(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Correctness proof for RTL generation. *) Require Import Coqlib. Require Import Maps. Require Import AST. Require Import Integers. Require Import Values. Require Import Mem. Require Import Events. Require Import Smallstep. Require Import Globalenvs. Require Import Switch. Require Import Registers. Require Import Cminor. Require Import Op. Require Import CminorSel. Require Import RTL. Require Import RTLgen. Require Import RTLgenspec. (** * Correspondence between Cminor environments and RTL register sets *) (** A compilation environment (mapping) is well-formed if the following properties hold: - Two distinct Cminor local variables are mapped to distinct pseudo-registers. - A Cminor local variable and a let-bound variable are mapped to distinct pseudo-registers. *) Record map_wf (m: mapping) : Prop := mk_map_wf { map_wf_inj: (forall id1 id2 r, m.(map_vars)!id1 = Some r -> m.(map_vars)!id2 = Some r -> id1 = id2); map_wf_disj: (forall id r, m.(map_vars)!id = Some r -> In r m.(map_letvars) -> False) }. Lemma init_mapping_wf: map_wf init_mapping. Proof. unfold init_mapping; split; simpl. intros until r. rewrite PTree.gempty. congruence. tauto. Qed. Lemma add_var_wf: forall s1 s2 map name r map' i, add_var map name s1 = OK (r,map') s2 i -> map_wf map -> map_valid map s1 -> map_wf map'. Proof. intros. monadInv H. apply mk_map_wf; simpl. intros until r0. repeat rewrite PTree.gsspec. destruct (peq id1 name); destruct (peq id2 name). congruence. intros. inv H. elimtype False. apply valid_fresh_absurd with r0 s1. apply H1. left; exists id2; auto. eauto with rtlg. intros. inv H2. elimtype False. apply valid_fresh_absurd with r0 s1. apply H1. left; exists id1; auto. eauto with rtlg. inv H0. eauto. intros until r0. rewrite PTree.gsspec. destruct (peq id name). intros. inv H. apply valid_fresh_absurd with r0 s1. apply H1. right; auto. eauto with rtlg. inv H0; eauto. Qed. Lemma add_vars_wf: forall names s1 s2 map map' rl i, add_vars map names s1 = OK (rl,map') s2 i -> map_wf map -> map_valid map s1 -> map_wf map'. Proof. induction names; simpl; intros; monadInv H. auto. exploit add_vars_valid; eauto. intros [A B]. eapply add_var_wf; eauto. Qed. Lemma add_letvar_wf: forall map r, map_wf map -> ~reg_in_map map r -> map_wf (add_letvar map r). Proof. intros. inv H. unfold add_letvar; constructor; simpl. auto. intros. elim H1; intro. subst r0. elim H0. left; exists id; auto. eauto. Qed. (** An RTL register environment matches a CminorSel local environment and let-environment if the value of every local or let-bound variable in the CminorSel environments is identical to the value of the corresponding pseudo-register in the RTL register environment. *) Record match_env (map: mapping) (e: env) (le: letenv) (rs: regset) : Prop := mk_match_env { me_vars: (forall id v, e!id = Some v -> exists r, map.(map_vars)!id = Some r /\ rs#r = v); me_letvars: rs##(map.(map_letvars)) = le }. Lemma match_env_find_var: forall map e le rs id v r, match_env map e le rs -> e!id = Some v -> map.(map_vars)!id = Some r -> rs#r = v. Proof. intros. exploit me_vars; eauto. intros [r' [EQ' RS]]. replace r with r'. auto. congruence. Qed. Lemma match_env_find_letvar: forall map e le rs idx v r, match_env map e le rs -> List.nth_error le idx = Some v -> List.nth_error map.(map_letvars) idx = Some r -> rs#r = v. Proof. intros. exploit me_letvars; eauto. intros. rewrite <- H2 in H0. rewrite list_map_nth in H0. change reg with positive in H1. rewrite H1 in H0. simpl in H0. congruence. Qed. Lemma match_env_invariant: forall map e le rs rs', match_env map e le rs -> (forall r, (reg_in_map map r) -> rs'#r = rs#r) -> match_env map e le rs'. Proof. intros. inversion H. apply mk_match_env. intros. exploit me_vars0; eauto. intros [r [A B]]. exists r; split. auto. rewrite H0; auto. left; exists id; auto. rewrite <- me_letvars0. apply list_map_exten. intros. symmetry. apply H0. right; auto. Qed. (** Matching between environments is preserved when an unmapped register (not corresponding to any Cminor variable) is assigned in the RTL execution. *) Lemma match_env_update_temp: forall map e le rs r v, match_env map e le rs -> ~(reg_in_map map r) -> match_env map e le (rs#r <- v). Proof. intros. apply match_env_invariant with rs; auto. intros. case (Reg.eq r r0); intro. subst r0; contradiction. apply Regmap.gso; auto. Qed. Hint Resolve match_env_update_temp: rtlg. (** Matching between environments is preserved by simultaneous assignment to a Cminor local variable (in the Cminor environments) and to the corresponding RTL pseudo-register (in the RTL register environment). *) Lemma match_env_update_var: forall map e le rs id r v, map_wf map -> map.