(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Abstract syntax and semantics for ARM assembly language *) Require Import Coqlib. Require Import Maps. Require Import AST. Require Import Integers. Require Import Floats. Require Import Values. Require Import Memory. Require Import Events. Require Import Globalenvs. Require Import Smallstep. Require Import Locations. Require Stacklayout. Require Import Conventions. (** * Abstract syntax *) (** Integer registers, floating-point registers. *) Inductive ireg: Type := | IR0: ireg | IR1: ireg | IR2: ireg | IR3: ireg | IR4: ireg | IR5: ireg | IR6: ireg | IR7: ireg | IR8: ireg | IR9: ireg | IR10: ireg | IR11: ireg | IR12: ireg | IR13: ireg | IR14: ireg. Inductive freg: Type := | FR0: freg | FR1: freg | FR2: freg | FR3: freg | FR4: freg | FR5: freg | FR6: freg | FR7: freg | FR8: freg | FR9: freg | FR10: freg | FR11: freg | FR12: freg | FR13: freg | FR14: freg | FR15: freg. Lemma ireg_eq: forall (x y: ireg), {x=y} + {x<>y}. Proof. decide equality. Defined. Lemma freg_eq: forall (x y: freg), {x=y} + {x<>y}. Proof. decide equality. Defined. (** Bits in the condition register. *) Inductive crbit: Type := | CN: crbit (**r negative *) | CZ: crbit (**r zero *) | CC: crbit (**r carry *) | CV: crbit. (**r overflow *) Lemma crbit_eq: forall (x y: crbit), {x=y} + {x<>y}. Proof. decide equality. Defined. (** We model the following registers of the ARM architecture. *) Inductive preg: Type := | IR: ireg -> preg (**r integer registers *) | FR: freg -> preg (**r double-precision VFP float registers *) | CR: crbit -> preg (**r bits in the condition register *) | PC: preg. (**r program counter *) Coercion IR: ireg >-> preg. Coercion FR: freg >-> preg. Coercion CR: crbit >-> preg. Lemma preg_eq: forall (x y: preg), {x=y} + {x<>y}. Proof. decide equality. apply ireg_eq. apply freg_eq. apply crbit_eq. Defined. Module PregEq. Definition t := preg. Definition eq := preg_eq. End PregEq. Module Pregmap := EMap(PregEq). (** Conventional names for stack pointer ([SP]) and return address ([RA]) *) Notation "'SP'" := IR13 (only parsing). Notation "'RA'" := IR14 (only parsing). (** The instruction set. Most instructions correspond exactly to actual instructions of the ARM processor. See the ARM reference manuals for more details. Some instructions, described below, are pseudo-instructions: they expand to canned instruction sequences during the printing of the assembly code. Most instructions are common to Thumb2 and ARM classic. We use a few Thumb2-specific instructions when available, and avoid to use ARM classic features that are not in Thumb2. *) Definition label := positive. Inductive shift_op : Type := | SOimm: int -> shift_op | SOreg: ireg -> shift_op | SOlsl: ireg -> int -> shift_op | SOlsr: ireg -> int -> shift_op | SOasr: ireg -> int -> shift_op | SOror: ireg -> int -> shift_op. Inductive testcond : Type := | TCeq: testcond (**r equal *) | TCne: testcond (**r not equal *) | TChs: testcond (**r unsigned higher or same *) | TClo: testcond (**r unsigned lower *) | TCmi: testcond (**r negative *) | TCpl: testcond (**r positive *) | TChi: testcond (**r unsigned higher *) | TCls: testcond (**r unsigned lower or same *) | TCge: testcond (**r signed greater or equal *) | TClt: testcond (**r signed less than *) | TCgt: testcond (**r signed greater *) | TCle: testcond. (**r signed less than or equal *) Inductive instruction : Type := (* Core instructions *) | Padd: ireg -> ireg -> shift_op -> instruction (**r integer addition *) | Pand: ireg -> ireg -> shift_op -> instruction (**r bitwise and *) | Pasr: ireg -> ireg -> ireg -> instruction (**r arithmetic shift right *) | Pb: label -> instruction (**r branch to label *) | Pbc: testcond -> label -> instruction (**r conditional branch to label *) | Pbsymb: ident -> signature -> instruction (**r branch to symbol *) | Pbreg: ireg -> signature -> instruction (**r computed branch *) | Pblsymb: ident -> signature -> instruction (**r branch and link to symbol *) | Pblreg: ireg -> signature -> instruction (**r computed branch and link *) | Pbic: ireg -> ireg -> shift_op -> instruction (**r bitwise bit-clear *) | Pcmp: ireg -> shift_op -> instruction (**r integer comparison *) | Peor: ireg -> ireg -> shift_op -> instruction (**r bitwise exclusive or *) | Pldr: ireg -> ireg -> shift_op -> instruction (**r int32 load *) | Pldr_a: ireg -> ireg -> shift_op -> instruction (**r any32 load to int register *) | Pldrb: ireg -> ireg -> shift_op -> instruction (**r unsigned int8 load *) | Pldrh: ireg -> ireg -> shift_op -> instruction (**r unsigned int16 load *) | Pldrsb: ireg -> ireg -> shift_op -> instruction (**r signed int8 load *) | Pldrsh: ireg -> ireg -> shift_op -> instruction (**r unsigned int16 load *) | Plsl: ireg -> ireg -> ireg -> instruction (**r shift left *) | Plsr: ireg -> ireg -> ireg -> instruction (**r logical shift right *) | Pmla: ireg -> ireg -> ireg -> ireg -> instruction (**r integer multiply-add *) | Pmov: ireg -> shift_op -> instruction (**r integer move *) | Pmovw: ireg -> int -> instruction (**r move 16-bit immediate *) | Pmovt: ireg -> int -> instruction (**r set high 16 bits *) | Pmul: ireg -> ireg -> ireg -> instruction (**r integer multiplication *) | Pmvn: ireg -> shift_op -> instruction (**r integer complement *) | Porr: ireg -> ireg -> shift_op -> instruction (**r bitwise or *) | Prsb: ireg -> ireg -> shift_op -> instruction (**r integer reverse subtraction *) | Psbfx: ireg -> ireg -> int -> int -> instruction (**r signed bitfield extract *) | Pstr: ireg -> ireg -> shift_op -> instruction (**r int32 store *) | Pstr_a: ireg -> ireg -> shift_op -> instruction (**r any32 store from int register *) | Pstrb: ireg -> ireg -> shift_op -> instruction (**r int8 store *) | Pstrh: ireg -> ireg -> shift_op -> instruction (**r int16 store *) | Psdiv: instruction (**r signed division *) | Psmull: ireg -> ireg -> ireg -> ireg -> instruction (**r signed multiply long *) | Psub: ireg -> ireg -> shift_op -> instruction (**r integer subtraction *) | Pudiv: instruction (**r unsigned division *) | Pumull: ireg -> ireg -> ireg -> ireg -> instruction (**r unsigned multiply long *) (* Floating-point coprocessor instructions (VFP double scalar operations) *) | Pfcpyd: freg -> freg -> instruction (**r float move *) | Pfabsd: freg -> freg -> instruction (**r float absolute value *) | Pfnegd: freg -> freg -> instruction (**r float opposite *) | Pfaddd: freg -> freg -> freg -> instruction (**r float addition *) | Pfdivd: freg -> freg -> freg -> instruction (**r float division *) | Pfmuld: freg -> freg -> freg -> instruction (**r float multiplication *) | Pfsubd: freg -> freg -> freg -> instruction (**r float subtraction *) | Pflid: freg -> float -> instruction (**r load float constant *) | Pfcmpd: freg -> freg -> instruction (**r float comparison *) | Pfcmpzd: freg -> instruction (**r float comparison with 0.0 *) | Pfsitod: freg -> ireg -> instruction (**r signed int to float *) | Pfuitod: freg -> ireg -> instruction (**r unsigned int to float *) | Pftosizd: ireg -> freg -> instruction (**r float to signed int *) | Pftouizd: ireg -> freg -> instruction (**r float to unsigned int *) | Pfabss: freg -> freg -> instruction (**r float absolute value *) | Pfnegs: freg -> freg -> instruction (**r float opposite *) | Pfadds: freg -> freg -> freg -> instruction (**r float addition *) | Pfdivs: freg -> freg -> freg -> instruction (**r float division *) | Pfmuls: freg -> freg -> freg -> instruction (**r float multiplication *) | Pfsubs: freg -> freg -> freg -> instruction (**r float subtraction *) | Pflis: freg -> float32 -> instruction (**r load float constant *) | Pfcmps: freg -> freg -> instruction (**r float comparison *) | Pfcmpzs: freg -> instruction (**r float comparison with 0.0 *) | Pfsitos: freg -> ireg -> instruction (**r signed int to float *) | Pfuitos: freg -> ireg -> instruction (**r unsigned int to float *) | Pftosizs: ireg -> freg -> instruction (**r float to signed int *) | Pftouizs: ireg -> freg -> instruction (**r float to