Release 1.8, 2010-09-21 ======================= - The input language to the proved part of the compiler is no longer Clight but CompCert C: a larger subset of the C language supporting in particular side-effects within expressions. The transformations that pull side effects out of expressions and materialize implicit casts, formerly performed by untrusted Caml code, are now fully proved in Coq. - New port targeting Intel/AMD x86 processors. Generates 32-bit x86 code using SSE2 extensions for floating-point arithmetic. Works under Linux, MacOS X, and the Cygwin environment for Windows. CompCert's compilation strategy is not a very good match for the x86 architecture, therefore the performance of the generated code is not as good as for the PowerPC port, but still usable. (About 75% of the performance of gcc -O1 for x86, compared with > 90% for PowerPC.) - More faithful semantics for volatile accesses: . volatile reads and writes from a volatile global variable are treated like input and output system calls (respectively), bypassing the memory model entirely; . volatile reads and writes from other locations are treated like regular loads and stores. - Introduced __builtin_memcpy() and __builtin_memcpy_words(), use them instead of memcpy() to compile struct and union assignments. - Introduced __builtin_annotation() to transmit assertions from the source program all the way to the generated assembly code. - Elimination of some useless casts around "&", "|" and "^" bitwise operators. - Produce fewer "moves" during RTL generation. This speeds up the rest of compilation and slightly improves the result of register allocation when register pressure is high. - Improvements in register allocation: . Implemented a spilling heuristic during register allocation. This heuristic reduces significantly the amount of spill code generated when register pressure is high. . More coalescing between low-pressure and high-pressure variables. . Aggressive coalescing between pairs of spilled variables. - Fixed some bugs in the emulation of bit fields. Release 1.7.1, 2010-04-13 ========================= Bug fixes in the new C pre-simplifier: - Missing cast on return value for some functions - Incorrect simplification of some uses of || and && - Nontermination in the presence of a bit field of size exactly 32 bits. - Global initializers for structs containing bit fields. - Wrong type in volatile reads from variables of type 'unsigned int'. Small improvements to the PowerPC port: - Added __builtin_trap() built-in function. - Support for '#pragma reserve_register' (EABI) - Less aggressive alignment of global variables. - Generate '.type' and '.size' directives (EABI). Release 1.7, 2010-03-31 ======================= - New implementation of the C type-checker, simplifier, and translation to Clight. Compared with the previous CIL-based solution, the new implementation is more modular and supports more optional simplifications. - More features of the C language are handled by expansion during translation to Clight: . assignment between structs and unions (option -fstruct-assign) . passing structs and union by value (option -fstruct-passing) . bit-fields in structs (option -fbitfields) - The "volatile" modifier is now honored. Volatile accesses are represented in Clight by calls to built-in functions, which are preserved throughout the compilation chain, then turned into processor loads and stores at the end. - Generic support for C built-in functions. These predefined external functions give access to special instructions of the processor. See powerpc/CBuiltins.ml for the list of PowerPC built-in functions. - The memory model now exposes the bit-level in-memory representation of integers and floats. This strengthens the semantic preservation theorem: we now prove that C code that directly manipulates these bit-level representations (e.g. via a union between floats and integers) is correctly compiled. - The memory model now supports fine-grained access control to individual bytes of a memory block. This feature is currently unused in the compiler proofs, but will facilitate connections with separation logics later. - External functions are now allowed to read and modify memory. The semantic preservation proofs were strengthened accordingly. In particular, this enables the malloc() and free() C library functions to be modeled as external functions in a provably correct manner. - Minor improvements in the handling of global environments and the construction of the initial memory state. - Bug fixes in the handling of '#pragma section' and '#pragma set_section'. - The C test suite was enriched and restructured. Release 1.6, 2010-01-13 ======================= - Support Clight initializers of the form "int * x = &y;". - Fixed spurious compile-time error on Clight initializers of the form "const enum E x[2] = { E_1, E_2 };". - Produce informative error message if a 'return' without argument occurs in a non-void function, or if a 'return' with an argument occurs in a void function. - Preliminary support for '#pragma section' and '#pragma set_section'. - Preliminary support for small data areas in PowerPC code generator. - Back-end: added support for jump tables; used them to compile dense 'switch' statements. - PowerPC code generator: force conversion to single precision before doing a "store single float" instruction. Release 1.5, 2009-08-28 ======================= - Support for "goto" in the source language Clight. - Added small-step semantics for Clight. - Traces for diverging executions are now uniquely defined; tightened semantic preservation results accordingly. - Emulated assignments between structures (during the C to Clight initial translation). - Fixed spurious compile-time error on Clight statements of the form "x = f(...);" where x is a global variable. - Fixed spurious compile-time error on Clight initializers where the initial value is the result of a floating-point computation (e.g. "double x = 3.14159 / 2;"). - Simplified the interface of the generic dataflow solver. - Reduced running time and memory requirements for the constant propagation pass. - Improved the implementation of George and Appel's graph coloring heuristic: runs faster, produces better results. - Revised the implementation of branch tunneling. - Improved modularization between processor-dependent and processor-independent parts. Release 1.4.1, 2009-06-05 ========================= - Adapted to Coq 8.2-1. No changes in functionality. Release 1.4, 2009-04-20 ======================= - Modularized the processor dependencies in the back-end. - Three target architectures are now supported: PowerPC / MacOS X (most mature) PowerPC / EABI & Linux (getting stable) ARM / Linux EABI (still experimental) - Added alignment constraints to the memory model. - Clight: added support for conditional expressions (a ? b : c); removed support for array accesses a[i], now a derived form. - C front-end: honor "static" modifiers on globals. - New optimization over RTL: turning calls into tail calls when possible. - Instruction selection pass: elimination of redundant casts following a memory load of a "small" memory quantity. - Linearization pass: improved the linearization heuristic. - Reloading pass: more economical use of temporaries. - Back-end: removed "alloc heap" instruction; removed pointer validity checks in pointer comparisons. Release 1.3, 2008-08-11 ======================= - Added "goto" and labeled statements to Cminor. Extended RTLgen and its proof accordingly. - Introduced small-step transition semantics for Cminor; used it in proof of RTLgen pass; proved consistency of Cminor big-step semantics w.r.t. transition semantics. - Revised division of labor between the Allocation pass and the Reload pass. The semantics of LTL and LTLin no longer need to anticipate the passing of arguments through the conventional locations. - Cleaned up Stacking pass: the positions of the back link and of the return address in the stack frame are no longer hard-wired in the Mach semantics. - Added operator to convert from float to unsigned int; used it in C front-end - Added flag -fmadd to control recognition of fused multiply-add and -sub - Semantics of pointer-pointer comparison in Clight was incomplete: pointers within different blocks can now be compared using == or != - Addition integer + pointer is now supported in Clight. - Improved instruction selection for complex conditions involving || and &&. - Improved translation of Cminor "switch" statements to RTL decision trees. - Fixed error in C parser and simplifier related to "for" loops with complex expressions as condition. - More benchmark programs in test/ Release 1.2, 2008-04-03 ======================= - First public release