summaryrefslogtreecommitdiff
path: root/backend
diff options
context:
space:
mode:
Diffstat (limited to 'backend')
-rw-r--r--backend/RTLgen.v5
-rw-r--r--backend/RTLgenproof.v87
-rw-r--r--backend/RTLgenspec.v224
3 files changed, 211 insertions, 105 deletions
diff --git a/backend/RTLgen.v b/backend/RTLgen.v
index 942dc50..ff4f81c 100644
--- a/backend/RTLgen.v
+++ b/backend/RTLgen.v
@@ -524,9 +524,8 @@ Fixpoint transl_stmt (map: mapping) (s: stmt) (nd: node)
| Sskip =>
ret nd
| Sassign v b =>
- do rt <- alloc_reg map b;
- do no <- store_var map rt v nd;
- transl_expr map b rt no
+ do r <- find_var map v;
+ transl_expr map b r nd
| Sstore chunk addr al b =>
do rl <- alloc_regs map al;
do r <- alloc_reg map b;
diff --git a/backend/RTLgenproof.v b/backend/RTLgenproof.v
index f4d1342..a15095b 100644
--- a/backend/RTLgenproof.v
+++ b/backend/RTLgenproof.v
@@ -197,6 +197,30 @@ Proof.
symmetry. apply PMap.gso. red; intros. subst x. eauto.
Qed.
+(** A variant of [match_env_update_var] where a variable is optionally
+ assigned to, depending on the [dst] parameter. *)
+
+Definition assign_dest (dst: option ident) (v: val) (e: Cminor.env) : Cminor.env :=
+ match dst with
+ | None => e
+ | Some id => PTree.set id v e
+ end.
+
+Lemma match_env_update_dest:
+ forall map e le rs dst r v,
+ map_wf map ->
+ reg_map_ok map r dst ->
+ match_env map e le rs ->
+ match_env map (assign_dest dst v e) le (rs#r <- v).
+Proof.
+ intros. inv H0; simpl.
+ eapply match_env_update_temp; eauto.
+ eapply match_env_update_var; eauto.
+Qed.
+Hint Resolve match_env_update_dest: rtlg.
+
+(** Matching and [let]-bound variables. *)
+
Lemma match_env_bind_letvar:
forall map e le rs r v,
match_env map e le rs ->
@@ -215,6 +239,8 @@ Proof.
constructor. auto. congruence.
Qed.
+(** Matching between initial environments. *)
+
Lemma match_env_empty:
forall map,
map.(map_letvars) = nil ->
@@ -521,15 +547,15 @@ Variable m: mem.
Definition transl_expr_prop
(le: letenv) (a: expr) (v: val) : Prop :=
- forall cs f map pr ns nd rd rs
+ forall cs f map pr ns nd rd rs dst
(MWF: map_wf map)
- (TE: tr_expr f.(fn_code) map pr a ns nd rd)
+ (TE: tr_expr f.(fn_code) map pr a ns nd rd dst)
(ME: match_env map e le rs),
exists rs',
star step tge (State cs f sp ns rs m) E0 (State cs f sp nd rs' m)
- /\ match_env map e le rs'
+ /\ match_env map (assign_dest dst v e) le rs'
/\ rs'#rd = v
- /\ (forall r, reg_in_map map r \/ In r pr -> rs'#r = rs#r).
+ /\ (forall r, In r pr -> rs'#r = rs#r).
(** The simulation properties for lists of expressions and for
conditional expressions are similar. *)
@@ -544,7 +570,7 @@ Definition transl_exprlist_prop
star step tge (State cs f sp ns rs m) E0 (State cs f sp nd rs' m)
/\ match_env map e le rs'
/\ rs'##rl = vl
- /\ (forall r, reg_in_map map r \/ In r pr -> rs'#r = rs#r).
+ /\ (forall r, In r pr -> rs'#r = rs#r).
Definition transl_condition_prop
(le: letenv) (a: condexpr) (vb: bool) : Prop :=
@@ -556,7 +582,7 @@ Definition transl_condition_prop
star step tge (State cs f sp ns rs m) E0
(State cs f sp (if vb then ntrue else nfalse) rs' m)
/\ match_env map e le rs'
- /\ (forall r, reg_in_map map r \/ In r pr -> rs'#r = rs#r).
+ /\ (forall r, In r pr -> rs'#r = rs#r).
(** The correctness of the translation is a huge induction over
the Cminor evaluation derivation for the source program. To keep
@@ -572,20 +598,22 @@ Lemma transl_expr_Evar_correct:
transl_expr_prop le (Evar id) v.
Proof.
intros; red; intros. inv TE.
+ exploit match_env_find_var; eauto. intro EQ.
exploit tr_move_correct; eauto. intros [rs' [A [B C]]].
exists rs'; split. eauto.
- destruct H2 as [D | [E F]].
+ destruct H2 as [[D E] | [D E]].
(* optimized case *)
- subst r.
+ subst r dst. simpl.
assert (forall r, rs'#r = rs#r).
intros. destruct (Reg.eq r rd). subst r. auto. auto.
split. eapply match_env_invariant; eauto.
- split. rewrite B. eapply match_env_find_var; eauto.
- auto.
+ split. congruence. auto.