unsigned int *) | Pfcvtsd: freg -> freg -> instruction (**r round to single precision *) | Pfcvtds: freg -> freg -> instruction (**r expand to double precision *) | Pfldd: freg -> ireg -> int -> instruction (**r float64 load *) | Pfldd_a: freg -> ireg -> int -> instruction (**r any64 load to FP reg *) | Pflds: freg -> ireg -> int -> instruction (**r float32 load *) | Pfstd: freg -> ireg -> int -> instruction (**r float64 store *) | Pfstd_a: freg -> ireg -> int -> instruction (**r any64 store from FP reg *) | Pfsts: freg -> ireg -> int -> instruction (**r float32 store *) (* Pseudo-instructions *) | Pallocframe: Z -> int -> instruction (**r allocate new stack frame *) | Pfreeframe: Z -> int -> instruction (**r deallocate stack frame and restore previous frame *) | Plabel: label -> instruction (**r define a code label *) | Ploadsymbol: ireg -> ident -> int -> instruction (**r load the address of a symbol *) | Pmovite: testcond -> ireg -> shift_op -> shift_op -> instruction (**r integer conditional move *) | Pbtbl: ireg -> list label -> instruction (**r N-way branch through a jump table *) | Pbuiltin: external_function -> list preg -> list preg -> instruction (**r built-in function *) | Pannot: external_function -> list annot_param -> instruction (**r annotation statement *) with annot_param : Type := | APreg: preg -> annot_param | APstack: memory_chunk -> Z -> annot_param. (** The pseudo-instructions are the following: - [Plabel]: define a code label at the current program point. - [Ploadsymbol]: load the address of a symbol in an integer register. Expands to a load from an address in the constant data section initialized with the symbol value: << ldr rdst, lbl .const_data lbl: .word symbol .text >> Initialized data in the constant data section are not modeled here, which is why we use a pseudo-instruction for this purpose. - [Pallocframe sz pos]: in the formal semantics, this pseudo-instruction allocates a memory block with bounds [0] and [sz], stores the value of the stack pointer at offset [pos] in this block, and sets the stack pointer to the address of the bottom of this block. In the printed ASM assembly code, this allocation is: << mov r10, sp sub sp, sp, #sz str r10, [sp, #pos] >> This cannot be expressed in our memory model, which does not reflect the fact that stack frames are adjacent and allocated/freed following a stack discipline. - [Pfreeframe sz pos]: in the formal semantics, this pseudo-instruction reads the word at [pos] of the block pointed by the stack pointer, frees this block, and sets the stack pointer to the value read. In the printed ASM assembly code, this freeing is just a load of register [sp] relative to [sp] itself: << ldr sp, [sp, #pos] >> Again, our memory model cannot comprehend that this operation frees (logically) the current stack frame. - [Pbtbl reg table]: this is a N-way branch, implemented via a jump table as follows: << ldr pc, [pc, reg] mov r0, r0 (* no-op *) .word table[0], table[1], ... >> Note that [reg] contains 4 times the index of the desired table entry. *) Definition code := list instruction. Record function : Type := mkfunction { fn_sig: signature; fn_code: code }. Definition fundef := AST.fundef function. Definition program := AST.program fundef unit. (** * Operational semantics *) (** The semantics operates over a single mapping from registers (type [preg]) to values. We maintain (but do not enforce) the convention that integer registers are mapped to values of type [Tint], float registers to values of type [Tfloat], and condition bits to either [Vzero] or [Vone]. *) Definition regset := Pregmap.t val. Definition genv := Genv.t fundef unit. Notation "a # b" := (a b) (at level 1, only parsing). Notation "a # b <- c" := (Pregmap.set b c a) (at level 1, b at next level). (** Undefining some registers *) Fixpoint undef_regs (l: list preg) (rs: regset) : regset := match l with | nil => rs | r :: l' => undef_regs l' (rs#r <- Vundef) end. (** Undefining the condition codes *) Definition undef_flags (rs: regset) : regset := fun r => match r with CR _ => Vundef | _ => rs r end. (** Assigning multiple registers *) Fixpoint set_regs (rl: list preg) (vl: list val) (rs: regset) : regset := match rl, vl with | r1 :: rl', v1 :: vl' => set_regs rl' vl' (rs#r1 <- v1) | _, _ => rs end. Section RELSEM. (** Looking up instructions in a code sequence by position. *) Fixpoint find_instr (pos: Z) (c: code) {struct c} : option instruction := match c with | nil => None | i :: il => if zeq pos 0 then Some i else find_instr (pos - 1) il end. (** Position corresponding to a label *) Definition is_label (lbl: label) (instr: instruction) : bool := match instr with | Plabel lbl' => if peq lbl lbl' then true else false | _ => false end. Lemma is_label_correct: forall lbl instr, if is_label lbl instr then instr = Plabel lbl else instr <> Plabel lbl. Proof. intros. destruct instr; simpl; try discriminate. case (peq lbl l); intro; congruence. Qed. Fixpoint label_pos (lbl: label) (pos: Z) (c: code) {struct c} : option Z := match c with | nil => None | instr :: c' => if is_label lbl instr then Some (pos + 1) else label_pos lbl (pos + 1) c' end. Variable ge: genv. (** The semantics is purely small-step and defined as a function from the current state (a register set + a memory state) to either [Next rs' m'] where [rs'] and [m'] are the updated register set and memory state after execution of the instruction at [rs#PC], or [Stuck] if the processor is stuck. *) Inductive outcome: Type := | Next: regset -> mem -> outcome | Stuck: outcome. (** Manipulations over the [PC] register: continuing with the next instruction ([nextinstr]) or branching to a label ([goto_label]). *) Definition nextinstr (rs: regset) := rs#PC <- (Val.add rs#PC Vone). Definition nextinstr_nf (rs: regset) := nextinstr (undef_flags rs). Definition goto_label (f: function) (lbl: label) (rs: regset) (m: mem) := match label_pos lbl 0 (fn_code f) with | None => Stuck | Some pos => match rs#PC with | Vptr b ofs => Next (rs#PC <- (Vptr b (Int.repr pos))) m | _ => Stuck end end. (** Evaluation of [shift_op] operands *) Definition eval_shift_op (so: shift_op) (rs: regset) := match so with | SOimm n => Vint n | SOreg r => rs r | SOlsl r n => Val.shl (rs r) (Vint n) | SOlsr r n => Val.shru (rs r) (Vint n) | SOasr r n => Val.shr (rs r) (Vint n) | SOror r n => Val.ror (rs r) (Vint n) end. (** Auxiliaries for memory accesses *) Definition exec_load (chunk: memory_chunk) (addr: val) (r: preg) (rs: regset) (m: mem) := match Mem.loadv chunk m addr with | None => Stuck | Some v => Next (nextinstr (rs#r <- v)) m end. Definition exec_store (chunk: memory_chunk) (addr: val) (r: preg) (rs: regset) (m: mem) := match Mem.storev chunk m addr (rs r) with | None => Stuck | Some m' => Next (nextinstr rs) m' end. (** Comparisons. *) Definition compare_int (rs: regset) (v1 v2: val) (m: mem) := rs#CN <- (Val.negative (Val.sub v1 v2)) #CZ <- (Val.cmpu (Mem.valid_pointer m) Ceq v1 v2) #CC <- (Val.cmpu (Mem.valid_pointer m) Cge v1 v2) #CV <- (Val.sub_overflow v1 v2). (** Semantics of [fcmp] instructions: << == N=0 Z=1 C=1 V=0 < N=1 Z=0 C=0 V=0 > N=0 Z=0 C=1 V=0 unord N=0 Z=0 C=1 V=1 >> *) Definition compare_float (rs: regset) (v1 v2: val) := match v1, v2 with | Vfloat f1, Vfloat f2 => rs#CN <- (Val.of_bool (Float.cmp Clt f1 f2)) #CZ <- (Val.of_bool (Float.cmp Ceq f1 f2)) #CC <- (Val.of_bool (negb (Float.cmp Clt f1 f2))) #CV <- (Val.of_bool (negb (Float.cmp Ceq f1 f2 || Float.cmp Clt f1 f2 || Float.cmp Cgt f1 f2))) | _, _ => rs#CN <- Vundef #CZ <- Vundef #CC <- Vundef #CV <- Vundef end. Definition compare_float32 (rs: regset) (v1 v2: val) := match v1, v2 with | Vsingle f1, Vsingle f2 => rs#CN <- (Val.of_bool (Float32.cmp Clt f1 f2)) #CZ <- (Val.of_bool (Float32.cmp Ceq f1 f2)) #CC <- (Val.of_bool (negb (Float32.cmp Clt f1 f2))) #CV <- (Val.of_bool (negb (Float32.cmp Ceq f1 f2 || Float32.cmp Clt f1 f2 || Float32.cmp Cgt f1 f2))) | _, _ => rs#CN <- Vundef #CZ <- Vundef #CC <- Vundef #CV <- Vundef end. (** Testing a condition *) Definition eval_testcond (c: testcond) (rs: regset) : option bool := match c with | TCeq => (**r equal *) match rs CZ with | Vint n => Some (Int.eq n Int.one) | _ => None end | TCne => (**r not equal *) match rs CZ with | Vint n => Some (Int.eq n Int.zero) | _ => None end | TClo => (**r unsigned less than *) match rs CC with | Vint n => Some (Int.eq n Int.zero) | _ => None end | TCls => (**r unsigned less or equal *) match rs CC, rs CZ with | Vint c, Vint z => Some (Int.eq c Int.zero || Int.eq z Int.one) | _, _ => None end | TChs => (**r unsigned greater or equal *) match rs CC with | Vint n => Some (Int.eq n Int.one) | _ => None end | TChi => (**r unsigned greater *) match rs CC, rs CZ with | Vint c, Vint z => Some (Int.eq c Int.one && Int.eq z Int.zero) | _, _ => None end | TClt => (**r signed less than *) match rs CV, rs CN with | Vint o, Vint s => Some (Int.eq (Int.xor o s) Int.one) | _, _ => None end | TCle => (**r signed less or equal *) match rs CV, rs CN, rs CZ with | Vint o, Vint s, Vint z => Some (Int.eq (Int.xor o s) Int.one || Int.eq z Int.one) | _, _, _ => None end | TCge => (**r signed greater or equal *) match rs CV, rs CN with | Vint o, Vint s => Some (Int.eq (Int.xor o s) Int.zero) | _, _ => None end | TCgt => (**r signed greater *) match rs CV, rs CN, rs CZ with | Vint o, Vint s, Vint z => Some (Int.eq (Int.xor o s) Int.zero && Int.eq z Int.zero) | _, _, _ => None end | TCpl => (**r positive *) match rs CN with | Vint n => Some (Int.eq n Int.zero) | _ => None end | TCmi => (**r negative *) match rs CN with | Vint n => Some (Int.eq n Int.one) | _ => None end end. (** Execution of a single instruction [i] in initial state [rs] and [m]. Return updated state. For instructions that correspond to actual ARM instructions, the cases are straightforward transliterations of the informal descriptions given in the ARM reference manuals. For pseudo-instructions, refer to the informal descriptions given above. Note that we set to [Vundef] the registers used as temporaries by the expansions of the pseudo-instructions, so that the ARM code we generate cannot use those registers to hold values that must survive the execution of the pseudo-instruction. Likewise, for several instructions we set the condition flags to [Vundef], so that we can expand them later to the S form or to the non-S form, whichever is more compact in Thumb2. *) Definition exec_instr (f: function) (i: instruction) (rs: regset) (m: mem) : outcome := match i with | Padd r1 r2 so => Next (nextinstr_nf (rs#r1 <- (Val.add rs#r2 (eval_shift_op so rs)))) m | Pand r1 r2 so => Next (nextinstr_nf (rs#r1 <- (Val.and rs#r2 (eval_shift_op so rs)))) m | Pasr r1 r2 r3 => Next (nextinstr_nf (rs#r1 <- (Val.shr rs#r2 rs#r3))) m | Pb lbl => goto_label f lbl rs m | Pbc cond lbl => match eval_testcond cond rs with | Some true => goto_label f lbl rs m | Some false => Next (nextinstr rs) m | None => Stuck end | Pbsymb id sg => Next (rs#PC <- (Genv.symbol_address ge id Int.zero)) m | Pbreg r sg => Next (rs#PC <- (rs#r)) m | Pblsymb id sg => Next (rs#IR14 <- (Val.add rs#PC Vone) #PC <- (Genv.symbol_address ge id Int.zero)) m | Pblreg r sg => Next (rs#IR14 <- (Val.add rs#PC Vone) #PC <- (rs#r)) m | Pbic r1 r2 so => Next (nextinstr_nf (rs#r1 <- (Val.and rs#r2 (Val.notint (eval_shift_op so rs))))) m | Pcmp r1 so => Next (nextinstr (compare_int rs rs#r1 (eval_shift_op so rs) m)) m | Peor r1 r2 so => Next (nextinstr_nf (rs#r1 <- (Val.xor rs#r2 (eval_shift_op so rs)))) m | Pldr r1 r2 sa => exec_load Mint32 (Val.add rs#r2 (eval_shift_op sa rs)) r1 rs m | Pldr_a r1 r2 sa => exec_load Many32 (Val.add rs#r2 (eval_shift_op sa rs)) r1 rs m | Pldrb r1 r2 sa => exec_load Mint8unsigned (Val.add rs#r2 (eval_shift_op sa rs)) r1 rs m | Pldrh r1 r2 sa => exec_load Mint16unsigned (Val.add rs#r2 (eval_shift_op sa rs)) r1 rs m | Pldrsb r1 r2 sa => exec_load Mint8signed (Val.add rs#r2 (eval_shift_op sa rs)) r1 rs m | Pldrsh r1 r2 sa => exec_load Mint16signed (Val.add rs#r2 (eval_shift_op sa rs)) r1 rs m | Plsl r1 r2 r3 => Next (nextinstr_nf (rs#r1 <- (Val.shl rs#r2 rs#r3))) m | Plsr r1 r2 r3 => Next (nextinstr_nf (rs#r1 <- (Val.shru rs#r2 rs#r3))) m | Pmla r1 r2 r3 r4 => Next (nextinstr (rs#r1 <- (Val.add (Val.mul rs#r2 rs#r3) rs#r4))) m | Pmov r1 so => Next (nextinstr_nf (rs#r1 <- (eval_shift_op so rs))) m | Pmovw r n => Next (nextinstr (rs#r <- (Vint n))) m | Pmovt r n => Next (nextinstr (rs#r <- (Val.or (Val.and rs#r (Vint (Int.repr 65535))) (Vint (Int.shl n (Int.repr 16)))))) m | Pmul r1 r2 r3 => Next (nextinstr (rs#r1 <- (Val.mul rs#r2 rs#r3))) m | Pmvn r1 so => Next (nextinstr_nf (rs#r1 <- (Val.notint (eval_shift_op so rs)))) m | Porr r1 r2 so => Next (nextinstr_nf (rs#r1 <- (Val.or rs#r2 (eval_shift_op so rs)))) m | Prsb r1 r2 so => Next (nextinstr_nf (rs#r1 <- (Val.sub (eval_shift_op so rs) rs#r2))) m | Pstr r1 r2 sa => exec_store Mint32 (Val.add rs#r2 (eval_shift_op sa rs)) r1 rs m | Pstr_a r1 r2 sa => exec_store Many32 (Val.add rs#r2 (eval_shift_op sa rs)) r1 rs m | Pstrb r1 r2 sa => exec_store Mint8unsigned (Val.add rs#r2 (eval_shift_op sa rs)) r1 rs m | Pstrh r1 r2 sa => exec_store Mint16unsigned (Val.add rs#r2 (eval_shift_op sa rs)) r1 rs m | Psdiv => match Val.divs rs#IR0 rs#IR1 with | Some v => Next (nextinstr (rs#IR0 <- v #IR1 <- Vundef #IR2 <- Vundef #IR3 <- Vundef #IR12 <- Vundef)) m | None => Stuck end | Psbfx r1 r2 lsb sz => Next (nextinstr (rs#r1 <- (Val.sign_ext (Int.unsigned sz) (Val.shru rs#r2 (Vint lsb))))) m | Psmull rdl rdh r1 r2 => Next (nextinstr (rs#rdl <- (Val.mul rs#r1 rs#r2) #rdh <- (Val.mulhs rs#r1 rs#r2))) m | Psub r1 r2 so => Next (nextinstr_nf (rs#r1 <- (Val.sub rs#r2 (eval_shift_op so rs)))) m | Pudiv => match Val.divu rs#IR0 rs#IR1 with | Some v => Next (nextinstr (rs#IR0 <- v #IR1 <- Vundef #IR2 <- Vundef #IR3 <- Vundef #IR12 <- Vundef)) m | None => Stuck end | Pumull rdl rdh r1 r2 => Next (nextinstr (rs#rdl <- (Val.mul rs#r1 rs#r2) #rdh <- (Val.mulhu rs#r1 rs#r2))) m (* Floating-point coprocessor instructions *) | Pfcpyd r1 r2 => Next (nextinstr (rs#r1 <- (rs#r2))) m | Pfabsd r1 r2 => Next (nextinstr (rs#r1 <- (Val.absf rs#r2))) m | Pfnegd r1 r2 => Next (nextinstr (rs#r1 <- (Val.negf rs#r2))) m | Pfaddd r1 r2 r3 => Next (nextinstr (rs#r1 <- (Val.addf rs#r2 rs#r3))) m | Pfdivd r1 r2 r3 => Next (nextinstr (rs#r1 <- (Val.divf rs#r2 rs#r3))) m | Pfmuld r1 r2 r3 => Next (nextinstr (rs#r1 <- (Val.mulf rs#r2 rs#r3))) m | Pfsubd r1 r2 r3 => Next (nextinstr (rs#r1 <- (Val.subf rs#r2 rs#r3))) m | Pflid r1 f => Next (nextinstr (rs#r1 <- (Vfloat f))) m | Pfcmpd r1 r2 => Next (nextinstr (compare_float rs rs#r1 rs#r2)) m | Pfcmpzd r1 => Next (nextinstr (compare_float rs rs#r1 (Vfloat Float.zero))) m | Pfsitod r1 r2 => Next (nextinstr (rs#r1 <- (Val.maketotal (Val.floatofint rs#r2)))) m | Pfuitod r1 r2 => Next (nextinstr (rs#r1 <- (Val.maketotal (Val.floatofintu rs#r2)))) m | Pftosizd r1 r2 => Next (nextinstr (rs #FR6 <- Vundef #r1 <- (Val.maketotal (Val.intoffloat rs#r2)))) m | Pftouizd r1 r2 => Next (nextinstr (rs #FR6 <- Vundef #r1 <- (Val.maketotal (Val.intuoffloat rs#r2)))) m | Pfabss r1 r2 => Next (nextinstr (rs#r1 <- (Val.absfs rs#r2))) m | Pfnegs r1 r2 => Next (nextinstr (rs#r1 <- (Val.negfs rs#r2))) m | Pfadds r1 r2 r3 => Next (nextinstr (rs#r1 <- (Val.addfs rs#r2 rs#r3))) m | Pfdivs r1 r2 r3 => Next (nextinstr (rs#r1 <- (Val.divfs rs#r2 rs#r3))) m | Pfmuls r1 r2 r3 => Next (nextinstr (rs#r1 <- (Val.mulfs rs#r2 rs#r3))) m | Pfsubs r1 r2 r3 => Next (nextinstr (rs#r1 <- (Val.subfs rs#r2 rs#r3))) m | Pflis r1 f => Next (nextinstr (rs#r1 <- (Vsingle f))) m | Pfcmps r1 r2 => Next (nextinstr (compare_float32 rs rs#r1 rs#r2)) m | Pfcmpzs r1 => Next (nextinstr (compare_float32 rs rs#r1 (Vsingle Float32.zero))) m | Pfsitos r1 r2 => Next (nextinstr (rs#r1 <- (Val.maketotal (Val.singleofint rs#r2)))) m | Pfuitos r1 r2 => Next (nextinstr (rs#r1 <- (Val.maketotal (Val.singleofintu rs#r2)))) m | Pftosizs r1 r2 => Next (nextinstr (rs #FR6 <- Vundef #r1 <- (Val.maketotal (Val.intofsingle rs#r2)))) m | Pftouizs r1 r2 => Next (nextinstr (rs #FR6 <- Vundef #r1 <- (Val.maketotal (Val.intuofsingle rs#r2)))) m | Pfcvtsd r1 r2 => Next (nextinstr (rs#r1 <- (Val.singleoffloat rs#r2))) m | Pfcvtds r1 r2 => Next (nextinstr (rs#r1 <- (Val.floatofsingle rs#r2))) m | Pfldd r1 r2 n => exec_load Mfloat64 (Val.add rs#r2 (Vint n)) r1 rs m | Pfldd_a r1 r2 n => exec_load Many64 (Val.add rs#r2 (Vint n)) r1 rs m | Pflds r1 r2 n => exec_load Mfloat32 (Val.add rs#r2 (Vint n)) r1 rs m | Pfstd r1 r2 n => exec_store Mfloat64 (Val.add rs#r2 (Vint n)) r1 rs m | Pfstd_a r1 r2 n => exec_store Many64 (Val.add rs#r2 (Vint n)) r1 rs m | Pfsts r1 r2 n => exec_store Mfloat32 (Val.add rs#r2 (Vint n)) r1 rs m (* Pseudo-instructions *) | Pallocframe sz pos => let (m1, stk) := Mem.alloc m 0 sz in let sp := (Vptr stk Int.zero) in match Mem.storev Mint32 m1 (Val.add sp (Vint pos)) rs#IR13 with | None => Stuck | Some m2 => Next (nextinstr (rs #IR12 <- (rs#IR13) #IR13 <- sp)) m2 end | Pfreeframe sz pos => match Mem.loadv Mint32 m (Val.add rs#IR13 (Vint pos)) with | None => Stuck | Some v => match rs#IR13 with | Vptr stk ofs => match Mem.free m stk 0 sz with | None => Stuck | Some m' => Next (nextinstr (rs#IR13 <- v)) m' end | _ => Stuck end end | Plabel lbl => Next (nextinstr rs) m | Ploadsymbol r1 lbl ofs => Next (nextinstr (rs#r1 <- (Genv.symbol_address ge lbl ofs))) m | Pmovite cond r1 ifso ifnot => let v := match eval_testcond cond rs with | Some true => eval_shift_op ifso rs | Some false => eval_shift_op ifnot rs | None => Vundef end in Next (nextinstr (rs#r1 <- v)) m | Pbtbl r tbl => match rs#r with | Vint n => match list_nth_z tbl (Int.unsigned n) with | None => Stuck | Some lbl => goto_label f lbl (rs#IR14 <- Vundef) m end | _ => Stuck end | Pbuiltin ef args res => Stuck (**r treated specially below *) | Pannot ef args => Stuck (**r treated specially below *) end. (** Translation of the LTL/Linear/Mach view of machine registers to the ARM view. Note that no LTL register maps to [IR14]. This register is reserved as temporary, to be used by the generated ARM code. *) Definition preg_of (r: mreg) : preg := match r with | R0 => IR0 | R1 => IR1 | R2 => IR2 | R3 => IR3 | R4 => IR4 | R5 => IR5 | R6 => IR6 | R7 => IR7 | R8 => IR8 | R9 => IR9 | R10 => IR10 | R11 => IR11 | R12 => IR12 | F0 => FR0 | F1 => FR1 | F2 => FR2 | F3 => FR3 | F4 => FR4 | F5 => FR5 | F6 => FR6 | F7 => FR7 | F8 => FR8 | F9 => FR9 | F10 => FR10 | F11 => FR11 | F12 => FR12 | F13 => FR13 | F14 => FR14 | F15 => FR15 end. (** Extract the values of the arguments of an external call. We exploit the calling conventions from module [Conventions], except that we use ARM registers instead of locations. *) Inductive extcall_arg (rs: regset) (m: mem): loc -> val -> Prop := | extcall_arg_reg: forall r, extcall_arg rs m (R r) (rs (preg_of r)) | extcall_arg_stack: forall ofs ty bofs v, bofs = Stacklayout.fe_ofs_arg + 4 * ofs -> Mem.loadv (chunk_of_type ty) m (Val.add (rs (IR IR13)) (Vint (Int.repr bofs))) = Some v -> extcall_arg rs m (S Outgoing ofs ty) v. Definition extcall_arguments (rs: regset) (m: mem) (sg: signature) (args: list val) : Prop := list_forall2 (extcall_arg rs m) (loc_arguments sg) args. Definition loc_external_result (sg: signature) : list preg := map preg_of (loc_result sg). (** Extract the values of the arguments of an annotation. *) Inductive annot_arg (rs: regset) (m: mem): annot_param -> val -> Prop := | annot_arg_reg: forall r, annot_arg rs m (APreg r) (rs r) | annot_arg_stack: forall chunk ofs stk base v, rs (IR IR13) = Vptr stk base -> Mem.load chunk m stk (Int.unsigned base + ofs) = Some v -> annot_arg rs m (APstack chunk ofs) v. Definition annot_arguments (rs: regset) (m: mem) (params: list annot_param) (args: list val) : Prop := list_forall2 (annot_arg rs m) params args. (** Execution of the instruction at [rs#PC]. *) Inductive state: Type := | State: regset -> mem -> state. Inductive step: state -> trace -> state -> Prop := | exec_step_internal: forall b ofs f i rs m rs' m', rs PC = Vptr b ofs -> Genv.find_funct_ptr ge b = Some (Internal f) -> find_instr (Int.unsigned