From 353b3cee4d08b5820bf62b7228afb67be69f10e6 Mon Sep 17 00:00:00 2001 From: xleroy Date: Mon, 4 Mar 2013 15:28:28 +0000 Subject: Finished backtracking (cf previous commit) for ARM and PowerPC. ARM: slightly shorter code generated for indirect memory accesses. git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2137 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e --- powerpc/Asmgenproof.v | 519 +++++++++++++++++++++----------------------------- 1 file changed, 219 insertions(+), 300 deletions(-) (limited to 'powerpc/Asmgenproof.v') diff --git a/powerpc/Asmgenproof.v b/powerpc/Asmgenproof.v index 6c95744..7699fef 100644 --- a/powerpc/Asmgenproof.v +++ b/powerpc/Asmgenproof.v @@ -86,8 +86,8 @@ Proof. Qed. Lemma exec_straight_exec: - forall f c ep tf tc c' rs m rs' m', - transl_code_at_pc ge (rs PC) f c ep tf tc -> + forall fb f c ep tf tc c' rs m rs' m', + transl_code_at_pc ge (rs PC) fb f c ep tf tc -> exec_straight tge tf tc rs m c' rs' m' -> plus step tge (State rs m) E0 (State rs' m'). Proof. @@ -98,11 +98,11 @@ Proof. Qed. Lemma exec_straight_at: - forall f c ep tf tc c' ep' tc' rs m rs' m', - transl_code_at_pc ge (rs PC) f c ep tf tc -> + forall fb f c ep tf tc c' ep' tc' rs m rs' m', + transl_code_at_pc ge (rs PC) fb f c ep tf tc -> transl_code f c' ep' = OK tc' -> exec_straight tge tf tc rs m tc' rs' m' -> - transl_code_at_pc ge (rs' PC) f c' ep' tf tc'. + transl_code_at_pc ge (rs' PC) fb f c' ep' tf tc'. Proof. intros. inv H. exploit exec_straight_steps_2; eauto. @@ -112,39 +112,6 @@ Proof. rewrite PC'. constructor; auto. Qed. -(** The [find_label] function returns the code tail starting at the - given label. A connection with [code_tail] is then established. *) - -Fixpoint find_label (lbl: label) (c: code) {struct c} : option code := - match c with - | nil => None - | instr :: c' => - if is_label lbl instr then Some c' else find_label lbl c' - end. - -Lemma label_pos_code_tail: - forall lbl c pos c', - find_label lbl c = Some c' -> - exists pos', - label_pos lbl pos c = Some pos' - /\ code_tail (pos' - pos) c c' - /\ pos < pos' <= pos + list_length_z c. -Proof. - induction c. - simpl; intros. discriminate. - simpl; intros until c'. - case (is_label lbl a). - intro EQ; injection EQ; intro; subst c'. - exists (pos + 1). split. auto. split. - replace (pos + 1 - pos) with (0 + 1) by omega. constructor. constructor. - rewrite list_length_z_cons. generalize (list_length_z_pos c). omega. - intros. generalize (IHc (pos + 1) c' H). intros [pos' [A [B C]]]. - exists pos'. split. auto. split. - replace (pos' - pos) with ((pos' - (pos + 1)) + 1) by omega. - constructor. auto. - rewrite list_length_z_cons. omega. -Qed. - (** The following lemmas show that the translation from Mach to PPC preserves labels, in the sense that the following diagram commutes: << @@ -163,180 +130,169 @@ Qed. Section TRANSL_LABEL. -Variable lbl: label. - Remark loadimm_label: - forall r n k, find_label lbl (loadimm r n k) = find_label lbl k. + forall r n k, tail_nolabel k (loadimm r n k). Proof. intros. unfold loadimm. - case (Int.eq (high_s n) Int.zero). reflexivity. - case (Int.eq (low_s n) Int.zero). reflexivity. - reflexivity. + case (Int.eq (high_s n) Int.zero). TailNoLabel. + case (Int.eq (low_s n) Int.zero); TailNoLabel. Qed. -Hint Rewrite loadimm_label: labels. +Hint Resolve loadimm_label: labels. Remark addimm_label: - forall r1 r2 n k, find_label lbl (addimm r1 r2 n k) = find_label lbl k. + forall r1 r2 n k, tail_nolabel k (addimm r1 r2 n k). Proof. intros; unfold addimm. - case (Int.eq (high_s n) Int.zero). reflexivity. - case (Int.eq (low_s n) Int.zero). reflexivity. reflexivity. + case (Int.eq (high_s n) Int.zero). TailNoLabel. + case (Int.eq (low_s n) Int.zero); TailNoLabel. Qed. -Hint Rewrite addimm_label: labels. +Hint Resolve addimm_label: labels. Remark andimm_base_label: - forall r1 r2 n k, find_label lbl (andimm_base r1 r2 n k) = find_label lbl k. + forall r1 r2 n k, tail_nolabel k (andimm_base r1 r2 n k). Proof. intros; unfold andimm_base. - case (Int.eq (high_u n) Int.zero). reflexivity. - case (Int.eq (low_u n) Int.zero). reflexivity. - autorewrite with labels. reflexivity. + case (Int.eq (high_u n) Int.zero). TailNoLabel. + case (Int.eq (low_u n) Int.zero). TailNoLabel. + eapply tail_nolabel_trans; TailNoLabel. Qed. -Hint Rewrite andimm_base_label: labels. +Hint Resolve andimm_base_label: labels. Remark andimm_label: - forall r1 r2 n k, find_label lbl (andimm r1 r2 n k) = find_label lbl k. + forall r1 r2 n k, tail_nolabel k (andimm r1 r2 n k). Proof. intros; unfold andimm. - case (is_rlw_mask n). reflexivity. - autorewrite with labels. reflexivity. + case (is_rlw_mask n); TailNoLabel. Qed. -Hint Rewrite andimm_label: labels. +Hint Resolve andimm_label: labels. Remark orimm_label: - forall r1 r2 n k, find_label lbl (orimm r1 r2 n k) = find_label lbl k. + forall r1 r2 n k, tail_nolabel k (orimm r1 r2 n k). Proof. intros; unfold orimm. - case (Int.eq (high_u n) Int.zero). reflexivity. - case (Int.eq (low_u n) Int.zero). reflexivity. reflexivity. + case (Int.eq (high_u n) Int.zero). TailNoLabel. + case (Int.eq (low_u n) Int.zero); TailNoLabel. Qed. -Hint Rewrite orimm_label: labels. +Hint Resolve orimm_label: labels. Remark xorimm_label: - forall r1 r2 n k, find_label lbl (xorimm r1 r2 n k) = find_label lbl k. + forall r1 r2 n k, tail_nolabel k (xorimm r1 r2 n k). Proof. intros; unfold xorimm. - case (Int.eq (high_u n) Int.zero). reflexivity. - case (Int.eq (low_u n) Int.zero). reflexivity. reflexivity. + case (Int.eq (high_u n) Int.zero). TailNoLabel. + case (Int.eq (low_u n) Int.zero); TailNoLabel. Qed. -Hint Rewrite xorimm_label: labels. +Hint Resolve xorimm_label: labels. Remark rolm_label: - forall r1 r2 amount mask k, find_label lbl (rolm r1 r2 amount mask k) = find_label lbl k. + forall r1 r2 amount mask k, tail_nolabel k (rolm r1 r2 amount mask k). Proof. intros; unfold rolm. - case (is_rlw_mask mask). reflexivity. -Opaque Int.eq. - simpl. autorewrite with labels. auto. + case (is_rlw_mask mask); TailNoLabel. Qed. -Hint Rewrite rolm_label: labels. +Hint Resolve rolm_label: labels. Remark loadind_label: forall base ofs ty dst k c, - loadind base ofs ty dst k = OK c -> - find_label lbl c = find_label lbl k. + loadind base ofs ty dst k = OK c -> tail_nolabel k c. Proof. unfold loadind; intros. - destruct ty; destruct (Int.eq (high_s ofs) Int.zero); monadInv H; - autorewrite with labels; auto. + destruct ty; destruct (Int.eq (high_s ofs) Int.zero); + TailNoLabel; eapply tail_nolabel_trans; TailNoLabel. Qed. Remark storeind_label: forall base ofs ty src k c, - storeind base src ofs ty k = OK c -> - find_label lbl c = find_label lbl k. + storeind base src ofs ty k = OK c -> tail_nolabel k c. Proof. unfold storeind; intros. - destruct ty; destruct (Int.eq (high_s ofs) Int.zero); monadInv H; - autorewrite with labels; auto. + destruct ty; destruct (Int.eq (high_s ofs) Int.zero); + TailNoLabel; eapply tail_nolabel_trans; TailNoLabel. Qed. Remark floatcomp_label: - forall cmp r1 r2 k, find_label lbl (floatcomp cmp r1 r2 k) = find_label lbl k. + forall cmp r1 r2 k, tail_nolabel k (floatcomp cmp r1 r2 k). Proof. - intros; unfold floatcomp. destruct cmp; reflexivity. + intros; unfold floatcomp. destruct cmp; TailNoLabel. Qed. -Hint Rewrite floatcomp_label: labels. +Hint Resolve floatcomp_label: labels. Remark transl_cond_label: forall cond args k c, - transl_cond cond args k = OK c -> find_label lbl c = find_label lbl k. + transl_cond cond args k = OK c -> tail_nolabel k c. Proof. - unfold transl_cond; intros; destruct cond; - (destruct args; - [try discriminate | destruct args; - [try discriminate | destruct args; try discriminate]]); - monadInv H; autorewrite with labels; auto. - destruct (Int.eq (high_s i) Int.zero); inv EQ0; autorewrite with labels; auto. - destruct (Int.eq (high_u i) Int.zero); inv EQ0; autorewrite with labels; auto. + unfold transl_cond; intros; destruct cond; TailNoLabel; + eapply tail_nolabel_trans; TailNoLabel. Qed. Remark transl_cond_op_label: forall cond args r k c, - transl_cond_op cond args r k = OK c -> find_label lbl c = find_label lbl k. + transl_cond_op cond args r k = OK c -> tail_nolabel k c. Proof. unfold transl_cond_op; intros; destruct (classify_condition cond args); - monadInv H; auto. - erewrite transl_cond_label. 2: eauto. - destruct (snd (crbit_for_cond c0)); auto. + TailNoLabel. + eapply tail_nolabel_trans. eapply transl_cond_label; eauto. + destruct (snd (crbit_for_cond c0)); TailNoLabel. Qed. Remark transl_op_label: forall op args r k c, - transl_op op args r k = OK c -> find_label lbl c = find_label lbl k. + transl_op op args r k = OK c -> tail_nolabel k c. Proof. - unfold transl_op; intros; destruct op; try (eapply transl_cond_op_label; eauto; fail); - (destruct args; - [try discriminate | destruct args; - [try discriminate | destruct args; try discriminate]]); - try (monadInv H); autorewrite with labels; auto. - destruct (preg_of r); try discriminate; destruct (preg_of m); inv H; auto. - destruct (symbol_is_small_data i i0); auto. - destruct (Int.eq (high_s i) Int.zero); autorewrite with labels; auto. - destruct (Int.eq (high_s i) Int.zero); autorewrite with labels; auto. +Opaque Int.eq. + unfold transl_op; intros; destruct op; TailNoLabel. + destruct (preg_of r); try discriminate; destruct (preg_of m); inv H; TailNoLabel. + destruct (symbol_is_small_data i i0); TailNoLabel. + destruct (Int.eq (high_s i) Int.zero); TailNoLabel; eapply tail_nolabel_trans; TailNoLabel. + destruct (Int.eq (high_s i) Int.zero); TailNoLabel; eapply tail_nolabel_trans; TailNoLabel. + eapply transl_cond_op_label; eauto. Qed. Remark transl_memory_access_label: forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction) addr args temp k c, transl_memory_access mk1 mk2 addr args temp k = OK c -> - (forall c r, is_label lbl (mk1 c r) = false) -> - (forall r1 r2, is_label lbl (mk2 r1 r2) = false) -> - find_label lbl c = find_label lbl