2 =>Some (Val.of_bool (Float.cmp c f1 f2)) | _, _ => None end | cmp_case_pi => match v1,v2 with | Vptr b ofs, Vint n2 => if Int.eq n2 Int.zero then sem_cmp_mismatch c else None | _, _ => None end | cmp_case_pp => match v1,v2 with | Vptr b1 ofs1, Vptr b2 ofs2 => if valid_pointer m b1 (Int.signed ofs1) && valid_pointer m b2 (Int.signed ofs2) then if zeq b1 b2 then Some (Val.of_bool (Int.cmp c ofs1 ofs2)) else None else None | _, _ => None end | cmp_default => None end. Definition sem_unary_operation (op: unary_operation) (v: val) (ty: type): option val := match op with | Onotbool => sem_notbool v ty | Onotint => sem_notint v | Oneg => sem_neg v ty end. Definition sem_binary_operation (op: binary_operation) (v1: val) (t1: type) (v2: val) (t2:type) (m: mem): option val := match op with | Oadd => sem_add v1 t1 v2 t2 | Osub => sem_sub v1 t1 v2 t2 | Omul => sem_mul v1 t1 v2 t2 | Omod => sem_mod v1 t1 v2 t2 | Odiv => sem_div v1 t1 v2 t2 | Oand => sem_and v1 v2 | Oor => sem_or v1 v2 | Oxor => sem_xor v1 v2 | Oshl => sem_shl v1 v2 | Oshr => sem_shr v1 t1 v2 t2 | Oeq => sem_cmp Ceq v1 t1 v2 t2 m | One => sem_cmp Cne v1 t1 v2 t2 m | Olt => sem_cmp Clt v1 t1 v2 t2 m | Ogt => sem_cmp Cgt v1 t1 v2 t2 m | Ole => sem_cmp Cle v1 t1 v2 t2 m | Oge => sem_cmp Cge v1 t1 v2 t2 m end. Definition cast_int_int (sz: intsize) (sg: signedness) (i: int) : int := match sz, sg with | I8, Signed => Int.cast8signed i | I8, Unsigned => Int.cast8unsigned i | I16, Signed => Int.cast16signed i | I16, Unsigned => Int.cast16unsigned i | I32 , _ => i end. Definition cast_int_float (si : signedness) (i: int) : float := match si with | Signed => Float.floatofint i | Unsigned => Float.floatofintu i end. Definition cast_float_float (sz: floatsize) (f: float) : float := match sz with | F32 => Float.singleoffloat f | F64 => f end. Inductive neutral_for_cast: type -> Prop := | nfc_int: forall sg, neutral_for_cast (Tint I32 sg) | nfc_ptr: forall ty, neutral_for_cast (Tpointer ty) | nfc_array: forall ty sz, neutral_for_cast (Tarray ty sz) | nfc_fun: forall targs tres, neutral_for_cast (Tfunction targs tres). Inductive cast : val -> type -> type -> val -> Prop := | cast_ii: forall i sz2 sz1 si1 si2, cast (Vint i) (Tint sz1 si1) (Tint sz2 si2) (Vint (cast_int_int sz2 si2 i)) | cast_fi: forall f sz1 sz2 si2, cast (Vfloat f) (Tfloat sz1) (Tint sz2 si2) (Vint (cast_int_int sz2 si2 (Float.intoffloat f))) | cast_if: forall i sz1 sz2 si1, cast (Vint i) (Tint sz1 si1) (Tfloat sz2) (Vfloat (cast_float_float sz2 (cast_int_float si1 i))) | cast_ff: forall f sz1 sz2, cast (Vfloat f) (Tfloat sz1) (Tfloat sz2) (Vfloat (cast_float_float sz2 f)) | cast_nn_p: forall b ofs t1 t2, neutral_for_cast t1 -> neutral_for_cast t2 -> cast (Vptr b ofs) t1 t2 (Vptr b ofs) | cast_nn_i: forall n t1 t2, neutral_for_cast t1 -> neutral_for_cast t2 -> cast (Vint n) t1 t2 (Vint n). (** ** Operational semantics *) (** Global environment *) Definition genv := Genv.t fundef. (** Local environment *) Definition env := PTree.t block. (* map variable -> location *) Definition empty_env: env := (PTree.empty