(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Instruction selection for division and modulus *) Require Import Coqlib. Require Import Compopts. Require Import AST. Require Import Integers. Require Import Floats. Require Import Op. Require Import CminorSel. Require Import SelectOp. Open Local Scope cminorsel_scope. (** We try to turn divisions by a constant into a multiplication by a pseudo-inverse of the divisor. The approach is described in - Torbjörn Granlund, Peter L. Montgomery: "Division by Invariant Integers using Multiplication". PLDI 1994. - Henry S. Warren, Jr: "Hacker's Delight". Addison-Wesley. Chapter 10. *) Fixpoint find_div_mul_params (fuel: nat) (nc: Z) (d: Z) (p: Z) : option (Z * Z) := match fuel with | O => None | S fuel' => let twp := two_p p in if zlt (nc * (d - twp mod d)) twp then Some(p - 32, (twp + d - twp mod d) / d) else find_div_mul_params fuel' nc d (p + 1) end. Definition divs_mul_params (d: Z) : option (Z * Z) := match find_div_mul_params Int.wordsize (Int.half_modulus - Int.half_modulus mod d - 1) d 32 with | None => None | Some(p, m) => if zlt 0 d && zlt (two_p (32 + p)) (m * d) && zle (m * d) (two_p (32 + p) + two_p (p + 1)) && zle 0 m && zlt m Int.modulus && zle 0 p && zlt p 32 then Some(p, m) else None end. Definition divu_mul_params (d: Z) : option (Z * Z) := match find_div_mul_params Int.wordsize (Int.modulus - Int.modulus mod d - 1) d 32 with | None => None | Some(p, m) => if zlt 0 d && zle (two_p (32 + p)) (m * d) && zle (m * d) (two_p (32 + p) + two_p p) && zle 0 m && zlt m Int.modulus && zle 0 p && zlt p 32 then Some(p, m) else None end. Definition divu_mul (p: Z) (m: Z) := shruimm (Eop Omulhu (Eletvar O ::: Eop (Ointconst (Int.repr m)) Enil ::: Enil)) (Int.repr p). Definition divuimm (e1: expr) (n2: int) := match Int.is_power2 n2 with | Some l => shruimm e1 l | None => if optim_for_size tt then divu_base e1 (Eop (Ointconst n2) Enil) else match divu_mul_params (Int.unsigned n2) with | None => divu_base e1 (Eop (Ointconst n2) Enil) | Some(p, m) => Elet e1 (divu_mul p m) end end. Nondetfunction divu (e1: expr) (e2: expr) := match e2 with | Eop (Ointconst n2) Enil => divuimm e1 n2 | _ => divu_base e1 e2 end. Definition mod_from_div (equo: expr) (n: int) := Eop Osub (Eletvar O ::: mulimm n equo ::: Enil). Definition moduimm (e1: expr) (n2: int) := match Int.is_power2 n2 with | Some l => andimm (Int.sub n2 Int.one) e1 | None => if optim_for_size tt then modu_base e1 (Eop (Ointconst n2) Enil) else match divu_mul_params (Int.unsigned n2) with | None => modu_base e1 (Eop (Ointconst n2) Enil) | Some(p, m) => Elet e1 (mod_from_div (divu_mul p m) n2) end end. Nondetfunction modu (e1: expr) (e2: expr) := match e2 with | Eop (Ointconst n2) Enil => moduimm e1 n2 | _ => modu_base e1 e2 end. Definition divs_mul (p: Z) (m: Z) := let e2 := Eop Omulhs (Eletvar O ::: Eop (Ointconst (Int.repr m)) Enil ::: Enil) in let e3 := if zlt m Int.half_modulus then e2 else add e2 (Eletvar O) in add (shrimm e3 (Int.repr p)) (shruimm (Eletvar O) (Int.repr (Int.zwordsize - 1))). Definition divsimm (e1: expr) (n2: int) := match Int.is_power2 n2 with | Some l => if Int.ltu l (Int.repr 31) then shrximm e1 l else divs_base e1 (Eop (Ointconst n2) Enil) | None => if optim_for_size tt then divs_base e1 (Eop (Ointconst n2) Enil) else match divs_mul_params (Int.signed n2) with | None => divs_base e1 (Eop (Ointconst n2) Enil) | Some(p, m) => Elet e1 (divs_mul p m) end end. Nondetfunction divs (e1: expr) (e2: expr) := match e2 with | Eop (Ointconst n2) Enil => divsimm e1 n2 | _ => divs_base e1 e2 end. Definition modsimm (e1: expr) (n2: int) := match Int.is_power2 n2 with | Some l => if Int.ltu l (Int.repr 31) then Elet e1 (mod_from_div (shrximm (Eletvar O) l) n2) else mods_base e1 (Eop (Ointconst n2) Enil) | None => if optim_for_size tt then mods_base e1 (Eop (Ointconst n2) Enil) else match divs_mul_params (Int.signed n2) with | None => mods_base e1 (Eop (Ointconst n2) Enil) | Some(p, m) => Elet e1 (mod_from_div (divs_mul p m) n2) end end. Nondetfunction mods (e1: expr) (e2: expr) := match e2 with | Eop (Ointconst n2) Enil => modsimm e1 n2 | _ => mods_base e1 e2 end. (** Floating-point division by a constant can also be turned into a FP multiplication by the inverse constant, but only for powers of 2. *) Definition divfimm (e: expr) (n: float) := match Float.exact_inverse n with | Some n' => Eop Omulf (e ::: Eop (Ofloatconst n') Enil ::: Enil) | None => Eop Odivf (e ::: Eop (Ofloatconst n) Enil ::: Enil) end. Nondetfunction divf (e1: expr) (e2: expr) := match e2 with | Eop (Ofloatconst n2) Enil => divfimm e1 n2 | _ => Eop Odivf (e1 ::: e2 ::: Enil) end. Definition divfsimm (e: expr) (n: float32) := match Float32.exact_inverse n with | Some n' => Eop Omulfs (e ::: Eop (Osingleconst n') Enil ::: Enil) | None => Eop Odivfs (e ::: Eop (Osingleconst n) Enil ::: Enil) end. Nondetfunction divfs (e1: expr) (e2: expr) := match e2 with | Eop (Osingleconst n2) Enil => divfsimm e1 n2 | _ => Eop Odivfs (e1 ::: e2 ::: Enil) end.