(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Correctness proof for ARM code generation: main proof. *) Require Import Coqlib. Require Import Maps. Require Import Errors. Require Import AST. Require Import Integers. Require Import Floats. Require Import Values. Require Import Memory. Require Import Events. Require Import Globalenvs. Require Import Smallstep. Require Import Op. Require Import Locations. Require Import Mach. Require Import Machconcr. Require Import Machtyping. Require Import Asm. Require Import Asmgen. Require Import Asmgenretaddr. Require Import Asmgenproof1. Section PRESERVATION. Variable prog: Mach.program. Variable tprog: Asm.program. Hypothesis TRANSF: transf_program prog = Errors.OK tprog. Let ge := Genv.globalenv prog. Let tge := Genv.globalenv tprog. Lemma symbols_preserved: forall id, Genv.find_symbol tge id = Genv.find_symbol ge id. Proof. intros. unfold ge, tge. apply Genv.find_symbol_transf_partial with transf_fundef. exact TRANSF. Qed. Lemma functions_translated: forall b f, Genv.find_funct_ptr ge b = Some f -> exists tf, Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = Errors.OK tf. Proof (Genv.find_funct_ptr_transf_partial transf_fundef TRANSF). Lemma functions_transl: forall f b, Genv.find_funct_ptr ge b = Some (Internal f) -> Genv.find_funct_ptr tge b = Some (Internal (transl_function f)). Proof. intros. destruct (functions_translated _ _ H) as [tf [A B]]. rewrite A. generalize B. unfold transf_fundef, transf_partial_fundef, transf_function. case (zlt Int.max_unsigned (code_size (transl_function f))); simpl; intro. congruence. intro. inv B0. auto. Qed. Lemma functions_transl_no_overflow: forall b f, Genv.find_funct_ptr ge b = Some (Internal f) -> code_size (transl_function f) <= Int.max_unsigned. Proof. intros. destruct (functions_translated _ _ H) as [tf [A B]]. generalize B. unfold transf_fundef, transf_partial_fundef, transf_function. case (zlt Int.max_unsigned (code_size (transl_function f))); simpl; intro. congruence. intro; omega. Qed. (** * Properties of control flow *) Lemma find_instr_in: forall c pos i, find_instr pos c = Some i -> In i c. Proof. induction c; simpl. intros; discriminate. intros until i. case (zeq pos 0); intros. left; congruence. right; eauto. Qed. Lemma find_instr_tail: forall c1 i c2 pos, code_tail pos c1 (i :: c2) -> find_instr pos c1 = Some i. Proof. induction c1; simpl; intros. inv H. destruct (zeq pos 0). subst pos. inv H. auto. generalize (code_tail_pos _ _ _ H4). intro. omegaContradiction. inv H. congruence. replace (pos0 + 1 - 1) with pos0 by omega. eauto. Qed. Remark code_size_pos: forall fn, code_size fn >= 0. Proof. induction fn; simpl; omega. Qed. Remark code_tail_bounds: forall fn ofs i c, code_tail ofs fn (i :: c) -> 0 <= ofs < code_size fn. Proof. assert (forall ofs fn c, code_tail ofs fn c -> forall i c', c = i :: c' -> 0 <= ofs < code_size fn). induction 1; intros; simpl. rewrite H. simpl. generalize (code_size_pos c'). omega. generalize (IHcode_tail _ _ H0). omega. eauto. Qed. Lemma code_tail_next: forall fn ofs i c, code_tail ofs fn (i :: c) -> code_tail (ofs + 1) fn c. Proof. assert (forall ofs fn c, code_tail ofs fn c -> forall i c', c = i :: c' -> code_tail (ofs + 1) fn c'). induction 1; intros. subst c. constructor. constructor. constructor. eauto. eauto. Qed. Lemma code_tail_next_int: forall fn ofs i c, code_size fn <= Int.max_unsigned -> code_tail (Int.unsigned ofs) fn (i :: c) -> code_tail (Int.unsigned (Int.add ofs Int.one)) fn c. Proof. intros. rewrite Int.add_unsigned. change (Int.unsigned Int.one) with 1. rewrite Int.unsigned_repr. apply code_tail_next with i; auto. generalize (code_tail_bounds _ _ _ _ H0). omega. Qed. (** [transl_code_at_pc pc fn c] holds if the code pointer [pc] points within the ARM code generated by translating Mach function [fn], and [c] is the tail of the generated code at the position corresponding to the code pointer [pc]. *) Inductive transl_code_at_pc: val -> block -> Mach.function -> Mach.code -> Prop := transl_code_at_pc_intro: forall b ofs f c, Genv.find_funct_ptr ge b = Some (Internal f) -> code_tail (Int.unsigned ofs) (transl_function f) (transl_code f c) -> transl_code_at_pc (Vptr b ofs) b f c. (** The following lemmas show that straight-line executions (predicate [exec_straight]) correspond to correct ARM executions (predicate [exec_steps]) under adequate [transl_code_at_pc] hypotheses. *) Lemma exec_straight_steps_1: forall fn c rs m c' rs' m', exec_straight tge fn c rs m c' rs' m' -> code_size fn <= Int.max_unsigned -> forall b ofs, rs#PC = Vptr b ofs -> Genv.find_funct_ptr tge b = Some (Internal fn) -> code_tail (Int.unsigned ofs) fn c -> plus step tge (State rs m) E0 (State rs' m'). Proof. induction 1; intros. apply plus_one. econstructor; eauto. eapply find_instr_tail. eauto. eapply plus_left'. econstructor; eauto. eapply find_instr_tail. eauto. apply IHexec_straight with b (Int.add ofs Int.one). auto. rewrite H0. rewrite H3. reflexivity. auto. apply code_tail_next_int with i; auto. traceEq. Qed. Lemma exec_straight_steps_2: forall fn c rs m c' rs' m', exec_straight tge fn c rs m c' rs' m' -> code_size fn <= Int.max_unsigned -> forall b ofs, rs#PC = Vptr b ofs -> Genv.find_funct_ptr tge b = Some (Internal fn) -> code_tail (Int.unsigned ofs) fn c -> exists ofs', rs'#PC = Vptr b ofs' /\ code_tail (Int.unsigned ofs') fn c'. Proof. induction 1; intros. exists (Int.add ofs Int.one). split. rewrite H0. rewrite H2. auto. apply code_tail_next_int with i1; auto. apply IHexec_straight with (Int.add ofs Int.one). auto. rewrite H0. rewrite H3. reflexivity. auto. apply code_tail_next_int with i; auto. Qed. Lemma exec_straight_exec: forall fb f c c' rs m rs' m', transl_code_at_pc (rs PC) fb f c -> exec_straight tge (transl_function f) (transl_code f c) rs m c' rs' m' -> plus step tge (State rs m) E0 (State rs' m'). Proof. intros. inversion H. subst. eapply exec_straight_steps_1; eauto. eapply functions_transl_no_overflow; eauto. eapply functions_transl; eauto. Qed. Lemma exec_straight_at: forall fb f c c' rs m rs' m', transl_code_at_pc (rs PC) fb f c -> exec_straight tge (transl_function f) (transl_code f c) rs m (transl_code f c') rs' m' -> transl_code_at_pc (rs' PC) fb f c'. Proof. intros. inversion H. subst. generalize (functions_transl_no_overflow _ _ H2). intro. generalize (functions_transl _ _ H2). intro. generalize (exec_straight_steps_2 _ _ _ _ _ _ _ H0 H4 _ _ (sym_equal H1) H5 H3). intros [ofs' [PC' CT']]. rewrite PC'. constructor; auto. Qed. (** Correctness of the return addresses predicted by [ARMgen.return_address_offset]. *) Remark code_tail_no_bigger: forall pos c1 c2, code_tail pos c1 c2 -> (length c2 <= length c1)%nat. Proof. induction 1; simpl; omega. Qed. Remark code_tail_unique: forall fn c pos pos', code_tail pos fn c -> code_tail pos' fn c -> pos = pos'. Proof. induction fn; intros until pos'; intros ITA CT; inv ITA; inv CT; auto. generalize (code_tail_no_bigger _ _ _ H3); simpl; intro; omega. generalize (code_tail_no_bigger _ _ _ H3); simpl; intro; omega. f_equal. eauto. Qed. Lemma return_address_offset_correct: forall b ofs fb f c ofs', transl_code_at_pc (Vptr b ofs) fb f c -> return_address_offset f c ofs' -> ofs' = ofs. Proof. intros. inv H0. inv H. generalize (code_tail_unique _ _ _ _ H1 H7). intro. rewrite H. apply Int.repr_unsigned. Qed. (** The [find_label] function returns the code tail starting at the given label. A connection with [code_tail] is then established. *) Fixpoint find_label (lbl: label) (c: code) {struct c} : option code := match c with | nil => None | instr :: c' => if is_label lbl instr then Some c' else find_label lbl c' end. Lemma label_pos_code_tail: forall lbl c pos c', find_label lbl c = Some c' -> exists pos', label_pos lbl pos c = Some pos' /\ code_tail (pos' - pos) c c' /\ pos < pos' <= pos + code_size c. Proof. induction c. simpl; intros. discriminate. simpl; intros until c'. case (is_label lbl a). intro EQ; injection EQ; intro; subst c'. exists (pos + 1). split. auto. split. replace (pos + 1 - pos) with (0 + 1) by omega. constructor. constructor. generalize (code_size_pos c). omega. intros. generalize (IHc (pos + 1) c' H). intros [pos' [A [B C]]]. exists pos'. split. auto. split. replace (pos' - pos) with ((pos' - (pos + 1)) + 1) by omega. constructor. auto. omega. Qed. (** The following lemmas show that the translation from Mach to ARM preserves labels, in the sense that the following diagram commutes: << translation Mach code ------------------------ ARM instr sequence | | | Mach.find_label lbl find_label lbl | | | v v Mach code tail ------------------- ARM instr seq tail translation >> The proof demands many boring lemmas showing that ARM constructor functions do not introduce new labels. *) Section TRANSL_LABEL. Variable lbl: label. Remark loadimm_label: forall r n k, find_label lbl (loadimm r n k) = find_label lbl k. Proof. intros. unfold loadimm. destruct (is_immed_arith n). reflexivity. destruct (is_immed_arith (Int.not n)); reflexivity. Qed. Hint Rewrite loadimm_label: labels. Remark addimm_label: forall r1 r2 n k, find_label lbl (addimm r1 r2 n k) = find_label lbl k. Proof. intros; unfold addimm. destruct (is_immed_arith n). reflexivity. destruct (is_immed_arith (Int.neg n)). reflexivity. autorewrite with labels. reflexivity. Qed. Hint Rewrite addimm_label: labels. Remark andimm_label: forall r1 r2 n k, find_label lbl (andimm r1 r2 n k) = find_label lbl k. Proof. intros; unfold andimm. destruct (is_immed_arith n). reflexivity. destruct (is_immed_arith (Int.not n)). reflexivity. autorewrite with labels. reflexivity. Qed. Hint Rewrite andimm_label: labels. Remark makeimm_Prsb_label: forall r1 r2 n k, find_label lbl (makeimm Prsb r1 r2 n k) = find_label lbl k. Proof. intros; unfold makeimm. destruct (is_immed_arith n). reflexivity. autorewrite with labels; auto. Qed. Remark makeimm_Porr_label: forall r1 r2 n k, find_label lbl (makeimm Porr r1 r2 n k) = find_label lbl k. Proof. intros; unfold makeimm. destruct (is_immed_arith n). reflexivity. autorewrite with labels; auto. Qed. Remark makeimm_Peor_label: forall r1 r2 n k, find_label lbl (makeimm Peor r1 r2 n k) = find_label lbl k. Proof. intros; unfold makeimm. destruct (is_immed_arith n). reflexivity. autorewrite with labels; auto. Qed. Hint Rewrite makeimm_Prsb_label makeimm_Porr_label makeimm_Peor_label: labels. Remark loadind_int_label: forall base ofs dst k, find_label lbl (loadind_int base ofs dst k) = find_label lbl