block). (** Outcomes for statements *) Inductive outcome: Set := | Out_break: outcome | Out_continue: outcome | Out_normal: outcome | Out_return: option val -> outcome. Inductive out_normal_or_continue : outcome -> Prop := | Out_normal_or_continue_N: out_normal_or_continue Out_normal | Out_normal_or_continue_C: out_normal_or_continue Out_continue. Inductive out_break_or_return : outcome -> outcome -> Prop := | Out_break_or_return_B: out_break_or_return Out_break Out_normal | Out_break_or_return_R: forall ov, out_break_or_return (Out_return ov) (Out_return ov). Definition outcome_switch (out: outcome) : outcome := match out with | Out_break => Out_normal | o => o end. Definition outcome_result_value (out: outcome) (t: type) (v: val) : Prop := match out, t with | Out_normal, Tvoid => v = Vundef | Out_return None, Tvoid => v = Vundef | Out_return (Some v'), ty => ty <> Tvoid /\ v'=v | _, _ => False end. (** Selection of the appropriate case of a [switch] *) Fixpoint select_switch (n: int) (sl: labeled_statements) {struct sl}: labeled_statements := match sl with | LSdefault _ => sl | LScase c s sl' => if Int.eq c n then sl else select_switch n sl' end. (** Loads and stores by type *) Definition load_value_of_type (ty: type) (m: mem) (b: block) (ofs: int) : option val := match access_mode ty with | By_value chunk => Mem.loadv chunk m (Vptr b ofs) | By_reference => Some (Vptr b ofs) | By_nothing => None end. Definition store_value_of_type (ty_dest: type) (m: mem) (loc: block) (ofs: int) (v: val) : option mem := match access_mode ty_dest with | By_value chunk => Mem.storev chunk m (Vptr loc ofs) v | By_reference => None | By_nothing => None end. (** Allocation and initialization of function-local variables *) Inductive alloc_variables: env -> mem -> list (ident * type) -> env -> mem -> list block -> Prop := | alloc_variables_nil: forall e m, alloc_variables e m nil e m nil | alloc_variables_cons: forall e m id ty vars m1 b1 m2 e2 lb, Mem.alloc m 0 (sizeof ty) = (m1, b1) -> alloc_variables (PTree.set id b1 e) m1 vars e2 m2 lb -> alloc_variables e m ((id, ty) :: vars) e2 m2 (b1 :: lb). Inductive bind_parameters: env -> mem -> list (ident * type) -> list val -> mem -> Prop := | bind_parameters_nil: forall e m, bind_parameters e m nil nil m | bind_parameters_cons: forall e m id ty params v1 vl b m1 m2, PTree.get id e = Some b -> store_value_of_type ty m b Int.zero v1 = Some m1 -> bind_parameters e m1 params vl m2 -> bind_parameters e m ((id, ty) :: params) (v1 :: vl) m2. Section RELSEM. Variable ge: genv. (** Evaluation of an expression in r-value position *) Inductive eval_expr: env -> mem -> expr -> trace -> mem -> val -> Prop := | eval_Econst_int: forall e m i ty, eval_expr e m (Expr (Econst_int i) ty) E0 m (Vint i) | eval_Econst_float: forall e m f ty, eval_expr e m (Expr (Econst_float f) ty) E0 m (Vfloat f) | eval_Elvalue: forall e m a ty t m1 loc ofs v, eval_lvalue e m (Expr a ty) t m1 loc ofs -> load_value_of_type ty m1 loc ofs = Some v -> eval_expr e m (Expr a ty) t m1 v | eval_Eaddrof: forall e m a t m1 loc ofs