ofs) (fn_code f) = Some i -> exec_instr f i rs m = Next rs' m' -> step (State rs m) E0 (State rs' m') | exec_step_builtin: forall b ofs f ef args res rs m t vl rs' m', rs PC = Vptr b ofs -> Genv.find_funct_ptr ge b = Some (Internal f) -> find_instr (Int.unsigned ofs) (fn_code f) = Some (Pbuiltin ef args res) -> external_call' ef ge (map rs args) m t vl m' -> rs' = nextinstr (set_regs res vl (undef_regs (map preg_of (destroyed_by_builtin ef)) rs)) -> step (State rs m) t (State rs' m') | exec_step_annot: forall b ofs f ef args rs m vargs t v m', rs PC = Vptr b ofs -> Genv.find_funct_ptr ge b = Some (Internal f) -> find_instr (Int.unsigned ofs) (fn_code f) = Some (Pannot ef args) -> annot_arguments rs m args vargs -> external_call' ef ge vargs m t v m' -> step (State rs m) t (State (nextinstr rs) m') | exec_step_external: forall b ef args res rs m t rs' m', rs PC = Vptr b Int.zero -> Genv.find_funct_ptr ge b = Some (External ef) -> external_call' ef ge args m t res m' -> extcall_arguments rs m (ef_sig ef) args -> rs' = (set_regs (loc_external_result (ef_sig ef) ) res rs)#PC <- (rs IR14) -> step (State rs m) t (State rs' m'). End RELSEM. (** Execution of whole programs. *) Inductive initial_state (p: program): state -> Prop := | initial_state_intro: forall m0, let ge := Genv.globalenv p in let rs0 := (Pregmap.init Vundef) # PC <- (Genv.symbol_address ge p.(prog_main) Int.zero) # IR14 <- Vzero # IR13 <- Vzero in Genv.init_mem p = Some m0 -> initial_state p (State rs0 m0). Inductive final_state: state -> int -> Prop := | final_state_intro: forall rs m r, rs#PC = Vzero -> rs#IR0 = Vint r -> final_state (State rs m) r. Definition semantics (p: program) := Semantics step (initial_state p) final_state (Genv.globalenv p). (** Determinacy of the [Asm] semantics. *) Remark extcall_arguments_determ: forall rs m sg args1 args2, extcall_arguments rs m sg args1 -> extcall_arguments rs m sg args2 -> args1 = args2. Proof. intros until m. assert (forall ll vl1, list_forall2 (extcall_arg rs m) ll vl1 -> forall vl2, list_forall2 (extcall_arg rs m) ll vl2 -> vl1 = vl2). induction 1; intros vl2 EA; inv EA. auto. f_equal; auto. inv H; inv H3; congruence. intros. red in H0; red in H1. eauto. Qed. Remark annot_arguments_determ: forall rs m params args1 args2, annot_arguments rs m params args1 -> annot_arguments rs m params args2 -> args1 = args2. Proof. unfold annot_arguments. intros. revert params args1 H args2 H0. induction 1; intros. inv H0; auto. inv H1. decEq; eauto. inv H; inv H4. auto. congruence. Qed. Lemma semantics_determinate: forall p, determinate (semantics p). Proof. Ltac Equalities := match goal with | [ H1: ?a = ?b, H2: ?a = ?c |- _ ] => rewrite H1 in H2; inv H2; Equalities | _ => idtac end. intros; constructor; simpl; intros. (* determ *) inv H; inv H0; Equalities. split. constructor. auto. discriminate. discriminate. inv H11. exploit external_call_determ'. eexact H4. eexact H9. intros [A B]. split. auto. intros. destruct B; auto. subst. auto. inv H12. assert (vargs0 = vargs) by (eapply annot_arguments_determ; eauto). subst vargs0. exploit external_call_determ'. eexact H5. eexact H13. intros [A B]. split. auto. intros. destruct B; auto. subst. auto. assert (args0 = args) by (eapply extcall_arguments_determ; eauto). subst args0. exploit external_call_determ'. eexact H3. eexact H8. intros [A B]. split. auto. intros. destruct B; auto. subst. auto. (* trace length *) red; intros; inv H; simpl. omega. inv H3; eapply external_call_trace_length; eauto. inv H4; eapply external_call_trace_length; eauto. inv H2; eapply external_call_trace_length; eauto. (* initial states *) inv H; inv H0. f_equal. congruence. (* final no step *) inv H. unfold Vzero in H0. red; intros; red; intros. inv H; congruence. (* final states *) inv H; inv H0. congruence. Qed. (** Classification functions for processor registers (used in Asmgenproof). *) Definition data_preg (r: preg) : bool := match r with | IR IR14 => false | IR _ => true | FR _ => true | CR _ => false | PC => false end.