k. + (forall c r, nolabel (mk1 c r)) -> + (forall r1 r2, nolabel (mk2 r1 r2)) -> + tail_nolabel k c. Proof. - unfold transl_memory_access; intros; destruct addr; - (destruct args; - [try discriminate | destruct args; - [try discriminate | destruct args; try discriminate]]); - monadInv H; autorewrite with labels; auto. - destruct (Int.eq (high_s i) Int.zero); simpl; rewrite H0; auto. - simpl; rewrite H1; auto. - destruct (symbol_is_small_data i i0); simpl; rewrite H0; auto. - simpl; rewrite H0; auto. - destruct (Int.eq (high_s i) Int.zero); simpl; rewrite H0; auto. + unfold transl_memory_access; intros; destruct addr; TailNoLabel. + destruct (Int.eq (high_s i) Int.zero); TailNoLabel. + destruct (symbol_is_small_data i i0); TailNoLabel. + destruct (Int.eq (high_s i) Int.zero); TailNoLabel. Qed. Lemma transl_instr_label: forall f i ep k c, transl_instr f i ep k = OK c -> - find_label lbl c = if Mach.is_label lbl i then Some k else find_label lbl k. + match i with Mlabel lbl => c = Plabel lbl :: k | _ => tail_nolabel k c end. Proof. - unfold transl_instr, Mach.is_label; intros; destruct i; try (monadInv H); - autorewrite with labels; auto. + unfold transl_instr; intros; destruct i; TailNoLabel. eapply loadind_label; eauto. eapply storeind_label; eauto. - destruct ep. eapply loadind_label; eauto. - monadInv H. transitivity (find_label lbl x); eapply loadind_label; eauto. + eapply loadind_label; eauto. + eapply tail_nolabel_trans; eapply loadind_label; eauto. eapply transl_op_label; eauto. - destruct m; monadInv H; rewrite (transl_memory_access_label _ _ _ _ _ _ _ EQ0); auto. - destruct m; monadInv H; rewrite (transl_memory_access_label _ _ _ _ _ _ _ EQ0); auto. - destruct s0; monadInv H; auto. - destruct s0; monadInv H; auto. - erewrite transl_cond_label. 2: eauto. destruct (snd (crbit_for_cond c0)); auto. + destruct m; monadInv H; (eapply tail_nolabel_trans; [eapply transl_memory_access_label; TailNoLabel|TailNoLabel]). + destruct m; monadInv H; eapply transl_memory_access_label; TailNoLabel. + destruct s0; monadInv H; TailNoLabel. + destruct s0; monadInv H; TailNoLabel. + eapply tail_nolabel_trans. eapply transl_cond_label; eauto. + destruct (snd (crbit_for_cond c0)); TailNoLabel. +Qed. + +Lemma transl_instr_label': + forall lbl f i ep k c, + transl_instr f i ep k = OK c -> + find_label lbl c = if Mach.is_label lbl i then Some k else find_label lbl k. +Proof. + intros. exploit transl_instr_label; eauto. + destruct i; try (intros [A B]; apply B). + intros. subst c. simpl. auto. Qed. Lemma transl_code_label: - forall f c ep tc, + forall lbl f c ep tc, transl_code f c ep = OK tc -> match Mach.find_label lbl c with | None => find_label lbl tc = None @@ -345,7 +301,7 @@ Lemma transl_code_label: Proof. induction c; simpl; intros. inv H. auto. - monadInv H. rewrite (transl_instr_label _ _ _ _ _ EQ0). + monadInv H. rewrite (transl_instr_label' lbl _ _ _ _ _ EQ0). generalize (Mach.is_label_correct lbl a). destruct (Mach.is_label lbl a); intros. subst a. simpl in EQ. exists x; auto. @@ -353,7 +309,7 @@ Proof. Qed. Lemma transl_find_label: - forall f tf, + forall lbl f tf, transf_function f = OK tf -> match Mach.find_label lbl f.(Mach.fn_code) with | None => find_label lbl tf = None @@ -361,8 +317,7 @@ Lemma transl_find_label: end. Proof. intros. monadInv H. destruct (zlt Int.max_unsigned (list_length_z x)); inv EQ0. - monadInv EQ. simpl. - eapply transl_code_label; eauto. + monadInv EQ. simpl. eapply transl_code_label; eauto. Qed. End TRANSL_LABEL. @@ -378,7 +333,7 @@ Lemma find_label_goto_label: Mach.find_label lbl f.(Mach.fn_code) = Some c' -> exists tc', exists rs', goto_label tf lbl rs m = Next rs' m - /\ transl_code_at_pc ge (rs' PC) f c' false tf tc' + /\ transl_code_at_pc ge (rs' PC) b f c' false tf tc' /\ forall r, r <> PC -> rs'#r = rs#r. Proof. intros. exploit (transl_find_label lbl f tf); eauto. rewrite H2. @@ -394,6 +349,21 @@ Proof. intros. apply Pregmap.gso; auto. Qed. +(** Existence of return addresses *) + +Lemma return_address_exists: + forall f sg ros c, is_tail (Mcall sg ros :: c) f.(Mach.fn_code) -> + exists ra, return_address_offset f c ra. +Proof. + intros. eapply Asmgenproof0.return_address_exists; eauto. +- intros. exploit transl_instr_label; eauto. + destruct i; try (intros [A B]; apply A). intros. subst c0. repeat constructor. +- intros. monadInv H0. + destruct (zlt Int.max_unsigned (list_length_z x)); inv EQ0. monadInv EQ. + exists x; exists false; split; auto. unfold fn_code. repeat constructor. +- exact transf_function_no_overflow. +Qed. + (** * Proof of semantic preservation *) (** Semantic preservation is proved using simulation diagrams @@ -414,49 +384,49 @@ Qed. Inductive match_states: Mach.state -> Asm.state -> Prop := | match_states_intro: - forall s f sp c ep ms m m' rs tf tc ra - (STACKS: match_stack ge s m m' ra sp) + forall s fb sp c ep ms m m' rs f tf tc + (STACKS: match_stack ge s) + (FIND: Genv.find_funct_ptr ge fb = Some (Internal f)) (MEXT: Mem.extends m m') - (AT: transl_code_at_pc ge (rs PC) f c ep tf tc) - (AG: agree ms (Vptr sp Int.zero) rs) - (RSA: retaddr_stored_at m m' sp (Int.unsigned f.