/* *********************************************************************/ /* */ /* The Compcert verified compiler */ /* */ /* Xavier Leroy, INRIA Paris-Rocquencourt */ /* */ /* Copyright Institut National de Recherche en Informatique et en */ /* Automatique. All rights reserved. This file is distributed */ /* under the terms of the GNU General Public License as published by */ /* the Free Software Foundation, either version 2 of the License, or */ /* (at your option) any later version. This file is also distributed */ /* under the terms of the INRIA Non-Commercial License Agreement. */ /* */ /* *********************************************************************/ /* Note that this compiles a superset of the language defined by the AST, including function calls in expressions, matches, while statements, etc. */ %{ open Datatypes open Camlcoq open BinNums open Integers open AST open Cminor (** Parsing external functions *) type ef_token = | EFT_tok of string | EFT_int of int32 | EFT_string of string | EFT_chunk of memory_chunk let mkef sg toks = match toks with | [EFT_tok "extern"; EFT_string s] -> EF_external(intern_string s, sg) | [EFT_tok "builtin"; EFT_string s] -> EF_builtin(intern_string s, sg) | [EFT_tok "volatile"; EFT_tok "load"; EFT_chunk c] -> EF_vload c | [EFT_tok "volatile"; EFT_tok "store"; EFT_chunk c] -> EF_vstore c | [EFT_tok "volatile"; EFT_tok "load"; EFT_chunk c; EFT_tok "global"; EFT_string s; EFT_int n] -> EF_vload_global(c, intern_string s, coqint_of_camlint n) | [EFT_tok "volatile"; EFT_tok "store"; EFT_chunk c; EFT_tok "global"; EFT_string s; EFT_int n] -> EF_vstore_global(c, intern_string s, coqint_of_camlint n) | [EFT_tok "malloc"] -> EF_malloc | [EFT_tok "free"] -> EF_free | [EFT_tok "memcpy"; EFT_tok "size"; EFT_int sz; EFT_tok "align"; EFT_int al] -> EF_memcpy(Z.of_sint32 sz, Z.of_sint32 al) | [EFT_tok "annot"; EFT_string txt] -> EF_annot(intern_string txt, List.map (fun t -> AA_arg t) sg.sig_args) | [EFT_tok "annot_val"; EFT_string txt] -> if sg.sig_args = [] then raise Parsing.Parse_error; EF_annot_val(intern_string txt, List.hd sg.sig_args) | [EFT_tok "inline_asm"; EFT_string txt] -> EF_inline_asm(intern_string txt) | _ -> raise Parsing.Parse_error (** Naming function calls in expressions *) type rexpr = | Rvar of ident | Rconst of constant | Runop of unary_operation * rexpr | Rbinop of binary_operation * rexpr * rexpr | Rload of memory_chunk * rexpr | Rcall of signature * rexpr * rexpr list | Rbuiltin of signature * ef_token list * rexpr list let temp_counter = ref 0 let temporaries = ref [] let mktemp () = incr temp_counter; let n = Printf.sprintf "__t%d" !temp_counter in let id = intern_string n in temporaries := id :: !temporaries; id let convert_accu = ref [] let rec convert_rexpr = function | Rvar id -> Evar id | Rconst c -> Econst c | Runop(op, e1) -> Eunop(op, convert_rexpr e1) | Rbinop(op, e1, e2) -> let c1 = convert_rexpr e1 in let c2 = convert_rexpr e2 in Ebinop(op, c1, c2) | Rload(chunk, e1) -> Eload(chunk, convert_rexpr e1) | Rcall(sg, e1, el) -> let c1 = convert_rexpr e1 in let cl = convert_rexpr_list el in let t = mktemp() in convert_accu := Scall(Some t, sg, c1, cl) :: !convert_accu; Evar t | Rbuiltin(sg, pef, el) -> let ef = mkef sg pef in let cl = convert_rexpr_list el in let t = mktemp() in convert_accu := Sbuiltin(Some t, ef, cl) :: !convert_accu; Evar t and convert_rexpr_list = function | [] -> [] | e1 :: el -> let c1 = convert_rexpr e1 in let cl = convert_rexpr_list el in c1 :: cl let rec prepend_seq stmts last = match stmts with | [] -> last | s1 :: sl -> prepend_seq sl (Sseq(s1, last)) let mkeval e = convert_accu := []; match e with | Rcall(sg, e1, el) -> let c1 = convert_rexpr e1 in let cl = convert_rexpr_list el in prepend_seq !convert_accu (Scall(None, sg, c1, cl)) | Rbuiltin(sg, pef, el) -> let ef = mkef sg pef in let cl = convert_rexpr_list el in prepend_seq !convert_accu (Sbuiltin(None, ef, cl)) | _ -> ignore (convert_rexpr e); prepend_seq !convert_accu Sskip let mkassign id e = convert_accu := []; match e with | Rcall(sg, e1, el) -> let c1 = convert_rexpr e1 in let cl = convert_rexpr_list el in prepend_seq !convert_accu (Scall(Some id, sg, c1, cl)) | Rbuiltin(sg, pef, el) -> let ef = mkef sg pef in let cl = convert_rexpr_list el in prepend_seq !convert_accu (Sbuiltin(Some id, ef, cl)) | _ -> let c = convert_rexpr e in prepend_seq !convert_accu (Sassign(id, c)) let mkstore chunk e1 e2 = convert_accu := []; let c1 = convert_rexpr e1 in let c2 = convert_rexpr e2 in prepend_seq !convert_accu (Sstore(chunk, c1, c2)) let mkifthenelse e s1 s2 = convert_accu := []; let c = convert_rexpr e in prepend_seq !convert_accu (Sifthenelse(c, s1, s2)) let mkreturn_some e = convert_accu := []; let c = convert_rexpr e in prepend_seq !convert_accu (Sreturn (Some c)) let mktailcall sg e1 el = convert_accu := []; let c1 = convert_rexpr e1 in let cl = convert_rexpr_list el in prepend_seq !convert_accu (Stailcall(sg, c1, cl)) let mkwhile expr body = Sblock (Sloop (mkifthenelse expr body (Sexit O))) (** Other constructors *) let intconst n = Rconst(Ointconst(coqint_of_camlint n)) let longconst n = Rconst(Olongconst(coqint_of_camlint64 n)) let exitnum n = Nat.of_int32 n let mkswitch islong convert expr (cases, dfl) = convert_accu := []; let c = convert_rexpr expr in let rec mktable = function | [] -> [] | (key, exit) :: rem -> (convert key, exitnum exit) :: mktable rem in prepend_seq !convert_accu (Sswitch(islong, c, mktable cases, exitnum dfl)) (*** match (a) { case 0: s0; case 1: s1; case 2: s2; } ---> block { block { block { block { switch(a) { case 0: exit 0; case 1: exit 1; default: exit 2; } }; s0; exit 2; }; s1; exit 1; }; s2; } Note that matches are assumed to be exhaustive ***) let mkmatch_aux expr cases = let ncases = List.length cases in let rec mktable n = function | [] -> assert false | [key, action] -> [] | (key, action) :: rem -> (coqint_of_camlint key, Nat.of_int n) :: mktable (n + 1) rem in let sw = Sswitch(false, expr, mktable 0 cases, Nat.of_int (ncases - 1)) in let rec mkblocks body n = function | [] -> assert false | [key, action] -> Sblock(Sseq(body, action)) | (key, action) :: rem -> mkblocks (Sblock(Sseq(body, Sseq(action, Sexit (Nat.of_int n))))) (n - 1) rem in mkblocks (Sblock sw) (ncases - 1) cases let mkmatch expr cases = convert_accu := []; let c = convert_rexpr expr in let s = match cases with | [] -> Sskip (* ??? *) | [key, action] -> action | _ -> mkmatch_aux c cases in prepend_seq !convert_accu s %} %token ABSF %token AMPERSAND %token AMPERSANDL %token BANG %token BANGEQUAL %token BANGEQUALF %token BANGEQUALU %token BANGEQUALL %token BANGEQUALLU %token BAR %token BARL %token BUILTIN %token CARET %token CARETL %token CASE %token COLON %token COMMA %token DEFAULT %token ELSE %token EQUAL %token EQUALEQUAL %token EQUALEQUALF %token EQUALEQUALU %token EQUALEQUALL %token EQUALEQUALLU %token EOF %token EXIT %token EXTERN %token FLOAT %token FLOAT32 %token FLOAT64 %token FLOATLIT %token FLOATOFINT %token FLOATOFINTU %token FLOATOFLONG %token FLOATOFLONGU %token GOTO %token GREATER %token GREATERF %token GREATERU %token GREATERL %token GREATERLU %token GREATEREQUAL %token GREATEREQUALF %token GREATEREQUALU %token GREATEREQUALL %token GREATEREQUALLU %token GREATERGREATER %token GREATERGREATERU %token GREATERGREATERL %token GREATERGREATERLU %token IDENT %token IF %token INT %token INT16 %token INT16S %token INT16U %token INT32 %token INT64 %token INT8 %token INT8S %token INT8U %token INTLIT %token INTOFFLOAT %token INTUOFFLOAT %token INTOFLONG %token LBRACE %token LBRACELBRACE %token LBRACKET %token LESS %token LESSU %token LESSF %token LESSL %token LESSLU %token LESSEQUAL %token LESSEQUALU %token LESSEQUALF %token LESSEQUALL %token LESSEQUALLU %token LESSLESS %token LESSLESSL %token LONG %token LONGLIT %token LONGOFINT %token LONGOFINTU %token LONGOFFLOAT %token LONGUOFFLOAT %token LOOP %token LPAREN %token MATCH %token MINUS %token MINUSF %token MINUSL %token MINUSGREATER %token PERCENT %token PERCENTU %token PERCENTL %token PERCENTLU %token PLUS %token PLUSF %token PLUSL %token RBRACE %token RBRACERBRACE %token RBRACKET %token READONLY %token RETURN %token RPAREN %token SEMICOLON %token SINGLE %token SLASH %token SLASHF %token SLASHU %token SLASHL %token SLASHLU %token STACK %token STAR %token STARF %token STARL %token STRINGLIT %token SWITCH %token SWITCHL %token TILDE %token TILDEL %token TAILCALL %token VAR %token VOID %token VOLATILE %token WHILE /* Precedences from low to high */ %nonassoc p_THEN %nonassoc ELSE %left BAR BARL %left CARET CARETL %left AMPERSAND AMPERSANDL %left EQUALEQUAL BANGEQUAL LESS LESSEQUAL GREATER GREATEREQUAL EQUALEQUALU BANGEQUALU LESSU LESSEQUALU GREATERU GREATEREQUALU EQUALEQUALF BANGEQUALF LESSF LESSEQUALF GREATERF GREATEREQUALF EQUALEQUALL BANGEQUALL LESSL LESSEQUALL GREATERL GREATEREQUALL EQUALEQUALLU BANGEQUALLU LESSLU LESSEQUALLU GREATERLU GREATEREQUALLU %left LESSLESS GREATERGREATER GREATERGREATERU LESSLESSL GREATERGREATERL GREATERGREATERLU %left PLUS PLUSF PLUSL MINUS MINUSF MINUSL %left STAR SLASH PERCENT STARF SLASHF SLASHU PERCENTU STARL SLASHL SLASHLU PERCENTL PERCENTLU %nonassoc BANG TILDE TILDEL p_uminus ABSF INTOFFLOAT INTUOFFLOAT FLOATOFINT FLOATOFINTU INT8S INT8U INT16S INT16U FLOAT32 INTOFLONG LONGOFINT LONGOFINTU LONGOFFLOAT LONGUOFFLOAT FLOATOFLONG FLOATOFLONGU %left LPAREN /* Entry point */ %start prog %type prog %% /* Programs */ prog: EQUAL STRINGLIT global_declarations EOF { { prog_defs = List.rev $3; prog_main = intern_string $2; } } | global_declarations EOF { { prog_defs = List.rev $1; prog_main = intern_string "main" } } ; global_declarations: /* empty */ { [] } | global_declarations global_declaration { $2 :: $1 } ; global_declaration: proc { $1 } | VAR STRINGLIT LBRACKET INTLIT RBRACKET /* old style */ { (intern_string $2, Gvar{gvar_info = (); gvar_init = [Init_space(Z.of_sint32 $4)]; gvar_readonly = false; gvar_volatile = false}) } | VAR STRINGLIT is_readonly is_volatile LBRACE init_data_list RBRACE { (intern_string $2, Gvar{gvar_info = (); gvar_init = List.rev $6; gvar_readonly = $3; gvar_volatile = $4; } ) } ; is_readonly: /* empty */ { false } | READONLY { true } is_volatile: /* empty */ { false } | VOLATILE { true } init_data_list: /* empty */ { [] } | init_data_list_1 { $1 } ; init_data_list_1: init_data { [$1] } | init_data_list_1 COMMA init_data { $3 :: $1 } ; init_data: INT8 INTLIT { Init_int8 (coqint_of_camlint $2) } | INT16 INTLIT { Init_int16 (coqint_of_camlint $2) } | INT32 INTLIT { Init_int32 (coqint_of_camlint $2) } | INT INTLIT { Init_int32 (coqint_of_camlint $2) } | INTLIT { Init_int32 (coqint_of_camlint $1) } | LONGLIT { Init_int64 (coqint_of_camlint64 $1) } | INT64 LONGLIT { Init_int64 (coqint_of_camlint64 $2) } | FLOAT32 FLOATLIT { Init_float32 (coqfloat_of_camlfloat $2) } | FLOAT64 FLOATLIT { Init_float64 (coqfloat_of_camlfloat $2) } | FLOAT FLOATLIT { Init_float64 (coqfloat_of_camlfloat $2) } | FLOATLIT { Init_float64 (coqfloat_of_camlfloat $1) } | LBRACKET INTLIT RBRACKET { Init_space (Z.of_sint32 $2) } | INTLIT LPAREN STRINGLIT RPAREN { Init_addrof (intern_string $3, coqint_of_camlint $1) } ; /* Procedures */ proc: STRINGLIT LPAREN parameters RPAREN COLON signature LBRACE stack_declaration var_declarations stmt_list RBRACE { let tmp = !temporaries in temporaries := []; temp_counter := 0; (intern_string $1, Gfun(Internal { fn_sig = $6; fn_params = List.rev $3; fn_vars = List.rev (tmp @ $9); fn_stackspace = $8; fn_body = $10 })) } | EXTERN STRINGLIT COLON signature { (intern_string $2, Gfun(External(EF_external(intern_string $2,$4)))) } | EXTERN STRINGLIT EQUAL eftoks COLON signature { (intern_string $2, Gfun(External(mkef $6 $4))) } ; signature: type_ { {sig_args = []; sig_res = Some $1; sig_cc = cc_default} } | VOID { {sig_args = []; sig_res = None; sig_cc = cc_default} } | type_ MINUSGREATER signature { let s = $3 in {s with sig_args = $1 :: s.sig_args} } ; parameters: /* empty */ { [] } | parameter_list { $1 } ; parameter_list: IDENT { intern_string $1 :: [] } | parameter_list COMMA IDENT { intern_string $3 :: $1 } ; stack_declaration: /* empty */ { Z0 } | STACK INTLIT SEMICOLON { Z.of_sint32 $2 } ; var_declarations: /* empty */ { [] } | var_declarations var_declaration { $2 @ $1 } ; var_declaration: VAR parameter_list SEMICOLON { $2 } ; /* Statements */ stmt: expr SEMICOLON { mkeval $1 } | IDENT EQUAL expr SEMICOLON { mkassign (intern_string $1) $3 } | memory_chunk LBRACKET expr RBRACKET EQUAL expr SEMICOLON { mkstore $1 $3 $6 } | IF LPAREN expr RPAREN stmts ELSE stmts { mkifthenelse $3 $5 $7 } | IF LPAREN expr RPAREN stmts %prec p_THEN { mkifthenelse $3 $5 Sskip } | LOOP stmts { Sloop($2) } | LBRACELBRACE stmt_list RBRACERBRACE { Sblock($2) } | EXIT SEMICOLON { Sexit O } | EXIT INTLIT SEMICOLON { Sexit (exitnum $2) } | RETURN