k. Proof. intros; unfold loadind_int. destruct (is_immed_mem_word ofs); autorewrite with labels; auto. Qed. Remark loadind_label: forall base ofs ty dst k, find_label lbl (loadind base ofs ty dst k) = find_label lbl k. Proof. intros; unfold loadind. destruct ty. apply loadind_int_label. unfold loadind_float. destruct (is_immed_mem_float ofs); autorewrite with labels; auto. Qed. Remark storeind_int_label: forall base ofs src k, find_label lbl (storeind_int src base ofs k) = find_label lbl k. Proof. intros; unfold storeind_int. destruct (is_immed_mem_word ofs); autorewrite with labels; auto. Qed. Remark storeind_label: forall base ofs ty src k, find_label lbl (storeind src base ofs ty k) = find_label lbl k. Proof. intros; unfold storeind. destruct ty. apply storeind_int_label. unfold storeind_float. destruct (is_immed_mem_float ofs); autorewrite with labels; auto. Qed. Hint Rewrite loadind_int_label loadind_label storeind_int_label storeind_label: labels. Remark transl_cond_label: forall cond args k, find_label lbl (transl_cond cond args k) = find_label lbl k. Proof. intros; unfold transl_cond. destruct cond; (destruct args; [try reflexivity | destruct args; [try reflexivity | destruct args; try reflexivity]]). destruct (is_immed_arith i); autorewrite with labels; auto. destruct (is_immed_arith i); autorewrite with labels; auto. Qed. Hint Rewrite transl_cond_label: labels. Remark transl_op_label: forall op args r k, find_label lbl (transl_op op args r k) = find_label lbl k. Proof. intros; unfold transl_op; destruct op; destruct args; try (destruct args); try (destruct args); try (destruct args); try reflexivity; autorewrite with labels; try reflexivity. case (mreg_type m); reflexivity. case (ireg_eq (ireg_of r) (ireg_of m) || ireg_eq (ireg_of r) (ireg_of m0)); reflexivity. transitivity (find_label lbl (addimm IR14 (ireg_of m) (Int.sub (Int.shl Int.one i) Int.one) (Pmovc CRge IR14 (SOreg (ireg_of m)) :: Pmov (ireg_of r) (SOasrimm IR14 i) :: k))). unfold find_label; auto. autorewrite with labels. reflexivity. Qed. Hint Rewrite transl_op_label: labels. Remark transl_load_store_label: forall (mk_instr_imm: ireg -> int -> instruction) (mk_instr_gen: option (ireg -> shift_addr -> instruction)) (is_immed: int -> bool) (addr: addressing) (args: list mreg) (k: code), (forall r n, is_label lbl (mk_instr_imm r n) = false) -> (match mk_instr_gen with | None => True | Some f => forall r sa, is_label lbl (f r sa) = false end) -> find_label lbl (transl_load_store mk_instr_imm mk_instr_gen is_immed addr args k) = find_label lbl k. Proof. intros; unfold transl_load_store. destruct addr; destruct args; try (destruct args); try (destruct args); try reflexivity. destruct (is_immed i); autorewrite with labels; simpl; rewrite H; auto. destruct mk_instr_gen. simpl. rewrite H0. auto. simpl. rewrite H. auto. destruct mk_instr_gen. simpl. rewrite H0. auto. simpl. rewrite H. auto. destruct (is_immed i); autorewrite with labels; simpl; rewrite H; auto. Qed. Hint Rewrite transl_load_store_label: labels. Lemma transl_instr_label: forall f i k, find_label lbl (transl_instr f i k) = if Mach.is_label lbl i then Some k else find_label lbl k. Proof. intros. generalize (Mach.is_label_correct lbl i). case (Mach.is_label lbl i); intro. subst i. simpl. rewrite peq_true. auto. destruct i; simpl; autorewrite with labels; try reflexivity. unfold transl_load_store_int, transl_load_store_float. destruct m; rewrite transl_load_store_label; intros; auto. unfold transl_load_store_int, transl_load_store_float. destruct m; rewrite transl_load_store_label; intros; auto. destruct s0; reflexivity. destruct s0; autorewrite with labels; reflexivity. rewrite peq_false. auto. congruence. Qed. Lemma transl_code_label: forall f c, find_label lbl (transl_code f c) = option_map (transl_code f) (Mach.find_label lbl c). Proof. induction c; simpl; intros. auto. rewrite transl_instr_label. case (Mach.is_label lbl a). reflexivity. auto. Qed. Lemma transl_find_label: forall f, find_label lbl (transl_function f) = option_map (transl_code f) (Mach.find_label lbl f.(fn_code)). Proof. intros. unfold transl_function. simpl. autorewrite with labels. apply transl_code_label. Qed. End TRANSL_LABEL. (** A valid branch in a piece of Mach code translates to a valid ``go to'' transition in the generated ARM code. *) Lemma find_label_goto_label: forall f lbl rs m c' b ofs, Genv.find_funct_ptr ge b = Some (Internal f) -> rs PC = Vptr b ofs -> Mach.find_label lbl f.(fn_code) = Some c' -> exists rs', goto_label (transl_function f) lbl rs m = OK rs' m /\ transl_code_at_pc (rs' PC) b f c' /\ forall r, r <> PC -> rs'#r = rs#r. Proof. intros. generalize (transl_find_label lbl f). rewrite H1; simpl. intro. generalize (label_pos_code_tail lbl (transl_function f) 0 (transl_code f c') H2). intros [pos' [A [B C]]]. exists (rs#PC <- (Vptr b (Int.repr pos'))). split. unfold goto_label. rewrite A. rewrite H0. auto. split. rewrite Pregmap.gss. constructor; auto. rewrite Int.unsigned_repr. replace (pos' - 0) with pos' in B. auto. omega. generalize (functions_transl_no_overflow _ _ H). omega. intros. apply Pregmap.gso; auto. Qed. (** * Proof of semantic preservation *) (** Semantic preservation is proved using simulation diagrams of the following form. << st1 --------------- st2 | | t| *|t | | v v st1'--------------- st2' >> The invariant is the [match_states] predicate below, which includes: - The ARM code pointed by the PC register is the translation of the current Mach code sequence. - Mach register values and ARM register values agree. *) Inductive match_stack: list Machconcr.stackframe -> Prop := | match_stack_nil: match_stack nil | match_stack_cons: forall fb sp ra c s f, Genv.find_funct_ptr ge fb = Some (Internal f) -> wt_function f -> incl c f.