(map_vars)!id = Some r -> match_env map e le rs -> match_env map (PTree.set id v e) le (rs#r <- v). Proof. intros. inversion H. inversion H1. apply mk_match_env. intros id' v'. rewrite PTree.gsspec. destruct (peq id' id); intros. subst id'. inv H2. exists r; split. auto. apply PMap.gss. exploit me_vars0; eauto. intros [r' [A B]]. exists r'; split. auto. rewrite PMap.gso; auto. red; intros. subst r'. elim n. eauto. rewrite <- me_letvars0. apply list_map_exten; intros. symmetry. apply PMap.gso. red; intros. subst x. eauto. Qed. Lemma match_env_bind_letvar: forall map e le rs r v, match_env map e le rs -> rs#r = v -> match_env (add_letvar map r) e (v :: le) rs. Proof. intros. inv H. unfold add_letvar. apply mk_match_env; simpl; auto. Qed. Lemma match_env_unbind_letvar: forall map e le rs r v, match_env (add_letvar map r) e (v :: le) rs -> match_env map e le rs. Proof. unfold add_letvar; intros. inv H. simpl in *. constructor. auto. congruence. Qed. Lemma match_env_empty: forall map, map.(map_letvars) = nil -> match_env map (PTree.empty val) nil (Regmap.init Vundef). Proof. intros. apply mk_match_env. intros. rewrite PTree.gempty in H0. discriminate. rewrite H. reflexivity. Qed. (** The assignment of function arguments to local variables (on the Cminor side) and pseudo-registers (on the RTL side) preserves matching between environments. *) Lemma match_set_params_init_regs: forall il rl s1 map2 s2 vl i, add_vars init_mapping il s1 = OK (rl, map2) s2 i -> match_env map2 (set_params vl il) nil (init_regs vl rl) /\ (forall r, reg_fresh r s2 -> (init_regs vl rl)#r = Vundef). Proof. induction il; intros. inv H. split. apply match_env_empty. auto. intros. simpl. apply Regmap.gi. monadInv H. simpl. exploit add_vars_valid; eauto. apply init_mapping_valid. intros [A B]. exploit add_var_valid; eauto. intros [A' B']. clear B'. monadInv EQ1. destruct vl as [ | v1 vs]. (* vl = nil *) destruct (IHil _ _ _ _ nil _ EQ) as [ME UNDEF]. inv ME. split. constructor; simpl. intros id v. repeat rewrite PTree.gsspec. destruct (peq id a); intros. subst a. inv H. exists x1; split. auto. apply Regmap.gi. replace (init_regs nil x) with (Regmap.init Vundef) in me_vars0. eauto. destruct x; reflexivity. destruct (map_letvars x0). auto. simpl in me_letvars0. congruence. intros. apply Regmap.gi. (* vl = v1 :: vs *) destruct (IHil _ _ _ _ vs _ EQ) as [ME UNDEF]. inv ME. split. constructor; simpl. intros id v. repeat rewrite PTree.gsspec. destruct (peq id a); intros. subst a. inv H. exists x1; split. auto. apply Regmap.gss. exploit me_vars0; eauto. intros [r' [C D]]. exists r'; split. auto. rewrite Regmap.gso. auto. apply valid_fresh_different with s. apply B. left; exists id; auto. eauto with rtlg. destruct (map_letvars x0). auto. simpl in me_letvars0. congruence. intros. rewrite Regmap.gso. apply UNDEF. apply reg_fresh_decr with s2; eauto with rtlg. apply sym_not_equal. apply valid_fresh_different with s2; auto. Qed. Lemma match_set_locals: forall map1 s1, map_wf map1 -> forall il rl map2 s2 e le rs i, match_env map1 e le rs -> (forall r, reg_fresh r s1 -> rs#r = Vundef) -> add_vars map1 il s1 = OK (rl, map2) s2 i -> match_env map2 (set_locals il e) le rs. Proof. induction il; simpl in *; intros. inv H2. auto. monadInv H2. exploit IHil; eauto. intro. monadInv EQ1. constructor. intros id v. simpl. repeat rewrite PTree.gsspec. destruct (peq id a). subst a. intro. exists x1. split. auto. inv H3. apply H1. apply reg_fresh_decr with s. auto. eauto with rtlg. intros. eapply me_vars; eauto. simpl. eapply me_letvars; eauto. Qed. Lemma match_init_env_init_reg: forall params s0 rparams map1 s1 i1 vars rvars map2 s2 i2 vparams, add_vars init_mapping params s0 = OK (rparams, map1) s1 i1 -> add_vars map1 vars s1 = OK (rvars, map2) s2 i2 -> match_env map2 (set_locals vars (set_params vparams params)) nil (init_regs vparams rparams). Proof. intros. exploit match_set_params_init_regs; eauto. intros [A B]. eapply match_set_locals; eauto. eapply add_vars_wf; eauto. apply init_mapping_wf. apply init_mapping_valid. Qed. (** * The simulation argument *) Require Import Errors. Section CORRECTNESS. Variable prog: CminorSel.program. Variable tprog: RTL.program. Hypothesis TRANSL: transl_program prog = OK tprog. Let ge : CminorSel.genv := Genv.globalenv prog. Let tge : RTL.genv := Genv.globalenv tprog. (** Relationship between the global environments for the original CminorSel program and the generated RTL program. *) Lemma symbols_preserved: forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s. Proof (Genv.find_symbol_transf_partial transl_fundef _ TRANSL). Lemma function_ptr_translated: forall (b: block) (f: CminorSel.fundef), Genv.find_funct_ptr ge b = Some f -> exists tf, Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = OK tf. Proof (Genv.find_funct_ptr_transf_partial transl_fundef TRANSL). Lemma functions_translated: forall (v: val) (f: CminorSel.fundef), Genv.find_funct ge v = Some f -> exists tf, Genv.find_funct tge v = Some tf /\ transl_fundef f = OK tf. Proof (Genv.find_funct_transf_partial transl_fundef TRANSL). Lemma sig_transl_function: forall (f: CminorSel.fundef) (tf: RTL.fundef), transl_fundef f = OK tf -> RTL.funsig tf = CminorSel.funsig f. Proof. intros until tf. unfold transl_fundef, transf_partial_fundef. case f; intro. unfold transl_function. destruct (reserve_labels (fn_body f0) (PTree.empty node, init_state)) as [ngoto s0]. case (transl_fun f0 ngoto s0); simpl; intros. discriminate. destruct p. simpl in H. inversion H. reflexivity. intro. inversion H. reflexivity. Qed. (** Correctness of the code generated by [add_move]. *) Lemma tr_move_correct: forall r1 ns r2 nd cs code sp rs m, tr_move code ns r1 nd r2 -> exists rs', star step tge (State cs code sp ns rs m) E0 (State cs code sp nd rs' m) /\ rs'#r2 = rs#r1 /\ (forall r, r <> r2 -> rs'#r = rs#r). Proof. intros. inv H. exists rs; split. constructor. auto. exists (rs#r2 <- (rs#r1)); split. apply star_one. eapply exec_Iop. eauto. auto. split. apply Regmap.gss. intros; apply Regmap.gso; auto. Qed. (** Correctness of the code generated by [store_var] and [store_optvar]. *) Lemma tr_store_var_correct: forall rs cs code map r id ns nd e sp m, tr_store_var code map r id ns nd -> map_wf map -> match_env map e nil rs -> exists rs', star step tge (State cs code sp ns rs m) E0 (State cs code sp nd rs' m) /\ match_env map (PTree.set id rs#r e) nil rs'. Proof. intros. destruct H as [rv [A B]]. exploit tr_move_correct; eauto. intros [rs' [EX [RES OTHER]]]. exists rs'; split. eexact EX. apply match_env_invariant with (rs#rv <- (rs#r)). apply match_env_update_var; auto. intros. rewrite Regmap.gsspec. destruct (peq r0 rv). subst r0; auto. auto. Qed. Lemma tr_store_optvar_correct: forall rs cs code map r optid ns nd e sp m, tr_store_optvar code map r optid ns nd -> map_wf map -> match_env map e nil rs -> exists rs', star step tge (State cs code sp ns rs m) E0 (State cs code sp nd rs' m) /\ match_env map (set_optvar optid rs#r e) nil rs'. Proof. intros. destruct optid; simpl in *. eapply tr_store_var_correct; eauto. exists rs; split. subst nd. apply star_refl. auto. Qed. (** Correctness of the translation of [switch] statements *) Lemma transl_switch_correct: forall cs sp rs m i code r nexits t ns, tr_switch code r nexits t ns -> rs#r = Vint i -> exists nd, star step tge (State cs code sp ns rs m) E0 (State cs code sp nd rs m) /\ nth_error nexits (comptree_match i t) = Some nd. Proof. induction 1; intros; simpl. exists n. split. apply star_refl. auto. caseEq (Int.eq i key); intros. exists nfound; split. apply star_one. eapply exec_Icond_true; eauto. simpl. rewrite H2. congruence. auto. exploit IHtr_switch; eauto. intros [nd [EX MATCH]]. exists nd; split. eapply star_step. eapply exec_Icond_false; eauto. simpl. rewrite H2. congruence. eexact EX. traceEq. auto. caseEq (Int.ltu i key); intros. exploit IHtr_switch1; eauto. intros [nd [EX MATCH]]. exists nd; split. eapply star_step. eapply exec_Icond_true; eauto. simpl. rewrite H2. congruence. eexact EX. traceEq. auto. exploit IHtr_switch2; eauto. intros [nd [EX MATCH]]. exists nd; split. eapply star_step. eapply exec_Icond_false; eauto. simpl. rewrite H2. congruence. eexact EX. traceEq. auto. Qed. (** ** Semantic preservation for the translation of expressions *) Section CORRECTNESS_EXPR. Variable sp: val. Variable e: env. Variable m: mem. (** The proof of semantic preservation for the translation of expressions is a simulation argument based on diagrams of the following form: << I /\ P e, le, m, a ------------- State cs code sp ns rs m || | || |* || | \/ v e, le, m', v ------------ State cs code sp nd rs' m' I /\ Q >> where [tr_expr code map pr a ns nd rd] is assumed to hold. The left vertical arrow represents an evaluation of the expression [a]. The right vertical arrow represents the execution of zero, one or several instructions in the generated RTL flow graph [code]. The invariant [I] is the agreement between Cminor environments and RTL register environment, as captured by [match_envs]. The precondition [P] includes the well-formedness of the compilation environment [mut]. The postconditions [Q] state that in the final register environment [rs'], register [rd] contains value [v], and the registers in the set of preserved registers [pr] are unchanged, as are the registers in the codomain of [map]. We formalize this simulation property by the following predicate parameterized by the CminorSel evaluation (left arrow). *) Definition transl_expr_prop (le: letenv) (a: expr) (v: val) : Prop := forall cs code map pr ns nd rd rs (MWF: map_wf map) (TE: tr_expr code map pr a ns nd rd) (ME: match_env map e le rs), exists rs', star step tge (State cs code sp ns rs m) E0 (State cs code sp nd rs' m) /\ match_env map e le rs' /\ rs'#rd = v /\ (forall r, reg_in_map map r \/ In r pr -> rs'#r = rs#r). (** The simulation properties for lists of expressions and for conditional expressions are similar. *) Definition transl_exprlist_prop (le: letenv) (al: exprlist) (vl: list val) : Prop := forall cs code map pr ns nd rl rs (MWF: map_wf map) (TE: tr_exprlist code map pr al ns nd rl) (ME: match_env map e le rs), exists rs', star step tge (State cs code sp ns rs m) E0 (State cs code sp nd rs' m) /\ match_env map e le rs' /\ rs'##rl = vl /\ (forall r, reg_in_map map r \/ In r pr -> rs'#r = rs#r). Definition transl_condition_prop (le: letenv) (a: condexpr) (vb: bool) : Prop := forall cs code map pr ns ntrue nfalse rs (MWF: map_wf map) (TE: tr_condition code map pr a ns ntrue nfalse) (ME: match_env map e le rs), exists rs', star step tge (State cs code sp ns rs m) E0 (State cs code sp (if vb then ntrue else nfalse) rs' m) /\ match_env map e le rs' /\ (forall r, reg_in_map map r \/ In r pr -> rs'#r = rs#r). (** The correctness of the translation is a huge induction over the Cminor evaluation derivation for the source program. To keep the proof manageable, we put each case of the proof in a separate lemma. There is one lemma for each Cminor evaluation rule. It takes as hypotheses the premises of the Cminor evaluation rule, plus the induction hypotheses, that is, the [transl_expr_prop], etc, corresponding to the evaluations of sub-expressions or sub-statements. *) Lemma transl_expr_Evar_correct: forall (le : letenv) (id : positive) (v : val), e ! id = Some v -> transl_expr_prop le (Evar id) v. Proof. intros; red; intros. inv TE. exploit tr_move_correct; eauto. intros [rs' [A [B C]]]. exists rs'; split. eauto. destruct H2 as [D | [E F]]. (* optimized case *) subst r. assert (forall r, rs'#r = rs#r). intros. destruct (Reg.eq r rd). subst r. auto. auto. split. eapply match_env_invariant; eauto. split. rewrite B. eapply match_env_find_var; eauto. auto. (* general case *) split. eapply match_env_invariant; eauto. intros. apply C. congruence. split. rewrite B. eapply match_env_find_var; eauto. intros. apply C. intuition congruence. Qed. Lemma transl_expr_Eop_correct: forall (le : letenv) (op : operation) (args : exprlist) (vargs : list val) (v : val), eval_exprlist ge sp e m le args vargs -> transl_exprlist_prop le args vargs -> eval_operation ge sp op vargs m = Some v -> transl_expr_prop le (Eop op args) v. Proof. intros; red; intros. inv TE. exploit H0; eauto. intros [rs1 [EX1 [ME1 [RR1 RO1]]]]. exists (rs1#rd <- v). (* Exec *) split. eapply star_right. eexact EX1. eapply exec_Iop; eauto. subst vargs. rewrite (@eval_operation_preserved CminorSel.fundef RTL.fundef ge tge). auto. exact symbols_preserved. traceEq. (* Match-env *) split. eauto with rtlg. (* Result reg *) split. apply Regmap.gss. (* Other regs *) intros. rewrite Regmap.gso. auto. intuition congruence. Qed. Lemma transl_expr_Eload_correct: forall (le : letenv) (chunk : memory_chunk) (addr : Op.addressing) (args : exprlist) (vargs : list val) (vaddr v : val), eval_exprlist ge sp e m le args vargs -> transl_exprlist_prop le args vargs -> Op.eval_addressing ge sp addr vargs = Some vaddr -> loadv chunk m vaddr = Some v -> transl_expr_prop le (Eload chunk addr args) v. Proof. intros; red; intros. inv TE. exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]]. exists (rs1#rd <- v). (* Exec *) split. eapply star_right. eexact EX1. eapply exec_Iload; eauto. rewrite RES1. rewrite (@eval_addressing_preserved _ _ ge tge). exact H1. exact symbols_preserved. traceEq. (* Match-env *) split. eauto with rtlg. (* Result *) split. apply Regmap.gss. (* Other regs *) intros. rewrite Regmap.gso. auto. intuition congruence. Qed. Lemma transl_expr_Econdition_correct: forall (le : letenv) (cond : condexpr) (ifso ifnot : expr) (vcond : bool) (v : val), eval_condexpr ge sp e m le cond vcond -> transl_condition_prop le cond vcond -> eval_expr ge sp e m le (if vcond then ifso else ifnot) v -> transl_expr_prop le (if vcond then ifso else ifnot) v -> transl_expr_prop le (Econdition cond ifso ifnot) v. Proof. intros; red; intros; inv TE. exploit H0; eauto. intros [rs1 [EX1 [ME1 OTHER1]]]. assert (tr_expr code map pr (if vcond then ifso else ifnot) (if vcond then ntrue else nfalse) nd rd). destruct vcond; auto. exploit H2; eauto. intros [rs2 [EX2 [ME2 [RES2 OTHER2]]]]. exists rs2. (* Exec *) split. eapply star_trans. eexact EX1. eexact EX2. auto. (* Match-env *) split. assumption. (* Result value *) split. assumption. (* Other regs *) intros. transitivity (rs1#r); auto. Qed. Lemma transl_expr_Elet_correct: forall (le : letenv) (a1 a2 : expr) (v1 v2 : val), eval_expr ge sp e m le a1 v1 -> transl_expr_prop le a1 v1 -> eval_expr ge sp e m (v1 :: le) a2 v2 -> transl_expr_prop (v1 :: le) a2 v2 -> transl_expr_prop le (Elet a1 a2) v2. Proof. intros; red; intros; inv TE. exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]]. assert (map_wf (add_letvar map r)). eapply add_letvar_wf; eauto. exploit H2; eauto. eapply match_env_bind_letvar; eauto. intros [rs2 [EX2 [ME3 [RES2 OTHER2]]]]. exists rs2. (* Exec *) split. eapply star_trans. eexact EX1. eexact