(fn_retaddr_ofs)) ra) + (AT: transl_code_at_pc ge (rs PC) fb f c ep tf tc) + (AG: agree ms sp rs) (DXP: ep = true -> rs#GPR11 = parent_sp s), - match_states (Mach.State s f (Vptr sp Int.zero) c ms m) + match_states (Mach.State s fb sp c ms m) (Asm.State rs m') | match_states_call: - forall s fd ms m m' rs fb - (STACKS: match_stack ge s m m' (rs LR) (Mem.nextblock m)) + forall s fb ms m m' rs + (STACKS: match_stack ge s) (MEXT: Mem.extends m m') (AG: agree ms (parent_sp s) rs) (ATPC: rs PC = Vptr fb Int.zero) - (FUNCT: Genv.find_funct_ptr ge fb = Some fd) - (WTRA: Val.has_type (rs LR) Tint), - match_states (Mach.Callstate s fd ms m) + (ATLR: rs RA = parent_ra s), + match_states (Mach.Callstate s fb ms m) (Asm.State rs m') | match_states_return: forall s ms m m' rs - (STACKS: match_stack ge s m m' (rs PC) (Mem.nextblock m)) + (STACKS: match_stack ge s) (MEXT: Mem.extends m m') - (AG: agree ms (parent_sp s) rs), + (AG: agree ms (parent_sp s) rs) + (ATPC: rs PC = parent_ra s), match_states (Mach.Returnstate s ms m) (Asm.State rs m'). Lemma exec_straight_steps: - forall s f rs1 i c ep tf tc m1' m2 m2' sp ms2 ra, - match_stack ge s m2 m2' ra sp -> + forall s fb f rs1 i c ep tf tc m1' m2 m2' sp ms2, + match_stack ge s -> Mem.extends m2 m2' -> - retaddr_stored_at m2 m2' sp (Int.unsigned f.(fn_retaddr_ofs)) ra -> - transl_code_at_pc ge (rs1 PC) f (i :: c) ep tf tc -> + Genv.find_funct_ptr ge fb = Some (Internal f) -> + transl_code_at_pc ge (rs1 PC) fb f (i :: c) ep tf tc -> (forall k c (TR: transl_instr f i ep k = OK c), exists rs2, exec_straight tge tf c rs1 m1' k rs2 m2' - /\ agree ms2 (Vptr sp Int.zero) rs2 + /\ agree ms2 sp rs2 /\ (r11_is_parent ep i = true -> rs2#GPR11 = parent_sp s)) -> exists st', plus step tge (State rs1 m1') E0 st' /\ - match_states (Mach.State s f (Vptr sp Int.zero) c ms2 m2) st'. + match_states (Mach.State s fb sp c ms2 m2) st'. Proof. - intros. inversion H2; subst. monadInv H7. + intros. inversion H2. subst. monadInv H7. exploit H3; eauto. intros [rs2 [A [B C]]]. exists (State rs2 m2'); split. eapply exec_straight_exec; eauto. @@ -464,23 +434,23 @@ Proof. Qed. Lemma exec_straight_steps_goto: - forall s f rs1 i c ep tf tc m1' m2 m2' sp ms2 lbl c' ra, - match_stack ge s m2 m2' ra sp -> + forall s fb f rs1 i c ep tf tc m1' m2 m2' sp ms2 lbl c', + match_stack ge s -> Mem.extends m2 m2' -> - retaddr_stored_at m2 m2' sp (Int.unsigned f.(fn_retaddr_ofs)) ra -> + Genv.find_funct_ptr ge fb = Some (Internal f) -> Mach.find_label lbl f.(Mach.fn_code) = Some c' -> - transl_code_at_pc ge (rs1 PC) f (i :: c) ep tf tc -> + transl_code_at_pc ge (rs1 PC) fb f (i :: c) ep tf tc -> r11_is_parent ep i = false -> (forall k c (TR: transl_instr f i ep k = OK c), exists jmp, exists k', exists rs2, exec_straight tge tf c rs1 m1' (jmp :: k') rs2 m2' - /\ agree ms2 (Vptr sp Int.zero) rs2 + /\ agree ms2 sp rs2 /\ exec_instr tge tf jmp rs2 m2' = goto_label tf lbl rs2 m2') -> exists st', plus step tge (State rs1 m1') E0 st' /\ - match_states (Mach.State s f (Vptr sp Int.zero) c' ms2 m2) st'. + match_states (Mach.State s fb sp c' ms2 m2) st'. Proof. - intros. inversion H3; subst. monadInv H9. + intros. inversion H3. subst. monadInv H9. exploit H5; eauto. intros [jmp [k' [rs2 [A [B C]]]]]. generalize (functions_transl _ _ _ H7 H8); intro FN. generalize (transf_function_no_overflow _ _ H8); intro NOOV. @@ -524,7 +494,7 @@ Qed. (** This is the simulation diagram. We prove it by case analysis on the Mach transition. *) Theorem step_simulation: - forall S1 t S2, Mach.step ge S1 t S2 -> + forall S1 t S2, Mach.step return_address_offset ge S1 t S2 -> forall S1' (MS: match_states S1 S1'), (exists S2', plus step tge S1' t S2' /\ match_states S2 S2') \/ (measure S2 < measure S1 /\ t = E0 /\ match_states S2 S1')%nat. @@ -551,8 +521,6 @@ Proof. assert (Val.lessdef (rs src) (rs0 (preg_of src))). eapply preg_val; eauto. exploit Mem.storev_extends; eauto. intros [m2' [A B]]. left; eapply exec_straight_steps; eauto. - eapply match_stack_storev; eauto. - eapply retaddr_stored_at_storev; eauto. rewrite (sp_val _ _ _ AG) in A. intros. simpl in TR. exploit storeind_correct; eauto with asmgen. intros [rs' [P Q]]. exists rs'; split. eauto. @@ -560,11 +528,12 @@ Proof. simpl; intros. rewrite Q; auto with asmgen. - (* Mgetparam *) + assert (f0 = f) by congruence; subst f0. unfold load_stack in *. - exploit Mem.loadv_extends. eauto. eexact H. auto. + exploit Mem.loadv_extends. eauto. eexact H0. auto. intros [parent' [A B]]. rewrite (sp_val _ _ _ AG) in A. exploit lessdef_parent_sp; eauto. clear B; intros B; subst parent'. - exploit Mem.loadv_extends. eauto. eexact H0. auto. + exploit Mem.loadv_extends. eauto. eexact H1. auto. intros [v' [C D]]. Opaque loadind. left; eapply exec_straight_steps; eauto; intros. @@ -591,7 +560,7 @@ Opaque loadind. apply preg_of_not_GPR11; auto. - (* Mop *) - assert (eval_operation tge (Vptr sp0 Int.zero) op rs##args m = Some v). + assert (eval_operation tge sp op rs##args m = Some v). rewrite <- H. apply eval_operation_preserved. exact symbols_preserved. exploit eval_operation_lessdef. eapply preg_vals; eauto. eauto. eexact H0. intros [v' [A B]]. rewrite (sp_val _ _ _ AG) in A. @@ -602,7 +571,7 @@ Opaque loadind. rewrite R; auto. apply preg_of_not_GPR11; auto. - (* Mload *) - assert (eval_addressing tge (Vptr sp0 Int.zero) addr rs##args = Some a). + assert (eval_addressing tge sp addr rs##args = Some a). rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved. exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1. intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A. @@ -615,95 +584,83 @@ Opaque loadind. simpl; congruence. - (* Mstore *) - assert (eval_addressing tge (Vptr sp0 Int.zero) addr rs##args = Some a). + assert (eval_addressing tge sp addr rs##args = Some a). rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved. exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1. intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A. assert (Val.lessdef (rs src) (rs0 (preg_of src))). eapply preg_val; eauto. exploit Mem.storev_extends; eauto. intros [m2' [C D]]. left; eapply exec_straight_steps; eauto. - eapply match_stack_storev; eauto. - eapply retaddr_stored_at_storev; eauto. intros. simpl in TR. exploit transl_store_correct; eauto. intros [rs2 [P Q]]. exists rs2; split. eauto. split. eapply agree_exten_temps; eauto. intros; auto with asmgen. simpl; congruence. - (* Mcall *) + assert (f0 = f) by congruence. subst f0. inv AT. assert (NOOV: list_length_z tf <= Int.max_unsigned). eapply transf_function_no_overflow; eauto. - destruct ros as [rf|fid]; simpl in H; monadInv H3. + destruct ros as [rf|fid]; simpl in H; monadInv H5. + (* Indirect call *) - exploit Genv.find_funct_inv; eauto. intros [bf EQ2]. - rewrite EQ2 in H; rewrite Genv.find_funct_find_funct_ptr in H. - assert (rs0 x0 = Vptr bf Int.zero). - exploit ireg_val; eauto. rewrite EQ2; intros LD; inv LD; auto. - generalize (code_tail_next_int _ _ _ _ NOOV H4). intro CT1. + assert (rs rf = Vptr f' Int.zero). + destruct (rs rf); try discriminate. + revert H; predSpec Int.eq Int.eq_spec i Int.zero; intros; congruence. + assert (rs0 x0 = Vptr f' Int.zero). + exploit ireg_val; eauto. rewrite H5; intros LD; inv LD; auto. + generalize (code_tail_next_int _ _ _ _ NOOV H6). intro CT1. generalize (code_tail_next_int _ _ _ _ NOOV CT1). intro CT2. - assert (TCA: transl_code_at_pc ge (Vptr b (Int.add (Int.add ofs Int.one) Int.one)) f c false tf x). - econstructor; eauto. + assert (TCA: transl_code_at_pc ge (Vptr fb (Int.add (Int.add ofs Int.one) Int.one)) fb f c false tf x). + econstructor; eauto. + exploit return_address_offset_correct; eauto. intros; subst ra. left; econstructor; split. eapply plus_left. eapply exec_step_internal. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. eauto. - apply star_one. eapply exec_step_internal. Simpl. rewrite <- H0; simpl; eauto. + apply star_one. eapply exec_step_internal. Simpl. rewrite <- H2; simpl; eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. eauto. traceEq. econstructor; eauto. - econstructor; eauto. - Simpl. rewrite <- H0; eexact TCA. - change (Mem.valid_block m sp0). eapply retaddr_stored_at_valid; eauto. + econstructor; eauto. + eapply agree_sp_def; eauto. simpl. eapply agree_exten; eauto. intros. Simpl. - Simpl. rewrite <- H0. exact I. + Simpl. rewrite <- H2. auto. + (* Direct call *) - destruct (Genv.find_symbol ge fid) as [bf|] eqn:FS; try discriminate. - generalize (code_tail_next_int _ _ _ _ NOOV H4). intro CT1. - assert (TCA: transl_code_at_pc ge (Vptr b (Int.add ofs Int.one)) f c false tf x). + generalize (code_tail_next_int _ _ _ _ NOOV H6). intro CT1. + assert (TCA: transl_code_at_pc ge (Vptr fb (Int.add ofs Int.one)) fb f c false tf x). econstructor; eauto. + exploit return_address_offset_correct; eauto. intros; subst ra. left; econstructor; split. apply plus_one. eapply exec_step_internal. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. - simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite FS. eauto. + simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite H. eauto. econstructor; eauto. econstructor; eauto. - rewrite <- H0. eexact TCA. - change (Mem.valid_block m sp0). eapply retaddr_stored_at_valid; eauto. + eapply agree_sp_def; eauto. simpl. eapply agree_exten; eauto. intros. Simpl. - auto. - rewrite <- H0. exact I. + Simpl. rewrite <- H2. auto. - (* Mtailcall *) +Opaque Int.repr. + assert (f0 = f) by congruence. subst f0. inversion AT; subst. assert (NOOV: list_length_z tf <= Int.max_unsigned). - eapply transf_function_no_overflow; eauto. - rewrite (sp_val _ _ _ AG) in *. unfold load_stack in *. - exploit Mem.loadv_extends. eauto. eexact H0. auto. simpl. intros [parent' [A B]]. + eapply transf_function_no_overflow; eauto. exploit Mem.loadv_extends. eauto. eexact