(fn_code) -> transl_code_at_pc ra fb f c -> match_stack s -> match_stack (Stackframe fb sp ra c :: s). Inductive match_states: Machconcr.state -> Asm.state -> Prop := | match_states_intro: forall s fb sp c ms m rs f (STACKS: match_stack s) (FIND: Genv.find_funct_ptr ge fb = Some (Internal f)) (WTF: wt_function f) (INCL: incl c f.(fn_code)) (AT: transl_code_at_pc (rs PC) fb f c) (AG: agree ms sp rs), match_states (Machconcr.State s fb sp c ms m) (Asm.State rs m) | match_states_call: forall s fb ms m rs (STACKS: match_stack s) (AG: agree ms (parent_sp s) rs) (ATPC: rs PC = Vptr fb Int.zero) (ATLR: rs IR14 = parent_ra s), match_states (Machconcr.Callstate s fb ms m) (Asm.State rs m) | match_states_return: forall s ms m rs (STACKS: match_stack s) (AG: agree ms (parent_sp s) rs) (ATPC: rs PC = parent_ra s), match_states (Machconcr.Returnstate s ms m) (Asm.State rs m). Lemma exec_straight_steps: forall s fb sp m1 f c1 rs1 c2 m2 ms2, match_stack s -> Genv.find_funct_ptr ge fb = Some (Internal f) -> wt_function f -> incl c2 f.(fn_code) -> transl_code_at_pc (rs1 PC) fb f c1 -> (exists rs2, exec_straight tge (transl_function f) (transl_code f c1) rs1 m1 (transl_code f c2) rs2 m2 /\ agree ms2 sp rs2) -> exists st', plus step tge (State rs1 m1) E0 st' /\ match_states (Machconcr.State s fb sp c2 ms2 m2) st'. Proof. intros. destruct H4 as [rs2 [A B]]. exists (State rs2 m2); split. eapply exec_straight_exec; eauto. econstructor; eauto. eapply exec_straight_at; eauto. Qed. (** We need to show that, in the simulation diagram, we cannot take infinitely many Mach transitions that correspond to zero transitions on the ARM side. Actually, all Mach transitions correspond to at least one ARM transition, except the transition from [Machconcr.Returnstate] to [Machconcr.State]. So, the following integer measure will suffice to rule out the unwanted behaviour. *) Definition measure (s: Machconcr.state) : nat := match s with | Machconcr.State _ _ _ _ _ _ => 0%nat | Machconcr.Callstate _ _ _ _ => 0%nat | Machconcr.Returnstate _ _ _ => 1%nat end. (** We show the simulation diagram by case analysis on the Mach transition on the left. Since the proof is large, we break it into one lemma per transition. *) Definition exec_instr_prop (s1: Machconcr.state) (t: trace) (s2: Machconcr.state) : Prop := forall s1' (MS: match_states s1 s1'), (exists s2', plus step tge s1' t s2' /\ match_states s2 s2') \/ (measure s2 < measure s1 /\ t = E0 /\ match_states s2 s1')%nat. Lemma exec_Mlabel_prop: forall (s : list stackframe) (fb : block) (sp : val) (lbl : Mach.label) (c : list Mach.instruction) (ms : Mach.regset) (m : mem), exec_instr_prop (Machconcr.State s fb sp (Mlabel lbl :: c) ms m) E0 (Machconcr.State s fb sp c ms m). Proof. intros; red; intros; inv MS. left; eapply exec_straight_steps; eauto with coqlib. exists (nextinstr rs); split. simpl. apply exec_straight_one. reflexivity. reflexivity. apply agree_nextinstr; auto. Qed. Lemma exec_Mgetstack_prop: forall (s : list stackframe) (fb : block) (sp : val) (ofs : int) (ty : typ) (dst : mreg) (c : list Mach.instruction) (ms : Mach.regset) (m : mem) (v : val), load_stack m sp ty ofs = Some v -> exec_instr_prop (Machconcr.State s fb sp (Mgetstack ofs ty dst :: c) ms m) E0 (Machconcr.State s fb sp c (Regmap.set dst v ms) m). Proof. intros; red; intros; inv MS. unfold load_stack in H. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. inversion WTI. rewrite (sp_val _ _ _ AG) in H. generalize (loadind_correct tge (transl_function f) IR13 ofs ty dst (transl_code f c) rs m v H H1). intros [rs2 [EX [RES OTH]]]. left; eapply exec_straight_steps; eauto with coqlib. simpl. exists rs2; split. auto. apply agree_exten_2 with (rs#(preg_of dst) <- v). auto with ppcgen. intros. case (preg_eq r0 (preg_of dst)); intro. subst r0. rewrite Pregmap.gss. auto. rewrite Pregmap.gso; auto. Qed. Lemma exec_Msetstack_prop: forall (s : list stackframe) (fb : block) (sp : val) (src : mreg) (ofs : int) (ty : typ) (c : list Mach.instruction) (ms : mreg -> val) (m m' : mem), store_stack m sp ty ofs (ms src) = Some m' -> exec_instr_prop (Machconcr.State s fb sp (Msetstack src ofs ty :: c) ms m) E0 (Machconcr.State s fb sp c ms m'). Proof. intros; red; intros; inv MS. unfold store_stack in H. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. inversion WTI. rewrite (sp_val _ _ _ AG) in H. rewrite (preg_val ms sp rs) in H; auto. assert (NOTE: IR13 <> IR14) by congruence. generalize (storeind_correct tge (transl_function f) IR13 ofs ty src (transl_code f c) rs m m' H H1 NOTE). intros [rs2 [EX OTH]]. left; eapply exec_straight_steps; eauto with coqlib. exists rs2; split; auto. apply agree_exten_2 with rs; auto. Qed. Lemma exec_Mgetparam_prop: forall (s : list stackframe) (fb : block) (f: Mach.function) (sp parent : val) (ofs : int) (ty : typ) (dst : mreg) (c : list Mach.instruction) (ms : Mach.regset) (m : mem) (v : val), Genv.find_funct_ptr ge fb = Some (Internal f) -> load_stack m sp Tint f.