EX2. auto. (* Match-env *) split. eapply match_env_unbind_letvar; eauto. (* Result *) split. assumption. (* Other regs *) intros. transitivity (rs1#r0). apply OTHER2. elim H4; intro; auto. unfold reg_in_map, add_letvar; simpl. unfold reg_in_map in H6; tauto. auto. Qed. Lemma transl_expr_Eletvar_correct: forall (le : list val) (n : nat) (v : val), nth_error le n = Some v -> transl_expr_prop le (Eletvar n) v. Proof. intros; red; intros; inv TE. exploit tr_move_correct; eauto. intros [rs1 [EX1 [RES1 OTHER1]]]. exists rs1. (* Exec *) split. eexact EX1. (* Match-env *) split. apply match_env_invariant with rs. auto. intros. destruct H2 as [A | [B C]]. subst r. destruct (Reg.eq r0 rd). subst r0; auto. auto. apply OTHER1. intuition congruence. (* Result *) split. rewrite RES1. eapply match_env_find_letvar; eauto. (* Other regs *) intros. destruct H2 as [A | [B C]]. subst r. destruct (Reg.eq r0 rd). subst r0; auto. auto. apply OTHER1. intuition congruence. Qed. Lemma transl_condition_CEtrue_correct: forall (le : letenv), transl_condition_prop le CEtrue true. Proof. intros; red; intros; inv TE. exists rs. split. apply star_refl. split. auto. auto. Qed. Lemma transl_condition_CEfalse_correct: forall (le : letenv), transl_condition_prop le CEfalse false. Proof. intros; red; intros; inv TE. exists rs. split. apply star_refl. split. auto. auto. Qed. Lemma transl_condition_CEcond_correct: forall (le : letenv) (cond : condition) (args : exprlist) (vargs : list val) (b : bool), eval_exprlist ge sp e m le args vargs -> transl_exprlist_prop le args vargs -> eval_condition cond vargs m = Some b -> transl_condition_prop le (CEcond cond args) b. Proof. intros; red; intros; inv TE. exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]]. exists rs1. (* Exec *) split. eapply star_right. eexact EX1. destruct b. eapply exec_Icond_true; eauto. rewrite RES1. assumption. eapply exec_Icond_false; eauto. rewrite RES1. assumption. traceEq. (* Match-env *) split. assumption. (* Regs *) auto. Qed. Lemma transl_condition_CEcondition_correct: forall (le : letenv) (cond ifso ifnot : condexpr) (vcond v : bool), eval_condexpr ge sp e m le cond vcond -> transl_condition_prop le cond vcond -> eval_condexpr ge sp e m le (if vcond then ifso else ifnot) v -> transl_condition_prop le (if vcond then ifso else ifnot) v -> transl_condition_prop le (CEcondition cond ifso ifnot) v. Proof. intros; red; intros; inv TE. exploit H0; eauto. intros [rs1 [EX1 [ME1 OTHER1]]]. assert (tr_condition code map pr (if vcond then ifso else ifnot) (if vcond then ntrue' else nfalse') ntrue nfalse). destruct vcond; auto. exploit H2; eauto. intros [rs2 [EX2 [ME2 OTHER2]]]. exists rs2. (* Execution *) split. eapply star_trans. eexact EX1. eexact EX2. auto. (* Match-env *) split. auto. (* Regs *) intros. transitivity (rs1#r); auto. Qed. Lemma transl_exprlist_Enil_correct: forall (le : letenv), transl_exprlist_prop le Enil nil. Proof. intros; red; intros; inv TE. exists rs. split. apply star_refl. split. assumption. split. reflexivity. auto. Qed. Lemma transl_exprlist_Econs_correct: forall (le : letenv) (a1 : expr) (al : exprlist) (v1 : val) (vl : list val), eval_expr ge sp e m le a1 v1 -> transl_expr_prop le a1 v1 -> eval_exprlist ge sp e m le al vl -> transl_exprlist_prop le al vl -> transl_exprlist_prop le (Econs a1 al) (v1 :: vl). Proof. intros; red; intros; inv TE. exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]]. exploit H2; eauto. intros [rs2 [EX2 [ME2 [RES2 OTHER2]]]]. exists rs2. (* Exec *) split. eapply star_trans. eexact EX1. eexact EX2. auto. (* Match-env *) split. assumption. (* Results *) split. simpl. rewrite RES2. rewrite OTHER2. rewrite RES1. auto. simpl; tauto. (* Other regs *) intros. transitivity (rs1#r). apply OTHER2; auto. simpl; tauto. apply OTHER1; auto. Qed. Theorem transl_expr_correct: forall le a v, eval_expr ge sp e m le a v -> transl_expr_prop le a v. Proof (eval_expr_ind3 ge sp e m transl_expr_prop transl_condition_prop transl_exprlist_prop transl_expr_Evar_correct transl_expr_Eop_correct transl_expr_Eload_correct transl_expr_Econdition_correct transl_expr_Elet_correct transl_expr_Eletvar_correct transl_condition_CEtrue_correct transl_condition_CEfalse_correct transl_condition_CEcond_correct transl_condition_CEcondition_correct transl_exprlist_Enil_correct transl_exprlist_Econs_correct). Theorem transl_condexpr_correct: forall le a v, eval_condexpr ge sp e m le a v -> transl_condition_prop le a v. Proof (eval_condexpr_ind3 ge sp e m transl_expr_prop transl_condition_prop transl_exprlist_prop transl_expr_Evar_correct transl_expr_Eop_correct transl_expr_Eload_correct transl_expr_Econdition_correct transl_expr_Elet_correct transl_expr_Eletvar_correct transl_condition_CEtrue_correct transl_condition_CEfalse_correct transl_condition_CEcond_correct transl_condition_CEcondition_correct transl_exprlist_Enil_correct transl_exprlist_Econs_correct). Theorem