SEMICOLON { Sreturn None } | RETURN expr SEMICOLON { mkreturn_some $2 } | SWITCH LPAREN expr RPAREN LBRACE switch_cases RBRACE { mkswitch false Z.of_uint32 $3 $6 } | SWITCHL LPAREN expr RPAREN LBRACE switchl_cases RBRACE { mkswitch true Z.of_uint64 $3 $6 } | MATCH LPAREN expr RPAREN LBRACE match_cases RBRACE { mkmatch $3 $6 } | TAILCALL expr LPAREN expr_list RPAREN COLON signature SEMICOLON { mktailcall $7 $2 $4 } | WHILE LPAREN expr RPAREN stmts { mkwhile $3 $5 } | IDENT COLON stmts { Slabel (intern_string $1,$3) } | GOTO IDENT SEMICOLON { Sgoto(intern_string $2) } ; stmts: LBRACE stmt_list RBRACE { $2 } | stmt { $1 } ; stmt_list: /* empty */ { Sskip } | stmt stmt_list { Sseq($1, $2) } ; switch_cases: DEFAULT COLON EXIT INTLIT SEMICOLON { ([], $4) } | CASE INTLIT COLON EXIT INTLIT SEMICOLON switch_cases { let (cases, dfl) = $7 in (($2, $5) :: cases, dfl) } ; switchl_cases: DEFAULT COLON EXIT INTLIT SEMICOLON { ([], $4) } | CASE LONGLIT COLON EXIT INTLIT SEMICOLON switchl_cases { let (cases, dfl) = $7 in (($2, $5) :: cases, dfl) } ; match_cases: /* empty */ { [] } | CASE INTLIT COLON stmt_list match_cases { ($2, $4) :: $5 } ; /* Expressions */ expr: LPAREN expr RPAREN { $2 } | IDENT { Rvar(intern_string $1) } | INTLIT { intconst $1 } | LONGLIT { longconst $1 } | FLOATLIT { Rconst(Ofloatconst (coqfloat_of_camlfloat $1)) } | STRINGLIT { Rconst(Oaddrsymbol(intern_string $1, Int.zero)) } | AMPERSAND INTLIT { Rconst(Oaddrstack(coqint_of_camlint $2)) } | MINUS expr %prec p_uminus { Runop(Onegint, $2) } | MINUSF expr %prec p_uminus { Runop(Onegf, $2) } | ABSF expr { Runop(Oabsf, $2) } | INTOFFLOAT expr { Runop(Ointoffloat, $2) } | INTUOFFLOAT expr { Runop(Ointuoffloat, $2) } | FLOATOFINT expr { Runop(Ofloatofint, $2) } | FLOATOFINTU expr { Runop(Ofloatofintu, $2) } | TILDE expr { Runop(Onotint, $2) } | BANG expr { Rbinop(Ocmpu Ceq, $2, intconst 0l) } | INT8S expr { Runop(Ocast8signed, $2) } | INT8U expr { Runop(Ocast8unsigned, $2) } | INT16S expr { Runop(Ocast16signed, $2) } | INT16U expr { Runop(Ocast16unsigned, $2) } | FLOAT32 expr { Runop(Osingleoffloat, $2) } | MINUSL expr %prec p_uminus { Runop(Onegl, $2) } | TILDEL expr { Runop(Onotl, $2) } | INTOFLONG expr { Runop(Ointoflong, $2) } | LONGOFINT expr { Runop(Olongofint, $2) } | LONGOFINTU expr { Runop(Olongofintu, $2) } | LONGOFFLOAT expr { Runop(Olongoffloat, $2) } | LONGUOFFLOAT expr { Runop(Olonguoffloat, $2) } | FLOATOFLONG expr { Runop(Ofloatoflong, $2) } | FLOATOFLONGU expr { Runop(Ofloatoflongu, $2) } | expr PLUS expr { Rbinop(Oadd, $1, $3) } | expr MINUS expr { Rbinop(Osub, $1, $3) } | expr STAR expr { Rbinop(Omul, $1, $3) } | expr SLASH expr { Rbinop(Odiv, $1, $3) } | expr PERCENT expr { Rbinop(Omod, $1, $3) } | expr SLASHU expr { Rbinop(Odivu, $1, $3) } | expr PERCENTU expr { Rbinop(Omodu, $1, $3) } | expr AMPERSAND expr { Rbinop(Oand, $1, $3) } | expr BAR expr { Rbinop(Oor, $1, $3) } | expr CARET expr { Rbinop(Oxor, $1, $3) } | expr LESSLESS expr { Rbinop(Oshl, $1, $3) } | expr GREATERGREATER expr { Rbinop(Oshr, $1, $3) } | expr GREATERGREATERU expr { Rbinop(Oshru, $1, $3) } | expr PLUSL expr { Rbinop(Oaddl, $1, $3) } | expr MINUSL expr { Rbinop(Osubl, $1, $3) } | expr STARL expr { Rbinop(Omull, $1, $3) } | expr SLASHL expr { Rbinop(Odivl, $1, $3) } | expr PERCENTL expr { Rbinop(Omodl, $1, $3) } | expr SLASHLU expr { Rbinop(Odivlu, $1, $3) } | expr PERCENTLU expr { Rbinop(Omodlu, $1, $3) } | expr AMPERSANDL expr { Rbinop(Oandl, $1, $3) } | expr BARL expr { Rbinop(Oorl, $1, $3) } | expr CARETL expr { Rbinop(Oxorl, $1, $3) } | expr LESSLESSL expr { Rbinop(Oshll, $1, $3) } | expr GREATERGREATERL expr { Rbinop(Oshrl, $1, $3) } | expr GREATERGREATERLU expr { Rbinop(Oshrlu, $1, $3) } | expr PLUSF expr { Rbinop(Oaddf, $1, $3) } | expr MINUSF expr { Rbinop(Osubf, $1, $3) } | expr STARF expr { Rbinop(Omulf, $1, $3) } | expr SLASHF expr { Rbinop(Odivf, $1, $3) } | expr EQUALEQUAL expr { Rbinop(Ocmp Ceq, $1, $3) } | expr BANGEQUAL expr { Rbinop(Ocmp Cne, $1, $3) } | expr LESS expr { Rbinop(Ocmp Clt, $1, $3) } | expr LESSEQUAL expr { Rbinop(Ocmp Cle, $1, $3) } | expr GREATER expr { Rbinop(Ocmp Cgt, $1, $3) } | expr GREATEREQUAL expr { Rbinop(Ocmp Cge, $1, $3) } | expr EQUALEQUALU expr { Rbinop(Ocmpu Ceq, $1, $3) } | expr BANGEQUALU expr { Rbinop(Ocmpu Cne, $1, $3) } | expr LESSU expr { Rbinop(Ocmpu Clt, $1, $3) } | expr LESSEQUALU expr { Rbinop(Ocmpu Cle, $1, $3) } | expr GREATERU expr { Rbinop(Ocmpu Cgt, $1, $3) } | expr GREATEREQUALU expr { Rbinop(Ocmpu Cge, $1, $3) } | expr EQUALEQUALL expr { Rbinop(Ocmpl Ceq, $1, $3) } | expr BANGEQUALL expr { Rbinop(Ocmpl Cne, $1, $3) } | expr LESSL expr { Rbinop(Ocmpl Clt, $1, $3) } | expr LESSEQUALL expr { Rbinop(Ocmpl Cle, $1, $3) } | expr GREATERL expr { Rbinop(Ocmpl Cgt, $1, $3) } | expr GREATEREQUALL expr { Rbinop(Ocmpl Cge, $1, $3) } | expr EQUALEQUALLU expr { Rbinop(Ocmplu Ceq, $1, $3) } | expr BANGEQUALLU expr { Rbinop(Ocmplu Cne, $1, $3) } | expr LESSLU expr { Rbinop(Ocmplu Clt, $1, $3) } | expr LESSEQUALLU expr { Rbinop(Ocmplu Cle, $1, $3) } | expr GREATERLU expr { Rbinop(Ocmplu Cgt, $1, $3) } | expr GREATEREQUALLU expr { Rbinop(Ocmplu Cge, $1, $3) } | expr EQUALEQUALF expr { Rbinop(Ocmpf Ceq, $1, $3) } | expr BANGEQUALF expr { Rbinop(Ocmpf Cne, $1, $3) } | expr LESSF expr { Rbinop(Ocmpf Clt, $1, $3) } | expr LESSEQUALF expr { Rbinop(Ocmpf Cle, $1, $3) } | expr GREATERF expr { Rbinop(Ocmpf Cgt, $1, $3) } | expr GREATEREQUALF expr { Rbinop(Ocmpf Cge, $1, $3) } | memory_chunk LBRACKET expr RBRACKET { Rload($1, $3) } | expr LPAREN expr_list RPAREN COLON signature{ Rcall($6, $1, $3) } | BUILTIN eftoks LPAREN expr_list RPAREN COLON signature{ Rbuiltin($7, $2, $4) } ; expr_list: /* empty */ { [] } | expr_list_1 { $1 } ; expr_list_1: expr { $1 :: [] } | expr COMMA expr_list_1 { $1 :: $3 } ; memory_chunk: INT8S { Mint8signed } | INT8U { Mint8unsigned } | INT16S { Mint16signed } | INT16U { Mint16unsigned } | INT32 { Mint32 } | INT64 { Mint64 } | INT { Mint32 } | FLOAT32 { Mfloat32 } | FLOAT64 { Mfloat64 } | FLOAT { Mfloat64 } ; /* Types */ type_: INT { Tint } | FLOAT { Tfloat } | LONG { Tlong } | SINGLE { Tsingle } ; /* External functions */ eftok: IDENT { EFT_tok $1 } | STRINGLIT { EFT_string $1 } | INTLIT { EFT_int $1 } | VOLATILE { EFT_tok "volatile" } | EXTERN { EFT_tok "extern" } | BUILTIN { EFT_tok "builtin" } | memory_chunk { EFT_chunk $1 } ; eftoks: eftok eftoks { $1 :: $2 } | /*empty*/ { [] } ;