(fn_link_ofs) = Some parent -> load_stack m parent ty ofs = Some v -> exec_instr_prop (Machconcr.State s fb sp (Mgetparam ofs ty dst :: c) ms m) E0 (Machconcr.State s fb sp c (Regmap.set dst v ms) m). Proof. intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0. exploit (loadind_int_correct tge (transl_function f) IR13 f.(fn_link_ofs) IR14 rs m parent (loadind IR14 ofs ty dst (transl_code f c))). rewrite <- (sp_val ms sp rs); auto. intros [rs1 [EX1 [RES1 OTH1]]]. exploit (loadind_correct tge (transl_function f) IR14 ofs ty dst (transl_code f c) rs1 m v). rewrite RES1. auto. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. inversion WTI. auto. intros [rs2 [EX2 [RES2 OTH2]]]. left. eapply exec_straight_steps; eauto with coqlib. exists rs2; split; simpl. eapply exec_straight_trans; eauto. apply agree_exten_2 with (rs1#(preg_of dst) <- v). apply agree_set_mreg. apply agree_exten_2 with rs; auto. intros. case (preg_eq r (preg_of dst)); intro. subst r. rewrite Pregmap.gss. auto. rewrite Pregmap.gso; auto. Qed. Lemma exec_Mop_prop: forall (s : list stackframe) (fb : block) (sp : val) (op : operation) (args : list mreg) (res : mreg) (c : list Mach.instruction) (ms : mreg -> val) (m : mem) (v : val), eval_operation ge sp op ms ## args = Some v -> exec_instr_prop (Machconcr.State s fb sp (Mop op args res :: c) ms m) E0 (Machconcr.State s fb sp c (Regmap.set res v ms) m). Proof. intros; red; intros; inv MS. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. left; eapply exec_straight_steps; eauto with coqlib. simpl. eapply transl_op_correct; auto. rewrite <- H. apply eval_operation_preserved. exact symbols_preserved. Qed. Lemma exec_Mload_prop: forall (s : list stackframe) (fb : block) (sp : val) (chunk : memory_chunk) (addr : addressing) (args : list mreg) (dst : mreg) (c : list Mach.instruction) (ms : mreg -> val) (m : mem) (a v : val), eval_addressing ge sp addr ms ## args = Some a -> loadv chunk m a = Some v -> exec_instr_prop (Machconcr.State s fb sp (Mload chunk addr args dst :: c) ms m) E0 (Machconcr.State s fb sp c (Regmap.set dst v ms) m). Proof. intros; red; intros; inv MS. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI; inv WTI. assert (eval_addressing tge sp addr ms##args = Some a). rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved. left; eapply exec_straight_steps; eauto with coqlib. destruct chunk; simpl; simpl in H6; (eapply transl_load_int_correct || eapply transl_load_float_correct); eauto; intros; reflexivity. Qed. Lemma exec_Mstore_prop: forall (s : list stackframe) (fb : block) (sp : val) (chunk : memory_chunk) (addr : addressing) (args : list mreg) (src : mreg) (c : list Mach.instruction) (ms : mreg -> val) (m m' : mem) (a : val), eval_addressing ge sp addr ms ## args = Some a -> storev chunk m a (ms src) = Some m' -> exec_instr_prop (Machconcr.State s fb sp (Mstore chunk addr args src :: c) ms m) E0 (Machconcr.State s fb sp c ms m'). Proof. intros; red; intros; inv MS. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI; inv WTI. assert (eval_addressing tge sp addr ms##args = Some a). rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved. left; eapply exec_straight_steps; eauto with coqlib. destruct chunk; simpl; simpl in H6; try (rewrite storev_8_signed_unsigned in H0); try (rewrite storev_16_signed_unsigned in H0); (eapply transl_store_int_correct || eapply transl_store_float_correct); eauto; intros; reflexivity. Qed. Lemma exec_Mcall_prop: forall (s : list stackframe) (fb : block) (sp : val) (sig : signature) (ros : mreg + ident) (c : Mach.code) (ms : Mach.regset) (m : mem) (f : function) (f' : block) (ra : int), find_function_ptr ge ros ms = Some f' -> Genv.find_funct_ptr ge fb = Some (Internal f) -> return_address_offset f c ra -> exec_instr_prop (Machconcr.State s fb sp (Mcall sig ros :: c) ms m) E0 (Callstate (Stackframe fb sp (Vptr fb ra) c :: s) f' ms m). Proof. intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. inv WTI. inv AT. assert (NOOV: code_size (transl_function f) <= Int.max_unsigned). eapply functions_transl_no_overflow; eauto. assert (CT: code_tail (Int.unsigned (Int.add ofs Int.one)) (transl_function f) (transl_code f c)). destruct ros; simpl in H5; eapply code_tail_next_int; eauto. set (rs2 := rs #IR14 <- (Val.add rs#PC Vone) #PC <- (Vptr f' Int.zero)). exploit return_address_offset_correct; eauto. constructor; eauto. intro RA_EQ. assert (ATLR: rs2 IR14 = Vptr fb ra). rewrite RA_EQ. change (rs2 IR14) with (Val.add (rs PC) Vone). rewrite <- H2. reflexivity. assert (AG3: agree ms sp rs2). unfold rs2; auto 8 with ppcgen. left; exists (State rs2 m); split. apply plus_one. destruct ros; simpl in H5. econstructor. eauto. apply functions_transl. eexact H0. eapply find_instr_tail. eauto. simpl. rewrite <- (ireg_val ms sp rs); auto. simpl in H. destruct (ms m0); try congruence. generalize H; predSpec Int.eq Int.eq_spec i Int.zero; intros; inv H7. auto. econstructor. eauto. apply functions_transl. eexact H0. eapply find_instr_tail. eauto. simpl. unfold symbol_offset. rewrite symbols_preserved. simpl in H. rewrite H. auto. econstructor; eauto. econstructor; eauto with coqlib. rewrite RA_EQ. econstructor; eauto. Qed. Lemma exec_Mtailcall_prop: forall (s : list stackframe) (fb stk : block) (soff : int) (sig : signature) (ros : mreg + ident) (c : list Mach.instruction) (ms : Mach.regset) (m : mem) (f: function) (f' : block), find_function_ptr ge ros ms = Some f' -> Genv.find_funct_ptr ge fb = Some (Internal f) -> load_stack m (Vptr stk soff) Tint f.