transl_exprlist_correct: forall le a v, eval_exprlist ge sp e m le a v -> transl_exprlist_prop le a v. Proof (eval_exprlist_ind3 ge sp e m transl_expr_prop transl_condition_prop transl_exprlist_prop transl_expr_Evar_correct transl_expr_Eop_correct transl_expr_Eload_correct transl_expr_Econdition_correct transl_expr_Elet_correct transl_expr_Eletvar_correct transl_condition_CEtrue_correct transl_condition_CEfalse_correct transl_condition_CEcond_correct transl_condition_CEcondition_correct transl_exprlist_Enil_correct transl_exprlist_Econs_correct). End CORRECTNESS_EXPR. (** ** Measure over CminorSel states *) Open Local Scope nat_scope. Fixpoint size_stmt (s: stmt) : nat := match s with | Sskip => 0 | Sseq s1 s2 => (size_stmt s1 + size_stmt s2 + 1) | Sifthenelse e s1 s2 => (size_stmt s1 + size_stmt s2 + 1) | Sloop s1 => (size_stmt s1 + 1) | Sblock s1 => (size_stmt s1 + 1) | Sexit n => 0 | Slabel lbl s1 => (size_stmt s1 + 1) | _ => 1 end. Fixpoint size_cont (k: cont) : nat := match k with | Kseq s k1 => (size_stmt s + size_cont k1 + 1) | Kblock k1 => (size_cont k1 + 1) | _ => 0%nat end. Definition measure_state (S: CminorSel.state) := match S with | CminorSel.State _ s k _ _ _ => existS (fun (x: nat) => nat) (size_stmt s + size_cont k) (size_stmt s) | _ => existS (fun (x: nat) => nat) 0 0 end. Require Import Relations. Require Import Wellfounded. Definition lt_state (S1 S2: CminorSel.state) := lexprod nat (fun (x: nat) => nat) lt (fun (x: nat) => lt) (measure_state S1) (measure_state S2). Lemma lt_state_intro: forall f1 s1 k1 sp1 e1 m1 f2 s2 k2 sp2 e2 m2, size_stmt s1 + size_cont k1 < size_stmt s2 + size_cont k2 \/ (size_stmt s1 + size_cont k1 = size_stmt s2 + size_cont k2 /\ size_stmt s1 < size_stmt s2) -> lt_state (CminorSel.State f1 s1 k1 sp1 e1 m1) (CminorSel.State f2 s2 k2 sp2 e2 m2). Proof. intros. unfold lt_state. simpl. destruct H as [A | [A B]]. apply left_lex. auto. rewrite A. apply right_lex. auto. Qed. Ltac Lt_state := apply lt_state_intro; simpl; try omega. Require Import Wf_nat. Lemma lt_state_wf: well_founded lt_state. Proof. unfold lt_state. apply wf_inverse_image with (f := measure_state). apply wf_lexprod. apply lt_wf. intros. apply lt_wf. Qed. (** ** Semantic preservation for the translation of statements *) (** The simulation diagram for the translation of statements is of the following form: << I /\ P e, m, a ---------------- State cs code sp ns rs m || | t|| t|* || | \/ v e', m', out ------------------ st' I /\ Q >> where [tr_stmt code map a ns ncont nexits nret rret] holds. The left vertical arrow represents an execution of the statement [a]. The right vertical arrow represents the execution of zero, one or several instructions in the generated RTL flow graph [code]. The invariant [I] is the agreement between Cminor environments and RTL register environment, as captured by [match_envs]. The precondition [P] is the well-formedness of the compilation environment [mut]. The postcondition [Q] characterizes the final RTL state [st']. It must have memory state [m'] and register state [rs'] that matches [e']. Moreover, the program point reached must correspond to the outcome [out]. This is captured by the following [state_for_outcome] predicate. *) Inductive tr_funbody (c: code) (map: mapping) (f: CminorSel.function) (ngoto: labelmap) (nret: node) (rret: option reg) : Prop := | tr_funbody_intro: forall nentry r, rret = ret_reg f.(CminorSel.fn_sig) r -> tr_stmt c map f.(fn_body) nentry nret nil ngoto nret rret -> tr_funbody c map f ngoto nret rret. Inductive tr_cont: RTL.code -> mapping -> CminorSel.cont -> node -> list node -> labelmap -> node -> option reg -> list RTL.stackframe -> Prop := | tr_Kseq: forall c map s k nd nexits ngoto nret rret cs n, tr_stmt c map s nd n nexits ngoto nret rret -> tr_cont c map k n nexits ngoto nret rret cs -> tr_cont c map (Kseq s k) nd nexits ngoto nret rret cs | tr_Kblock: forall c map k nd nexits ngoto nret rret cs, tr_cont c map k nd nexits ngoto nret rret cs -> tr_cont c map (Kblock k) nd (nd :: nexits) ngoto nret rret cs | tr_Kstop: forall c map ngoto nret rret cs, c!nret = Some(Ireturn rret) -> match_stacks Kstop cs -> tr_cont c map Kstop nret nil ngoto nret rret cs | tr_Kcall: forall c map optid f sp e k ngoto nret rret cs, c!nret = Some(Ireturn rret) -> match_stacks (Kcall optid f sp e k) cs -> tr_cont c map (Kcall optid f sp e k) nret nil ngoto nret rret cs with match_stacks: CminorSel.cont -> list RTL.stackframe -> Prop := | match_stacks_stop: match_stacks Kstop nil | match_stacks_call: forall optid f sp e k r c n rs cs map nexits ngoto nret rret n', map_wf map -> tr_funbody c map f ngoto nret rret -> match_env map e nil rs -> tr_store_optvar c map r optid n n' -> ~reg_in_map map r -> tr_cont c map k n' nexits ngoto nret rret cs -> match_stacks (Kcall optid f sp e k) (Stackframe r c sp n rs :: cs). Inductive match_states: CminorSel.state -> RTL.state -> Prop := | match_state: forall f s k sp e m cs c ns rs map ncont nexits ngoto nret rret (MWF: map_wf map) (TS: tr_stmt c map s ns ncont nexits ngoto nret rret) (TF: tr_funbody c map f ngoto nret rret) (TK: tr_cont c map k ncont nexits ngoto nret rret cs) (ME: match_env map e nil rs), match_states (CminorSel.State f s k sp e m) (RTL.State cs c sp ns rs m) | match_callstate: forall f args k m cs tf (TF: transl_fundef f = OK tf) (MS: match_stacks k cs), match_states (CminorSel.Callstate f args k m) (RTL.Callstate cs tf args m) | match_returnstate: forall v k m cs (MS: match_stacks k cs), match_states (CminorSel.Returnstate v k m) (RTL.Returnstate cs v m). Lemma match_stacks_call_cont: forall c map k ncont nexits ngoto nret rret cs, tr_cont c map k ncont nexits ngoto nret rret cs -> match_stacks (call_cont k) cs /\ c!nret = Some(Ireturn rret). Proof. induction 1; simpl; auto. Qed. Lemma tr_cont_call_cont: forall c map k ncont nexits ngoto nret rret cs, tr_cont c map k ncont nexits ngoto nret rret cs -> tr_cont c map (call_cont k) nret nil ngoto nret rret cs. Proof. induction 1; simpl; auto; econstructor; eauto. Qed. Lemma tr_find_label: forall c map lbl n (ngoto: labelmap) nret rret s' k' cs, ngoto!lbl = Some n -> forall s k ns1 nd1 nexits1, find_label lbl s k = Some (s', k') -> tr_stmt c map s ns1 nd1 nexits1 ngoto nret rret -> tr_cont c map k nd1 nexits1 ngoto nret rret cs -> exists ns2, exists nd2, exists nexits2, c!n = Some(Inop ns2) /\ tr_stmt c map s' ns2 nd2 nexits2 ngoto nret rret /\ tr_cont c map k' nd2 nexits2 ngoto nret rret cs. Proof. induction s; intros until nexits1; simpl; try congruence. (* seq *) caseEq (find_label lbl s1 (Kseq s2 k)); intros. inv H1. inv H2. eapply IHs1; eauto. econstructor; eauto. inv H2. eapply IHs2; eauto. (* ifthenelse *) caseEq (find_label lbl s1 k); intros. inv H1. inv H2. eapply IHs1; eauto. inv H2. eapply IHs2; eauto. (* loop *) intros. inversion H1; subst. eapply IHs; eauto. econstructor; eauto. (* block *) intros. inv H1. eapply IHs; eauto. econstructor; eauto. (* label *) destruct (ident_eq lbl l); intros. inv H0. inv H1. assert (n0 = n). change positive with node in H4. congruence. subst n0. exists ns1; exists nd1; exists nexits1; auto. inv H1. eapply IHs; eauto. Qed. Theorem transl_step_correct: forall S1 t S2, CminorSel.step ge S1 t S2 -> forall R1, match_states S1 R1 -> exists R2, (plus RTL.step tge R1 t R2 \/ (star RTL.step tge R1 t R2 /\ lt_state S2 S1)) /\ match_states S2 R2. Proof. induction 1; intros R1 MSTATE; inv MSTATE. (* skip seq *) inv TS. inv TK. econstructor; split. right; split. apply star_refl. Lt_state. econstructor; eauto. (* skip block *) inv TS. inv TK. econstructor; split. right; split. apply star_refl. Lt_state. econstructor; eauto. constructor. (* skip return *) inv TS. assert (c!ncont = Some(Ireturn rret) /\ match_stacks k cs). inv TK; simpl in H; try contradiction; auto. destruct H1. assert (rret = None). inv TF. unfold ret_reg. rewrite H0. auto. subst rret. econstructor; split. left; apply plus_one. eapply exec_Ireturn. eauto. simpl. constructor; auto. (* assign *) inv TS. exploit transl_expr_correct; eauto. intros [rs' [A [B [C D]]]]. exploit tr_store_var_correct; eauto. intros [rs'' [E F]]. rewrite C in F. econstructor; split. right; split. eapply star_trans. eexact A. eexact E. traceEq. Lt_state. econstructor; eauto. constructor. (* store *) inv TS. exploit transl_exprlist_correct; eauto. intros [rs' [A [B [C D]]]]. exploit transl_expr_correct; eauto. intros [rs'' [E [F [G J]]]]. assert (rs''##rl = vl). rewrite <- C. apply list_map_exten. intros. symmetry. apply J. auto. econstructor; split. left; eapply plus_right. eapply star_trans. eexact A. eexact E. reflexivity. eapply exec_Istore with (a := vaddr); eauto. rewrite H3. rewrite <- H1. apply eval_addressing_preserved. exact symbols_preserved. rewrite G. eauto. traceEq. econstructor; eauto. constructor. (* call *) inv TS. exploit transl_expr_correct; eauto. intros [rs' [A [B [C D]]]]. exploit transl_exprlist_correct; eauto. intros [rs'' [E [F [G J]]]]. exploit functions_translated; eauto. intros [tf [P Q]]. econstructor; split. left; eapply plus_right. eapply star_trans. eexact A. eexact E. reflexivity. eapply exec_Icall; eauto. simpl. rewrite J. rewrite C. eauto. simpl; auto. apply sig_transl_function; auto. traceEq. rewrite G. constructor. auto. econstructor; eauto. (* tailcall *) inv TS. exploit transl_expr_correct; eauto. intros [rs' [A [B [C D]]]]. exploit transl_exprlist_correct; eauto. intros [rs'' [E [F [G J]]]]. exploit functions_translated; eauto. intros [tf [P Q]]. exploit match_stacks_call_cont; eauto. intros [U V]. econstructor; split. left; eapply plus_right. eapply star_trans. eexact A. eexact E. reflexivity. eapply exec_Itailcall; eauto. simpl. rewrite J. rewrite C. eauto. simpl; auto. apply sig_transl_function; auto. traceEq. rewrite G. constructor; auto. (* alloc *) inv