H1. auto. simpl. intros [parent' [A B]]. + exploit Mem.loadv_extends. eauto. eexact H2. auto. simpl. intros [ra' [C D]]. exploit lessdef_parent_sp; eauto. intros. subst parent'. clear B. - assert (C: Mem.loadv Mint32 m'0 (Val.add (rs0 GPR1) (Vint (fn_retaddr_ofs f))) = Some ra). -Opaque Int.repr. - erewrite agree_sp; eauto. simpl. rewrite Int.add_zero_l. - eapply rsa_contains; eauto. - exploit retaddr_stored_at_can_free; eauto. intros [m2' [E F]]. - assert (M: match_stack ge s m'' m2' ra (Mem.nextblock m'')). - apply match_stack_change_bound with stk. - eapply match_stack_free_left; eauto. - eapply match_stack_free_left; eauto. - eapply match_stack_free_right; eauto. - omega. - apply Z.lt_le_incl. change (Mem.valid_block m'' stk). - eapply Mem.valid_block_free_1; eauto. eapply Mem.valid_block_free_1; eauto. - eapply retaddr_stored_at_valid; eauto. - destruct ros as [rf|fid]; simpl in H; monadInv H6. + exploit lessdef_parent_ra; eauto. intros. subst ra'. clear D. + exploit Mem.free_parallel_extends; eauto. intros [m2' [E F]]. + destruct ros as [rf|fid]; simpl in H; monadInv H7. + (* Indirect call *) - exploit Genv.find_funct_inv; eauto. intros [bf EQ2]. - rewrite EQ2 in H; rewrite Genv.find_funct_find_funct_ptr in H. - assert (rs0 x0 = Vptr bf Int.zero). - exploit ireg_val; eauto. rewrite EQ2; intros LD; inv LD; auto. - set (rs2 := nextinstr (rs0#CTR <- (Vptr bf Int.zero))). - set (rs3 := nextinstr (rs2#GPR0 <- ra)). - set (rs4 := nextinstr (rs3#LR <- ra)). + assert (rs rf = Vptr f' Int.zero). + destruct (rs rf); try discriminate. + revert H; predSpec Int.eq Int.eq_spec i Int.zero; intros; congruence. + assert (rs0 x0 = Vptr f' Int.zero). + exploit ireg_val; eauto. rewrite H7; intros LD; inv LD; auto. + set (rs2 := nextinstr (rs0#CTR <- (Vptr f' Int.zero))). + set (rs3 := nextinstr (rs2#GPR0 <- (parent_ra s))). + set (rs4 := nextinstr (rs3#LR <- (parent_ra s))). set (rs5 := nextinstr (rs4#GPR1 <- (parent_sp s))). set (rs6 := rs5#PC <- (rs5 CTR)). assert (exec_straight tge tf @@ -712,21 +669,23 @@ Opaque Int.repr. rs0 m'0 (Pbctr :: x) rs5 m2'). apply exec_straight_step with rs2 m'0. - simpl. rewrite H6. auto. auto. + simpl. rewrite H9. auto. auto. apply exec_straight_step with rs3 m'0. simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low. - change (rs2 GPR1) with (rs0 GPR1). rewrite C. auto. congruence. auto. + change (rs2 GPR1) with (rs0 GPR1). rewrite <- (sp_val _ _ _ AG). + simpl. rewrite C. auto. congruence. auto. apply exec_straight_step with rs4 m'0. simpl. reflexivity. reflexivity. apply exec_straight_one. - simpl. change (rs4 GPR1) with (rs0 GPR1). rewrite A. rewrite <- (sp_val _ _ _ AG). + simpl. change (rs4 GPR1) with (rs0 GPR1). rewrite <- (sp_val _ _ _ AG). + simpl. rewrite A. rewrite E. reflexivity. reflexivity. left; exists (State rs6 m2'); split. (* execution *) eapply plus_right'. eapply exec_straight_exec; eauto. econstructor. change (rs5 PC) with (Val.add (Val.add (Val.add (Val.add (rs0 PC) Vone) Vone) Vone) Vone). - rewrite <- H3; simpl. eauto. + rewrite <- H4; simpl. eauto. eapply functions_transl; eauto. eapply find_instr_tail. repeat (eapply code_tail_next_int; auto). eauto. @@ -734,20 +693,17 @@ Opaque Int.repr. (* match states *) econstructor; eauto. Hint Resolve agree_nextinstr agree_set_other: asmgen. - assert (AG4: agree rs (Vptr stk Int.zero) rs4). + assert (AG4: agree rs (Vptr stk soff) rs4). unfold rs4, rs3, rs2; auto 10 with asmgen. assert (AG5: agree rs (parent_sp s) rs5). unfold rs5. apply agree_nextinstr. eapply agree_change_sp. eauto. eapply parent_sp_def; eauto. unfold rs6, rs5; auto 10 with asmgen. - reflexivity. - change (rs6 LR) with ra. eapply retaddr_stored_at_type; eauto. + (* Direct call *) - destruct (Genv.find_symbol ge fid) as [bf|] eqn:FS; try discriminate. - set (rs2 := nextinstr (rs0#GPR0 <- ra)). - set (rs3 := nextinstr (rs2#LR <- ra)). + set (rs2 := nextinstr (rs0#GPR0 <- (parent_ra s))). + set (rs3 := nextinstr (rs2#LR <- (parent_ra s))). set (rs4 := nextinstr (rs3#GPR1 <- (parent_sp s))). - set (rs5 := rs4#PC <- (Vptr bf Int.zero)). + set (rs5 := rs4#PC <- (Vptr f' Int.zero)). assert (exec_straight tge tf (Plwz GPR0 (Cint (fn_retaddr_ofs f)) GPR1 :: Pmtlr GPR0 :: Pfreeframe (fn_stacksize f) (fn_link_ofs f) :: Pbs fid :: x) @@ -755,33 +711,30 @@ Hint Resolve agree_nextinstr agree_set_other: asmgen. (Pbs fid :: x) rs4 m2'). apply exec_straight_step with rs2 m'0. simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low. - rewrite C. auto. congruence. auto. + rewrite <- (sp_val _ _ _ AG). simpl. rewrite C. auto. congruence. auto. apply exec_straight_step with rs3 m'0. simpl. reflexivity. reflexivity. apply exec_straight_one. - simpl. change (rs3 GPR1) with (rs0 GPR1). rewrite A. rewrite <- (sp_val _ _ _ AG). + simpl. change (rs3 GPR1) with (rs0 GPR1). rewrite <- (sp_val _ _ _ AG). simpl. rewrite A. rewrite E. reflexivity. reflexivity. left; exists (State rs5 m2'); split. (* execution *) eapply plus_right'. eapply