(fn_link_ofs) = Some (parent_sp s) -> load_stack m (Vptr stk soff) Tint f.(fn_retaddr_ofs) = Some (parent_ra s) -> exec_instr_prop (Machconcr.State s fb (Vptr stk soff) (Mtailcall sig ros :: c) ms m) E0 (Callstate s f' ms (free m stk)). Proof. intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. inv WTI. set (call_instr := match ros with inl r => Pbreg (ireg_of r) | inr symb => Pbsymb symb end). assert (TR: transl_code f (Mtailcall sig ros :: c) = loadind_int IR13 (fn_retaddr_ofs f) IR14 (Pfreeframe (fn_link_ofs f) :: call_instr :: transl_code f c)). unfold call_instr; destruct ros; auto. destruct (loadind_int_correct tge (transl_function f) IR13 f.(fn_retaddr_ofs) IR14 rs m (parent_ra s) (Pfreeframe f.(fn_link_ofs) :: call_instr :: transl_code f c)) as [rs1 [EXEC1 [RES1 OTH1]]]. rewrite <- (sp_val ms (Vptr stk soff) rs); auto. set (rs2 := nextinstr (rs1#IR13 <- (parent_sp s))). assert (EXEC2: exec_straight tge (transl_function f) (transl_code f (Mtailcall sig ros :: c)) rs m (call_instr :: transl_code f c) rs2 (free m stk)). rewrite TR. eapply exec_straight_trans. eexact EXEC1. apply exec_straight_one. simpl. rewrite OTH1; auto with ppcgen. rewrite <- (sp_val ms (Vptr stk soff) rs); auto. unfold load_stack in H1. simpl in H1. simpl. rewrite H1. auto. auto. set (rs3 := rs2#PC <- (Vptr f' Int.zero)). left. exists (State rs3 (free m stk)); split. (* Execution *) eapply plus_right'. eapply exec_straight_exec; eauto. inv AT. exploit exec_straight_steps_2; eauto. eapply functions_transl_no_overflow; eauto. eapply functions_transl; eauto. intros [ofs2 [RS2PC CT]]. econstructor. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. unfold call_instr; destruct ros; simpl in H; simpl. replace (rs2 (ireg_of m0)) with (Vptr f' Int.zero). auto. unfold rs2. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gso. rewrite OTH1; auto with ppcgen. rewrite <- (ireg_val ms (Vptr stk soff) rs); auto. destruct (ms m0); try discriminate. generalize H. predSpec Int.eq Int.eq_spec i Int.zero; intros; inv H9. auto. decEq. auto with ppcgen. decEq. auto with ppcgen. decEq. auto with ppcgen. replace (symbol_offset tge i Int.zero) with (Vptr f' Int.zero). auto. unfold symbol_offset. rewrite symbols_preserved. rewrite H. auto. traceEq. (* Match states *) constructor; auto. assert (AG1: agree ms (Vptr stk soff) rs1). eapply agree_exten_2; eauto. assert (AG2: agree ms (parent_sp s) rs2). inv AG1. constructor. auto. intros. unfold rs2. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gso. auto. auto with ppcgen. unfold rs3. apply agree_exten_2 with rs2; auto. intros. rewrite Pregmap.gso; auto. Qed. Lemma exec_Mgoto_prop: forall (s : list stackframe) (fb : block) (f : function) (sp : val) (lbl : Mach.label) (c : list Mach.instruction) (ms : Mach.regset) (m : mem) (c' : Mach.code), Genv.find_funct_ptr ge fb = Some (Internal f) -> Mach.find_label lbl (fn_code f) = Some c' -> exec_instr_prop (Machconcr.State s fb sp (Mgoto lbl :: c) ms m) E0 (Machconcr.State s fb sp c' ms m). Proof. intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0. inv AT. simpl in H3. generalize (find_label_goto_label f lbl rs m _ _ _ FIND (sym_equal H1) H0). intros [rs2 [GOTO [AT2 INV]]]. left; exists (State rs2 m); split. apply plus_one. econstructor; eauto. apply functions_transl; eauto. eapply find_instr_tail; eauto. simpl; auto. econstructor; eauto. eapply Mach.find_label_incl; eauto. apply agree_exten_2 with rs; auto. Qed. Lemma exec_Mcond_true_prop: forall (s : list stackframe) (fb : block) (f : function) (sp : val) (cond : condition) (args : list mreg) (lbl : Mach.label) (c : list Mach.instruction) (ms : mreg -> val) (m : mem) (c' : Mach.code), eval_condition cond ms ## args = Some true -> Genv.find_funct_ptr ge fb = Some (Internal f) -> Mach.find_label lbl (fn_code f) = Some c' -> exec_instr_prop (Machconcr.State s fb sp (Mcond cond args lbl :: c) ms m) E0 (Machconcr.State s fb sp c' ms m). Proof. intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. inv WTI. pose (k1 := Pbc (crbit_for_cond cond) lbl :: transl_code f c). generalize (transl_cond_correct tge (transl_function f) cond args k1 ms sp rs m true H3 AG H). simpl. intros [rs2 [EX [RES AG2]]]. inv AT. simpl in H5. generalize (functions_transl _ _ H4); intro FN. generalize (functions_transl_no_overflow _ _ H4); intro NOOV. exploit exec_straight_steps_2; eauto. intros [ofs' [PC2 CT2]]. generalize (find_label_goto_label f lbl rs2 m _ _ _ FIND PC2 H1). intros [rs3 [GOTO [AT3 INV3]]]. left; exists (State rs3 m); split. eapply plus_right'. eapply exec_straight_steps_1; eauto. econstructor; eauto. eapply find_instr_tail. unfold k1 in CT2. eauto. simpl. rewrite RES. simpl. auto. traceEq. econstructor; eauto. eapply Mach.find_label_incl; eauto. apply agree_exten_2 with rs2; auto. Qed. Lemma exec_Mcond_false_prop: forall (s : list stackframe) (fb : block) (sp : val) (cond : condition) (args : list mreg) (lbl : Mach.label) (c : list Mach.instruction) (ms : mreg -> val) (m : mem), eval_condition cond ms ## args = Some false -> exec_instr_prop (Machconcr.State s fb sp (Mcond cond args lbl :: c) ms m) E0 (Machconcr.State s fb sp c ms m). Proof. intros; red; intros; inv MS. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. inversion WTI. pose (k1 := Pbc (crbit_for_cond cond) lbl :: transl_code f c). generalize (transl_cond_correct tge (transl_function f) cond args k1 ms sp rs m false H1 AG H). simpl. intros [rs2 [EX [RES AG2]]]. left; eapply exec_straight_steps; eauto with coqlib. exists (nextinstr rs2); split. simpl. eapply exec_straight_trans. eexact EX. unfold k1; apply exec_straight_one. simpl. rewrite RES. reflexivity. reflexivity. auto with ppcgen. Qed. Lemma exec_Mjumptable_prop: forall (s : list stackframe) (fb : block) (f : function) (sp : val) (arg : mreg) (tbl : list Mach.label) (c : list Mach.instruction) (rs : mreg -> val) (m : mem) (n : int) (lbl : Mach.label) (c' : Mach.code), rs arg = Vint n -> list_nth_z tbl (Int.signed n) = Some lbl -> Genv.find_funct_ptr ge fb = Some (Internal f) -> Mach.find_label lbl (fn_code f) = Some c' -> exec_instr_prop (Machconcr.State s fb sp (Mjumptable arg tbl :: c) rs m) E0 (Machconcr.State s fb sp c' rs m). Proof. intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0. generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))). intro WTI. inv WTI. exploit list_nth_z_range; eauto. intro RANGE. assert (SHIFT: Int.signed (Int.shl n (Int.repr 2)) = Int.signed n * 4). rewrite Int.shl_mul. rewrite Int.mul_signed. apply Int.signed_repr. split. apply Zle_trans with 0. vm_compute; congruence. omega. omega. inv AT. simpl in H7. set (k1 := Pbtbl IR14 tbl :: transl_code f c). set (rs1 := nextinstr (rs0 # IR14 <- (Vint (Int.shl n (Int.repr 2))))). generalize (functions_transl _ _ H4); intro FN. generalize (functions_transl_no_overflow _ _ H4); intro NOOV. assert (exec_straight tge (transl_function f) (Pmov IR14 (SOlslimm (ireg_of arg) (Int.repr 2)) :: k1) rs0 m k1 rs1 m). apply exec_straight_one. simpl. rewrite <- (ireg_val _ _ _ _ AG H5). rewrite H. reflexivity. reflexivity. exploit exec_straight_steps_2; eauto. intros [ofs' [PC1 CT1]]. generalize (find_label_goto_label f lbl rs1 m _ _ _ FIND PC1 H2). intros [rs3 [GOTO [AT3 INV3]]]. left; exists (State rs3 m); split. eapply plus_right'. eapply exec_straight_steps_1; eauto. econstructor; eauto. eapply find_instr_tail. unfold k1 in CT1. eauto. unfold exec_instr. change (rs1 IR14) with (Vint (Int.shl n (Int.repr 2))). Opaque Zmod. Opaque Zdiv. simpl. rewrite SHIFT. rewrite Z_mod_mult. rewrite zeq_true. rewrite Z_div_mult. change label with Mach.label; rewrite H0. exact GOTO. omega. traceEq. econstructor; eauto. eapply Mach.find_label_incl; eauto. apply agree_exten_2 with rs1; auto. unfold rs1. apply agree_nextinstr. apply agree_set_other; auto with ppcgen. Qed. Lemma exec_Mreturn_prop: forall (s : list stackframe) (fb stk : block) (soff : int) (c : list Mach.instruction) (ms : Mach.regset) (m : mem) (f: function), Genv.find_funct_ptr ge fb = Some (Internal f) -> load_stack m (Vptr stk soff) Tint f.(fn_link_ofs) = Some (parent_sp s) -> load_stack m (Vptr stk soff) Tint f.(fn_retaddr_ofs) = Some (parent_ra s) -> exec_instr_prop (Machconcr.State s fb (Vptr stk soff) (Mreturn :: c) ms m) E0 (Returnstate s ms (free m stk)). Proof. intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0. exploit (loadind_int_correct tge (transl_function f) IR13 f.(fn_retaddr_ofs) IR14 rs m (parent_ra s) (Pfreeframe f.(fn_link_ofs) :: Pbreg IR14 :: transl_code f c)). rewrite <- (sp_val ms (Vptr stk soff) rs); auto. intros [rs1 [EXEC1 [RES1 OTH1]]]. set (rs2 := nextinstr (rs1#IR13 <- (parent_sp s))). assert (EXEC2: exec_straight tge (transl_function f) (loadind_int IR13 (fn_retaddr_ofs f) IR14 (Pfreeframe (fn_link_ofs f) :: Pbreg IR14 :: transl_code f c)) rs m (Pbreg IR14 :: transl_code f c) rs2 (free m stk)). eapply exec_straight_trans. eexact EXEC1. apply exec_straight_one. simpl. rewrite OTH1; try congruence. rewrite <- (sp_val ms (Vptr stk soff) rs); auto. unfold load_stack in H0. simpl in H0; simpl; rewrite H0. reflexivity. reflexivity. set (rs3 := rs2#PC <- (parent_ra s)). left; exists (State rs3 (free m stk)); split. (* execution *) eapply plus_right'. eapply exec_straight_exec; eauto. inv AT. exploit exec_straight_steps_2; eauto. eapply functions_transl_no_overflow; eauto. eapply functions_transl; eauto. intros [ofs2 [RS2PC CT]]. econstructor. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. unfold rs3. decEq. decEq. unfold rs2. rewrite nextinstr_inv; auto with ppcgen. traceEq. (* match states *) constructor. auto. assert (AG1: agree ms (Vptr stk soff) rs1). apply agree_exten_2 with rs; auto. assert (AG2: agree ms (parent_sp s) rs2). constructor. reflexivity. intros; unfold rs2. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gso; auto with ppcgen. inv AG1; auto. unfold rs3. auto with ppcgen. reflexivity. Qed. Hypothesis wt_prog: wt_program prog. Lemma exec_function_internal_prop: forall (s : list stackframe) (fb : block) (ms : Mach.regset) (m : mem) (f : function) (m1 m2 m3 : mem) (stk : block), Genv.find_funct_ptr ge fb = Some (Internal f) -> alloc m (- fn_framesize f) (fn_stacksize f) = (m1, stk) -> let sp := Vptr stk (Int.repr (- fn_framesize f)) in store_stack m1 sp Tint f.(fn_link_ofs) (parent_sp s) = Some m2 -> store_stack m2 sp Tint f.(fn_retaddr_ofs) (parent_ra s) = Some m3 -> exec_instr_prop (Machconcr.Callstate s fb ms m) E0 (Machconcr.State s fb sp (fn_code f) ms m3). Proof. intros; red; intros; inv MS. assert (WTF: wt_function f). generalize (Genv.find_funct_ptr_prop wt_fundef wt_prog H); intro TY. inversion TY; auto. exploit functions_transl; eauto. intro TFIND. generalize (functions_transl_no_overflow _ _ H); intro NOOV. set (rs2 := nextinstr (rs#IR13 <- sp)). set (rs3 := nextinstr rs2). (* Execution of function prologue *) assert (EXEC_PROLOGUE: exec_straight tge (transl_function f) (transl_function f) rs m (transl_code f f.(fn_code)) rs3 m3). unfold transl_function at 2. apply exec_straight_two with rs2 m2. unfold exec_instr. rewrite H0. fold sp. rewrite <- (sp_val ms (parent_sp s) rs); auto. unfold store_stack in H1. change Mint32 with (chunk_of_type Tint). rewrite H1. auto. unfold exec_instr. unfold eval_shift_addr. unfold exec_store. change (rs2 IR13) with sp. change (rs2 IR14) with (rs IR14). rewrite ATLR. unfold store_stack in H2. change Mint32 with (chunk_of_type Tint). rewrite H2. auto. auto. auto. (* Agreement at end of prologue *) assert (AT3: transl_code_at_pc rs3#PC fb f f.(fn_code)). change (rs3 PC) with (Val.add (Val.add (rs PC) Vone) Vone). rewrite ATPC. simpl. constructor. auto. eapply code_tail_next_int; auto. eapply code_tail_next_int; auto. change (Int.unsigned Int.zero) with 0. unfold transl_function. constructor. assert (AG2: agree ms sp rs2). split. reflexivity. intros. unfold rs2. rewrite nextinstr_inv. repeat (rewrite Pregmap.gso). elim AG; auto. auto with ppcgen. auto with ppcgen. assert (AG3: agree ms sp rs3). unfold rs3; auto with ppcgen. left; exists (State rs3 m3); split. (* execution *) eapply exec_straight_steps_1; eauto. change (Int.unsigned Int.zero) with 0. constructor. (* match states *) econstructor; eauto with coqlib. Qed. Lemma exec_function_external_prop: forall (s : list stackframe) (fb : block) (ms : Mach.regset) (m : mem) (t0 : trace) (ms' : RegEq.t -> val) (ef : external_function) (args : list val) (res : val), Genv.find_funct_ptr ge fb = Some (External ef) -> event_match ef args t0 res -> Machconcr.extcall_arguments ms m (parent_sp s) (ef_sig ef) args -> ms' = Regmap.set (Conventions.loc_result (ef_sig ef)) res ms -> exec_instr_prop (Machconcr.Callstate s fb ms m) t0 (Machconcr.Returnstate s ms' m). Proof. intros; red; intros; inv MS. exploit functions_translated; eauto. intros [tf [A B]]. simpl in B. inv B. left; exists (State (rs#(loc_external_result (ef_sig ef)) <- res #PC <- (rs IR14)) m); split. apply plus_one. eapply exec_step_external; eauto. eapply extcall_arguments_match; eauto. econstructor; eauto. unfold loc_external_result. auto with ppcgen. Qed. Lemma exec_return_prop: forall (s : list stackframe) (fb : block) (sp ra : val) (c : Mach.code) (ms : Mach.regset) (m : mem), exec_instr_prop (Machconcr.Returnstate (Stackframe fb sp ra c :: s) ms m) E0 (Machconcr.State s fb sp c ms m). Proof. intros; red; intros; inv MS. inv STACKS. simpl in *. right. split. omega. split. auto. econstructor; eauto. rewrite ATPC; auto. Qed. Theorem transf_instr_correct: forall s1 t s2, Machconcr.step ge s1 t s2 -> exec_instr_prop s1 t s2. Proof (Machconcr.step_ind ge exec_instr_prop exec_Mlabel_prop exec_Mgetstack_prop exec_Msetstack_prop exec_Mgetparam_prop exec_Mop_prop exec_Mload_prop exec_Mstore_prop exec_Mcall_prop exec_Mtailcall_prop exec_Mgoto_prop exec_Mcond_true_prop exec_Mcond_false_prop exec_Mjumptable_prop exec_Mreturn_prop exec_function_internal_prop exec_function_external_prop exec_return_prop). Lemma transf_initial_states: forall st1, Machconcr.initial_state prog st1 -> exists st2, Asm.initial_state tprog st2 /\ match_states st1 st2. Proof. intros. inversion H. unfold ge0 in *. econstructor; split. econstructor. replace (symbol_offset (Genv.globalenv tprog) (prog_main tprog) Int.zero) with (Vptr fb Int.zero). rewrite (Genv.init_mem_transf_partial _ _ TRANSF). econstructor; eauto. constructor. split. auto. intros. repeat rewrite Pregmap.gso; auto with ppcgen. unfold symbol_offset. rewrite (transform_partial_program_main _ _ TRANSF). rewrite symbols_preserved. unfold ge; rewrite H0. auto. Qed. Lemma transf_final_states: forall st1 st2 r, match_states st1 st2 -> Machconcr.final_state st1 r -> Asm.final_state st2 r. Proof. intros. inv H0. inv H. constructor. auto. compute in H1. rewrite (ireg_val _ _ _ R0 AG) in H1. auto. auto. Qed. Theorem transf_program_correct: forall (beh: program_behavior), not_wrong beh -> Machconcr.exec_program prog beh -> Asm.exec_program tprog beh. Proof. unfold Machconcr.exec_program, Asm.exec_program; intros. eapply simulation_star_preservation with (measure := measure); eauto. eexact transf_initial_states. eexact transf_final_states. exact transf_instr_correct. Qed. End PRESERVATION.