TS. exploit transl_expr_correct; eauto. intros [rs1 [A [B [C D]]]]. set (rs2 := rs1#rd <- (Vptr b Int.zero)). assert (match_env map e nil rs2). unfold rs2; eauto with rtlg. exploit tr_store_var_correct. eauto. auto. eexact H1. intros [rs3 [E F]]. unfold rs2 in F. rewrite Regmap.gss in F. econstructor; split. left. apply plus_star_trans with E0 (State cs c sp n2 rs2 m') E0. eapply plus_right. eexact A. unfold rs2. eapply exec_Ialloc; eauto. traceEq. eexact E. traceEq. econstructor; eauto. constructor. (* seq *) inv TS. econstructor; split. right; split. apply star_refl. Lt_state. econstructor; eauto. econstructor; eauto. (* ifthenelse *) inv TS. exploit transl_condexpr_correct; eauto. intros [rs' [A [B C]]]. econstructor; split. right; split. eexact A. destruct b; Lt_state. destruct b; econstructor; eauto. (* loop *) inversion TS; subst. econstructor; split. left. apply plus_one. eapply exec_Inop; eauto. econstructor; eauto. econstructor; eauto. (* block *) inv TS. econstructor; split. right; split. apply star_refl. Lt_state. econstructor; eauto. econstructor; eauto. (* exit seq *) inv TS. inv TK. econstructor; split. right; split. apply star_refl. Lt_state. econstructor; eauto. econstructor; eauto. (* exit block 0 *) inv TS. inv TK. simpl in H0. inv H0. econstructor; split. right; split. apply star_refl. Lt_state. econstructor; eauto. econstructor; eauto. (* exit block n+1 *) inv TS. inv TK. simpl in H0. econstructor; split. right; split. apply star_refl. Lt_state. econstructor; eauto. econstructor; eauto. (* switch *) inv TS. exploit transl_expr_correct; eauto. intros [rs' [A [B [C D]]]]. exploit transl_switch_correct; eauto. intros [nd [E F]]. econstructor; split. right; split. eapply star_trans. eexact A. eexact E. traceEq. Lt_state. econstructor; eauto. rewrite (validate_switch_correct _ _ _ H3 n). constructor. auto. (* return none *) inv TS. exploit match_stacks_call_cont; eauto. intros [U V]. econstructor; split. left; apply plus_one. eapply exec_Ireturn; eauto. simpl. constructor; auto. (* return some *) inv TS. exploit transl_expr_correct; eauto. intros [rs' [A [B [C D]]]]. exploit match_stacks_call_cont; eauto. intros [U V]. econstructor; split. left; eapply plus_right. eexact A. eapply exec_Ireturn; eauto. traceEq. simpl. rewrite C. constructor; auto. (* label *) inv TS. econstructor; split. right; split. apply star_refl. Lt_state. econstructor; eauto. (* goto *) inv TS. inversion TF; subst. exploit tr_find_label; eauto. eapply tr_cont_call_cont; eauto. intros [ns2 [nd2 [nexits2 [A [B C]]]]]. econstructor; split. left; apply plus_one. eapply exec_Inop; eauto. econstructor; eauto. (* internal call *) monadInv TF. exploit transl_function_charact; eauto. intro TRF. inversion TRF. subst f0. pose (e := set_locals (fn_vars f) (set_params vargs (CminorSel.fn_params f))). pose (rs := init_regs vargs rparams). assert (ME: match_env map2 e nil rs). unfold rs, e. eapply match_init_env_init_reg; eauto. assert (MWF: map_wf map2). assert (map_valid init_mapping s0) by apply init_mapping_valid. exploit (add_vars_valid (CminorSel.fn_params f)); eauto. intros [A B]. eapply add_vars_wf; eauto. eapply add_vars_wf; eauto. apply init_mapping_wf. econstructor; split. left; apply plus_one. eapply exec_function_internal; simpl; eauto. simpl. econstructor; eauto. econstructor; eauto. inversion MS; subst; econstructor; eauto. (* external call *) monadInv TF. econstructor; split. left; apply plus_one. eapply exec_function_external; eauto. constructor; auto. (* return *) inv MS. set (rs' := (rs#r <- v)). assert (match_env map e nil rs'). unfold rs'; eauto with rtlg. exploit tr_store_optvar_correct. eauto. eauto. eexact H. intros [rs'' [A B]]. econstructor; split. left; eapply plus_left. constructor. eexact A. traceEq. econstructor; eauto. constructor. unfold rs' in B. rewrite Regmap.gss in B. auto. Qed. Lemma transl_initial_states: forall S, CminorSel.initial_state prog S -> exists R, RTL.initial_state tprog R /\ match_states S R. Proof. induction 1. exploit function_ptr_translated; eauto. intros [tf [A B]]. econstructor; split. econstructor. rewrite (transform_partial_program_main _ _ TRANSL). fold tge. rewrite symbols_preserved. eexact H. eexact A. rewrite <- H1. apply sig_transl_function; auto. rewrite (Genv.init_mem_transf_partial _ _ TRANSL). constructor. auto. constructor. Qed. Lemma transl_final_states: forall S R r, match_states S R -> CminorSel.final_state S r -> RTL.final_state R r. Proof. intros. inv H0. inv H. inv MS. constructor. Qed. Theorem transf_program_correct: forall (beh: program_behavior), CminorSel.exec_program prog beh -> RTL.exec_program tprog beh. Proof. unfold CminorSel.exec_program, RTL.exec_program; intros. eapply simulation_star_wf_preservation with (order := lt_state); eauto. eexact transl_initial_states. eexact transl_final_states. apply lt_state_wf. exact transl_step_correct. Qed. End CORRECTNESS.