exec_straight_exec; eauto. econstructor. change (rs4 PC) with (Val.add (Val.add (Val.add (rs0 PC) Vone) Vone) Vone). - rewrite <- H3; simpl. eauto. + rewrite <- H4; simpl. eauto. eapply functions_transl; eauto. eapply find_instr_tail. repeat (eapply code_tail_next_int; auto). eauto. - simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite FS. auto. traceEq. + simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite H. auto. traceEq. (* match states *) econstructor; eauto. -Hint Resolve agree_nextinstr agree_set_other: asmgen. - assert (AG3: agree rs (Vptr stk Int.zero) rs3). + assert (AG3: agree rs (Vptr stk soff) rs3). unfold rs3, rs2; auto 10 with asmgen. assert (AG4: agree rs (parent_sp s) rs4). unfold rs4. apply agree_nextinstr. eapply agree_change_sp. eauto. eapply parent_sp_def; eauto. unfold rs5; auto 10 with asmgen. - reflexivity. - change (rs5 LR) with ra. eapply retaddr_stored_at_type; eauto. - (* Mbuiltin *) inv AT. monadInv H3. @@ -795,16 +748,11 @@ Hint Resolve agree_nextinstr agree_set_other: asmgen. eapply external_call_symbols_preserved; eauto. exact symbols_preserved. exact varinfo_preserved. econstructor; eauto. - eapply match_stack_extcall; eauto. - intros; eapply external_call_max_perm; eauto. - instantiate (2 := tf); instantiate (1 := x). Simpl. rewrite <- H0. simpl. econstructor; eauto. eapply code_tail_next_int; eauto. apply agree_nextinstr. eapply agree_set_undef_mreg; eauto. rewrite Pregmap.gss. auto. intros. Simpl. - eapply retaddr_stored_at_extcall; eauto. - intros; eapply external_call_max_perm; eauto. congruence. - (* Mannot *) @@ -820,18 +768,15 @@ Hint Resolve agree_nextinstr agree_set_other: asmgen. eapply external_call_symbols_preserved; eauto. exact symbols_preserved. exact varinfo_preserved. eapply match_states_intro with (ep := false); eauto with coqlib. - eapply match_stack_extcall; eauto. - intros; eapply external_call_max_perm; eauto. unfold nextinstr. rewrite Pregmap.gss. rewrite <- H1; simpl. econstructor; eauto. eapply code_tail_next_int; eauto. apply agree_nextinstr. auto. - eapply retaddr_stored_at_extcall; eauto. - intros; eapply external_call_max_perm; eauto. congruence. - (* Mgoto *) - inv AT. monadInv H3. + assert (f0 = f) by congruence. subst f0. + inv AT. monadInv H4. exploit find_label_goto_label; eauto. intros [tc' [rs' [GOTO [AT2 INV]]]]. left; exists (State rs' m'); split. apply plus_one. econstructor; eauto. @@ -843,6 +788,7 @@ Hint Resolve agree_nextinstr agree_set_other: asmgen. congruence. - (* Mcond true *) + assert (f0 = f) by congruence. subst f0. exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC. left; eapply exec_straight_steps_goto; eauto. intros. simpl in TR. @@ -873,9 +819,10 @@ Hint Resolve agree_nextinstr agree_set_other: asmgen. simpl. congruence. - (* Mjumptable *) - inv AT. monadInv H5. + assert (f0 = f) by congruence. subst f0. + inv AT. monadInv H6. exploit functions_transl; eauto. intro FN. - generalize (transf_function_no_overflow _ _ H4); intro NOOV. + generalize (transf_function_no_overflow _ _ H5); intro NOOV. exploit find_label_goto_label. eauto. eauto. instantiate (2 := rs0#GPR12 <- Vundef #CTR <- Vundef). Simpl. eauto. @@ -885,36 +832,27 @@ Hint Resolve agree_nextinstr agree_set_other: asmgen. left; econstructor; split. apply plus_one. econstructor; eauto. eapply find_instr_tail; eauto. - simpl. rewrite <- H8. unfold Mach.label in H0; unfold label; rewrite H0. eexact A. + simpl. rewrite <- H9. unfold Mach.label in H0; unfold label; rewrite H0. eexact A. econstructor; eauto. eapply agree_exten_temps; eauto. intros. rewrite C; auto with asmgen. Simpl. congruence. - (* Mreturn *) - inversion AT; subst. + assert (f0 = f) by congruence. subst f0. + inversion AT; subst. assert (NOOV: list_length_z tf <= Int.max_unsigned). eapply transf_function_no_overflow; eauto. rewrite (sp_val _ _ _ AG) in *. unfold load_stack in *. - exploit Mem.loadv_extends. eauto. eexact H. auto. simpl. intros [parent' [A B]]. + exploit Mem.loadv_extends. eauto. eexact H0. auto. simpl. intros [parent' [A B]]. exploit lessdef_parent_sp; eauto. intros. subst parent'. clear B. - assert (C: Mem.loadv Mint32 m'0 (Val.add (rs0 GPR1) (Vint (fn_retaddr_ofs f))) = Some ra). -Opaque Int.repr. - erewrite agree_sp; eauto. simpl. rewrite Int.add_zero_l. - eapply rsa_contains; eauto. - exploit retaddr_stored_at_can_free; eauto. intros [m2' [E F]]. - assert (M: match_stack ge s m'' m2' ra (Mem.nextblock m'')). - apply match_stack_change_bound with stk. - eapply match_stack_free_left; eauto. - eapply match_stack_free_left; eauto. - eapply match_stack_free_right; eauto. omega. - apply Z.lt_le_incl. change (Mem.valid_block m'' stk). - eapply Mem.valid_block_free_1; eauto. eapply Mem.valid_block_free_1; eauto. - eapply retaddr_stored_at_valid; eauto. - monadInv H5. - set (rs2 := nextinstr (rs0#GPR0 <- ra)). - set (rs3 := nextinstr (rs2#LR <- ra)). + exploit Mem.loadv_extends. eauto. eexact H1. auto. simpl. intros [ra' [C D]]. + exploit