ty, eval_lvalue e m a t m1 loc ofs -> eval_expr e m (Expr (Eaddrof a) ty) t m1 (Vptr loc ofs) | eval_Esizeof: forall e m ty' ty, eval_expr e m (Expr (Esizeof ty') ty) E0 m (Vint (Int.repr (sizeof ty'))) | eval_Eunop: forall e m op a ty t m1 v1 v, eval_expr e m a t m1 v1 -> sem_unary_operation op v1 (typeof a) = Some v -> eval_expr e m (Expr (Eunop op a) ty) t m1 v | eval_Ebinop: forall e m op a1 a2 ty t1 m1 v1 t2 m2 v2 v, eval_expr e m a1 t1 m1 v1 -> eval_expr e m1 a2 t2 m2 v2 -> sem_binary_operation op v1 (typeof a1) v2 (typeof a2) m2 = Some v -> eval_expr e m (Expr (Ebinop op a1 a2) ty) (t1 ** t2) m2 v | eval_Eorbool_1: forall e m a1 a2 t m1 v1 ty, eval_expr e m a1 t m1 v1 -> is_true v1 (typeof a1) -> eval_expr e m (Expr (Eorbool a1 a2) ty) t m1 Vtrue | eval_Eorbool_2: forall e m a1 a2 ty t1 m1 v1 t2 m2 v2 v, eval_expr e m a1 t1 m1 v1 -> is_false v1 (typeof a1) -> eval_expr e m1 a2 t2 m2 v2 -> bool_of_val v2 (typeof a2) v -> eval_expr e m (Expr (Eorbool a1 a2) ty) (t1 ** t2) m2 v | eval_Eandbool_1: forall e m a1 a2 t m1 v1 ty, eval_expr e m a1 t m1 v1 -> is_false v1 (typeof a1) -> eval_expr e m (Expr (Eandbool a1 a2) ty) t m1 Vfalse | eval_Eandbool_2: forall e m a1 a2 ty t1 m1 v1 t2 m2 v2 v, eval_expr e m a1 t1 m1 v1 -> is_true v1 (typeof a1) -> eval_expr e m1 a2 t2 m2 v2 -> bool_of_val v2 (typeof a2) v -> eval_expr e m (Expr (Eandbool a1 a2) ty) (t1 ** t2) m2 v | eval_Ecast: forall e m a ty t m1 v1 v, eval_expr e m a t m1 v1 -> cast v1 (typeof a) ty v -> eval_expr e m (Expr (Ecast ty a) ty) t m1 v | eval_Ecall: forall e m a bl ty m3 vres t1 m1 vf t2 m2 vargs f t3, eval_expr e m a t1 m1 vf -> eval_exprlist e m1 bl t2 m2 vargs -> Genv.find_funct ge vf = Some f -> type_of_fundef f = typeof a -> eval_funcall m2 f vargs t3 m3 vres -> eval_expr e m (Expr (Ecall a bl) ty) (t1 ** t2 ** t3) m3 vres (** Evaluation of an expression in l-value position *) with eval_lvalue: env -> mem -> expr -> trace -> mem -> block -> int -> Prop := | eval_Evar_local: forall e m id l ty, e!id = Some l -> eval_lvalue e m (Expr (Evar id) ty) E0 m l Int.zero | eval_Evar_global: forall e m id l ty, e!id = None -> Genv.find_symbol ge id = Some l -> eval_lvalue e m (Expr (Evar id) ty) E0 m l Int.zero | eval_Ederef: forall e m m1 a t ofs ty l, eval_expr e m a t m1 (Vptr l ofs) -> eval_lvalue e m (Expr (Ederef a) ty) t m1 l ofs | eval_Eindex: forall e m a1 t1 m1 v1 a2 t2 m2 v2 l ofs ty, eval_expr e m a1 t1 m1 v1 -> eval_expr e m1 a2 t2 m2 v2 -> sem_add v1 (typeof a1) v2 (typeof a2) = Some (Vptr l ofs) -> eval_lvalue e m (Expr (Eindex a1 a2) ty) (t1 ** t2) m2 l ofs | eval_Efield_struct: forall e m a t m1 l ofs id fList i ty delta, eval_lvalue e m a t m1 l ofs -> typeof a = Tstruct id fList -> field_offset i fList = OK delta -> eval_lvalue e m (Expr (Efield a i) ty) t m1 l (Int.add ofs (Int.repr delta)) | eval_Efield_union: forall e m a t m1 l ofs id fList i ty, eval_lvalue e m a t m1 l ofs -> typeof a = Tunion id fList -> eval_lvalue e m (Expr (Efield a i) ty) t m1 l ofs (** Evaluation of a list of expressions *) with eval_exprlist: env -> mem -> exprlist -> trace -> mem -> list val -> Prop := | eval_Enil: forall e m, eval_exprlist e m Enil E0 m nil | eval_Econs: forall e m a bl t1 m1 v t2 m2 vl, eval_expr e m a t1 m1 v -> eval_exprlist e m1 bl t2 m2 vl -> eval_exprlist e m (Econs a bl) (t1 ** t2) m2 (v :: vl) (** Execution of a statement *) with exec_stmt: env -> mem -> statement -> trace -> mem -> outcome -> Prop := | exec_Sskip: forall e m, exec_stmt e m Sskip E0 m Out_normal | exec_Sexpr: forall e m a t m1 v, eval_expr e m a t m1 v -> exec_stmt e m (Sexpr a) t m1 Out_normal | exec_Sassign: forall e m a1 a2 t1 m1 loc ofs t2 m2 v2 m3, eval_lvalue e m a1 t1 m1 loc ofs -> eval_expr e m1 a2 t2 m2 v2 -> store_value_of_type (typeof a1) m2 loc ofs v2 = Some m3 -> exec_stmt e m (Sassign a1 a2) (t1 ** t2) m3 Out_normal | exec_Sseq_1: forall e m s1 s2 t1 m1 t2 m2 out, exec_stmt e m s1 t1 m1 Out_normal -> exec_stmt e m1 s2 t2 m2 out -> exec_stmt e m (Ssequence s1 s2) (t1 ** t2) m2 out | exec_Sseq_2: forall e m s1 s2 t1 m1 out, exec_stmt e m s1 t1 m1 out -> out <> Out_normal -> exec_stmt e m (Ssequence s1 s2) t1 m1 out | exec_Sifthenelse_true: forall e m a s1 s2 t1 m1 v1 t2 m2 out, eval_expr e m a t1 m1 v1 -> is_true v1 (typeof a) -> exec_stmt e m1 s1 t2 m2 out -> exec_stmt e m (Sifthenelse a s1 s2) (t1 ** t2) m2 out | exec_Sifthenelse_false: forall e m a s1 s2 t1 m1 v1 t2 m2 out, eval_expr e m a t1 m1 v1 -> is_false v1 (typeof a) -> exec_stmt e m1 s2 t2 m2 out -> exec_stmt e m (Sifthenelse a s1 s2) (t1 ** t2) m2 out | exec_Sreturn_none: forall e m, exec_stmt e m (Sreturn None) E0 m (Out_return None) | exec_Sreturn_some: forall e m a t m1 v, eval_expr e m a t m1 v -> exec_stmt e m (Sreturn (Some a)) t m1 (Out_return (Some v)) | exec_Sbreak: forall e m, exec_stmt e m Sbreak E0 m Out_break | exec_Scontinue: forall e m, exec_stmt e m Scontinue E0 m Out_continue | exec_Swhile_false: forall e m s a t v m1, eval_expr e m a t m1 v -> is_false v (typeof a) -> exec_stmt e m (Swhile a s) t m1 Out_normal | exec_Swhile_stop: forall e m a t1 m1 v s m2 t2 out2 out, eval_expr e m a t1 m1 v -> is_true v (typeof a) -> exec_stmt e m1 s t2 m2 out2 -> out_break_or_return out2 out -> exec_stmt e m (Swhile a s) (t1 ** t2) m2 out | exec_Swhile_loop: forall e m a t1 m1 v s out2 out t2 m2 t3 m3, eval_expr e m a t1 m1 v -> is_true v (typeof a) -> exec_stmt e m1 s t2 m2 out2 -> out_normal_or_continue out2 -> exec_stmt e m2 (Swhile a s) t3 m3 out -> exec_stmt e m (Swhile a s) (t1 ** t2 ** t3) m3 out | exec_Sdowhile_false: forall e m s a t1 m1 out1 v t2 m2, exec_stmt e m s t1 m1 out1 -> out_normal_or_continue out1 -> eval_expr e m1 a t2 m2 v -> is_false v (typeof a) -> exec_stmt e m (Sdowhile a s) (t1 ** t2) m2 Out_normal | exec_Sdowhile_stop: forall e m s a t m1 out1 out, exec_stmt e m s t m1 out1 -> out_break_or_return out1 out -> exec_stmt e m (Sdowhile a s) t m1 out | exec_Sdowhile_loop: forall e m s a m1 m2 m3 t1 t2 t3 out out1 v, exec_stmt e m s t1 m1 out1 -> out_normal_or_continue out1 -> eval_expr e m1 a t2 m2 v -> is_true v (typeof a) -> exec_stmt e m2 (Sdowhile a s) t3 m3 out -> exec_stmt e m (Sdowhile a s) (t1 ** t2 ** t3) m3 out | exec_Sfor_start: forall e m s a1 a2 a3 out m1 m2 t1 t2, exec_stmt e m a1 t1 m1 Out_normal -> exec_stmt e m1 (Sfor Sskip a2 a3 s) t2 m2 out -> exec_stmt e m (Sfor a1 a2 a3 s) (t1 ** t2) m2 out | exec_Sfor_false: forall e m s a2 a3 t v m1, eval_expr e m a2 t m1 v -> is_false v (typeof a2) -> exec_stmt e m (Sfor Sskip a2 a3 s) t m1 Out_normal | exec_Sfor_stop: forall e m s a2 a3 v m1 m2 t1 t2 out2 out, eval_expr e m a2 t1 m1 v -> is_true v (typeof a2) -> exec_stmt e m1 s t2 m2 out2 -> out_break_or_return out2 out -> exec_stmt e m (Sfor Sskip a2 a3 s) (t1 ** t2) m2 out | exec_Sfor_loop: forall e m s a2 a3 v m1 m2 m3 m4 t1 t2 t3 t4 out2 out, eval_expr e m a2 t1 m1 v -> is_true v (typeof a2) -> exec_stmt e m1 s t2 m2 out2 -> out_normal_or_continue out2 -> exec_stmt e m2 a3 t3 m3 Out_normal -> exec_stmt e m3 (Sfor Sskip a2 a3 s) t4 m4 out -> exec_stmt e m (Sfor Sskip a2 a3 s) (t1 ** t2 ** t3 ** t4) m4 out | exec_Sswitch: forall e m a t1 m1 n sl t2 m2 out, eval_expr e m a t1 m1 (Vint n) -> exec_lblstmts e m1 (select_switch n sl) t2 m2 out -> exec_stmt e m (Sswitch a sl) (t1 ** t2) m2 (outcome_switch out) (** Execution of a list of labeled statements *) with exec_lblstmts: env -> mem -> labeled_statements -> trace -> mem -> outcome -> Prop := | exec_LSdefault: forall e m s t m1 out, exec_stmt e m s t m1 out -> exec_lblstmts e m (LSdefault s) t m1 out | exec_LScase_fallthrough: forall e m n s ls t1 m1 t2 m2 out, exec_stmt e m s t1 m1 Out_normal -> exec_lblstmts e m1 ls t2 m2 out -> exec_lblstmts e m (LScase n s ls) (t1 ** t2) m2 out | exec_LScase_stop: forall e m n s ls t m1 out, exec_stmt e m s t m1 out -> out <> Out_normal -> exec_lblstmts e m (LScase n s ls) t m1 out (** Evaluation of a function invocation *) with eval_funcall: mem -> fundef -> list val -> trace -> mem -> val -> Prop := | eval_funcall_internal: forall m f vargs t e m1 lb m2 m3 out vres, alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 lb -> bind_parameters e m1 f.(fn_params) vargs m2 -> exec_stmt e m2 f.(fn_body) t m3 out -> outcome_result_value out f.(fn_return) vres -> eval_funcall m (Internal f) vargs t (Mem.free_list m3 lb) vres | eval_funcall_external: forall m id targs tres vargs t vres, event_match (external_function id targs tres) vargs t vres -> eval_funcall m (External id targs tres) vargs t m vres. Scheme eval_expr_ind6 := Minimality for eval_expr Sort Prop with eval_lvalue_ind6 := Minimality for eval_lvalue Sort Prop with eval_exprlist_ind6 := Minimality for eval_exprlist Sort Prop with exec_stmt_ind6 := Minimality for exec_stmt Sort Prop with exec_lblstmts_ind6 := Minimality for exec_lblstmts Sort Prop with eval_funcall_ind6 := Minimality for eval_funcall Sort Prop. End RELSEM. (** Execution of a whole program *) Definition exec_program (p: program) (t: trace) (r: val) : Prop := let ge := Genv.globalenv p in let m0 := Genv.init_mem p in exists b, exists f, exists m1, Genv.find_symbol ge p.(prog_main) = Some b /\ Genv.find_funct_ptr ge b = Some f /\ eval_funcall ge m0 f nil t m1 r.