lessdef_parent_ra; eauto. intros. subst ra'. clear D. + exploit Mem.free_parallel_extends; eauto. intros [m2' [E F]]. + monadInv H6. + set (rs2 := nextinstr (rs0#GPR0 <- (parent_ra s))). + set (rs3 := nextinstr (rs2#LR <- (parent_ra s))). set (rs4 := nextinstr (rs3#GPR1 <- (parent_sp s))). - set (rs5 := rs4#PC <- ra). + set (rs5 := rs4#PC <- (parent_ra s)). assert (exec_straight tge tf (Plwz GPR0 (Cint (fn_retaddr_ofs f)) GPR1 :: Pmtlr GPR0 @@ -932,7 +870,7 @@ Opaque Int.repr. eapply exec_straight_exec; eauto. econstructor. change (rs4 PC) with (Val.add (Val.add (Val.add (rs0 PC) Vone) Vone) Vone). - rewrite <- H2. simpl. eauto. + rewrite <- H3. simpl. eauto. eapply functions_transl; eauto. eapply find_instr_tail. eapply code_tail_next_int; auto. @@ -941,7 +879,7 @@ Opaque Int.repr. reflexivity. traceEq. (* match states *) econstructor; eauto. - assert (AG3: agree rs (Vptr stk Int.zero) rs3). + assert (AG3: agree rs (Vptr stk soff) rs3). unfold rs3, rs2; auto 10 with asmgen. assert (AG4: agree rs (parent_sp s) rs4). unfold rs4. apply agree_nextinstr. eapply agree_change_sp; eauto. @@ -955,12 +893,10 @@ Opaque Int.repr. unfold store_stack in *. exploit Mem.alloc_extends. eauto. eauto. apply Zle_refl. apply Zle_refl. intros [m1' [C D]]. - assert (E: Mem.extends m2 m1') by (eapply Mem.free_left_extends; eauto). - exploit Mem.storev_extends. eexact E. eexact H1. eauto. eauto. + exploit Mem.storev_extends. eexact D. eexact H1. eauto. eauto. intros [m2' [F G]]. - exploit retaddr_stored_at_can_alloc. eexact H. eauto. eauto. eauto. eauto. - auto. auto. auto. auto. eauto. - intros [m3' [P [Q R]]]. + exploit Mem.storev_extends. eexact G. eexact H2. eauto. eauto. + intros [m3' [P Q]]. (* Execution of function prologue *) monadInv EQ0. set (rs2 := nextinstr (rs0#GPR1 <- sp #GPR0 <- Vundef)). @@ -977,23 +913,11 @@ Opaque Int.repr. simpl. auto. simpl. unfold store1. rewrite gpr_or_zero_not_zero. change (rs3 GPR1) with sp. change (rs3 GPR0) with (rs0 LR). simpl. - rewrite Int.add_zero_l. rewrite P. auto. congruence. + rewrite Int.add_zero_l. simpl in P. rewrite Int.add_zero_l in P. rewrite ATLR. rewrite P. auto. congruence. auto. auto. auto. left; exists (State rs4 m3'); split. eapply exec_straight_steps_1; eauto. unfold fn_code; omega. constructor. econstructor; eauto. - assert (STK: stk = Mem.nextblock m) by (eapply Mem.alloc_result; eauto). - rewrite <- STK in STACKS. simpl in F. simpl in H1. - eapply match_stack_invariant; eauto. - intros. eapply Mem.perm_alloc_4; eauto. eapply Mem.perm_free_3; eauto. - eapply Mem.perm_store_2; eauto. unfold block; omega. - intros. eapply Mem.perm_store_1; eauto. eapply Mem.perm_store_1; eauto. - eapply Mem.perm_alloc_1; eauto. - intros. erewrite Mem.load_store_other. 2: eauto. - erewrite Mem.load_store_other. 2: eauto. - eapply Mem.load_alloc_other; eauto. - left; unfold block; omega. - left; unfold block; omega. change (rs4 PC) with (Val.add (Val.add (Val.add (rs0 PC) Vone) Vone) Vone). rewrite ATPC. simpl. constructor; eauto. subst x. unfold fn_code. eapply code_tail_next_int. omega. @@ -1019,10 +943,6 @@ Opaque Int.repr. eapply external_call_symbols_preserved; eauto. exact symbols_preserved. exact varinfo_preserved. econstructor; eauto. - rewrite Pregmap.gss. apply match_stack_change_bound with (Mem.nextblock m). - eapply match_stack_extcall; eauto. - intros. eapply external_call_max_perm; eauto. - eapply external_call_nextblock; eauto. unfold loc_external_result. eapply agree_set_mreg; eauto. rewrite Pregmap.gso; auto with asmgen. rewrite Pregmap.gss. auto. @@ -1030,7 +950,8 @@ Opaque Int.repr. - (* return *) inv STACKS. simpl in *. - right. split. omega. split. auto. + right. split. omega. split. auto. + rewrite <- ATPC in H5. econstructor; eauto. congruence. Qed. @@ -1039,21 +960,19 @@ Lemma transf_initial_states: exists st2, Asm.initial_state tprog st2 /\ match_states st1 st2. Proof. intros. inversion H. unfold ge0 in *. - exploit functions_translated; eauto. intros [tf [A B]]. econstructor; split. econstructor. eapply Genv.init_mem_transf_partial; eauto. replace (symbol_offset (Genv.globalenv tprog) (prog_main tprog) Int.zero) - with (Vptr b Int.zero). + with (Vptr fb Int.zero). econstructor; eauto. constructor. apply Mem.extends_refl. - split. auto. intros. rewrite Regmap.gi. auto. - reflexivity. - exact I. + split. auto. simpl. congruence. intros. rewrite Regmap.gi. auto. unfold symbol_offset. - rewrite (transform_partial_program_main _ _ TRANSF). - rewrite symbols_preserved. unfold ge; rewrite H1. auto. + rewrite (transform_partial_program_main _ _ TRANSF). + rewrite symbols_preserved. + unfold ge; rewrite H1. auto. Qed. Lemma transf_final_states: @@ -1067,7 +986,7 @@ Proof. Qed. Theorem transf_program_correct: - forward_simulation (Mach.semantics prog) (Asm.semantics tprog). + forward_simulation (Mach.semantics return_address_offset prog) (Asm.semantics tprog). Proof. eapply forward_simulation_star with (measure := measure). eexact symbols_preserved. -- cgit v1.2.3