(* general case *)
- split. eapply match_env_invariant; eauto.
- intros. apply C. congruence.
- split. rewrite B. eapply match_env_find_var; eauto.
+ split.
+ apply match_env_invariant with (rs#rd <- v).
+ apply match_env_update_dest; auto.
+ intros. rewrite Regmap.gsspec. destruct (peq r0 rd). congruence. auto.
+ split. congruence.
intros. apply C. intuition congruence.
Qed.
@@ -608,7 +636,7 @@ Proof.
auto.
exact symbols_preserved. traceEq.
(* Match-env *)
- split. eauto with rtlg.
+ split. eauto with rtlg.
(* Result reg *)
split. apply Regmap.gss.
(* Other regs *)
@@ -650,7 +678,7 @@ Lemma transl_expr_Econdition_correct:
Proof.
intros; red; intros; inv TE.
exploit H0; eauto. intros [rs1 [EX1 [ME1 OTHER1]]].
- assert (tr_expr f.(fn_code) map pr (if vcond then ifso else ifnot) (if vcond then ntrue else nfalse) nd rd).
+ assert (tr_expr f.(fn_code) map pr (if vcond then ifso else ifnot) (if vcond then ntrue else nfalse) nd rd dst).
destruct vcond; auto.
exploit H2; eauto. intros [rs2 [EX2 [ME2 [RES2 OTHER2]]]].
exists rs2.
@@ -686,11 +714,7 @@ Proof.
(* Result *)
split. assumption.
(* Other regs *)
- intros. transitivity (rs1#r0).
- apply OTHER2. elim H4; intro; auto.
- unfold reg_in_map, add_letvar; simpl.
- unfold reg_in_map in H6; tauto.
- auto.
+ intros. transitivity (rs1#r0); auto.
Qed.
Lemma transl_expr_Eletvar_correct:
@@ -704,15 +728,21 @@ Proof.
(* Exec *)
split. eexact EX1.
(* Match-env *)
- split. apply match_env_invariant with rs. auto.
- intros. destruct H2 as [A | [B C]].
- subst r. destruct (Reg.eq r0 rd). subst r0; auto. auto.
- apply OTHER1. intuition congruence.
+ split.
+ destruct H2 as [[A B] | [A B]].
+ subst r dst; simpl.
+ apply match_env_invariant with rs. auto.
+ intros. destruct (Reg.eq r rd). subst r. auto. auto.
+ apply match_env_invariant with (rs#rd <- v).
+ apply match_env_update_dest; auto.
+ intros. rewrite Regmap.gsspec. destruct (peq r0 rd); auto.
+ subst. rewrite RES1. eapply match_env_find_letvar; eauto.
(* Result *)
split. rewrite RES1. eapply match_env_find_letvar; eauto.
(* Other regs *)
- intros. destruct H2 as [A | [B C]].
- subst r. destruct (Reg.eq r0 rd). subst r0; auto. auto.
+ intros.
+ destruct H2 as [[A B] | [A B]].
+ destruct (Reg.eq r0 rd); subst; auto.
apply OTHER1. intuition congruence.
Qed.
@@ -1128,11 +1158,8 @@ Proof.
inv TS.
exploit transl_expr_correct; eauto.
intros [rs' [A [B [C D]]]].
- exploit tr_store_var_correct; eauto.
- intros [rs'' [E F]].
- rewrite C in F.
econstructor; split.
- right; split. eapply star_trans. eexact A. eexact E. traceEq. Lt_state.
+ right; split. eauto. Lt_state.
econstructor; eauto. constructor.
(* store *)
diff --git a/backend/RTLgenspec.v b/backend/RTLgenspec.v
index 51fb945..5690bb2 100644
--- a/backend/RTLgenspec.v
+++ b/backend/RTLgenspec.v
@@ -132,6 +132,8 @@ Ltac monadInv H :=
(** * Monotonicity properties of the state *)
+Hint Resolve state_incr_refl: rtlg.
+
Lemma instr_at_incr:
forall s1 s2 n i,
state_incr s1 s2 -> s1.(st_code)!n = Some i -> s2.(st_code)!n = Some i.
@@ -141,7 +143,23 @@ Proof.
Qed.
Hint Resolve instr_at_incr: rtlg.
-Hint Resolve state_incr_refl state_incr_trans: rtlg.
+(** The following tactic saturates the hypotheses with
+ [state_incr] properties that follow by transitivity from
+ the known hypotheses. *)
+
+Ltac saturateTrans :=
+ match goal with
+ | H1: state_incr ?x ?y, H2: state_incr ?y ?z |- _ =>
+ match goal with
+ | H: state_incr x z |- _ =>
+ fail 1
+ | _ =>
+ let i := fresh "INCR" in
+ (generalize (state_incr_trans x y z H1 H2); intro i;
+ saturateTrans)
+ end
+ | _ => idtac
+ end.
(** * Validity and freshness of registers *)
@@ -619,49 +637,69 @@ Inductive tr_move (c: code):
c!ns = Some (Iop Omove (rs :: nil) rd nd) ->
tr_move c ns rs nd rd.
-(** [tr_expr c map pr expr ns nd rd] holds if the graph [c],
+(** [reg_map_ok map r optid] characterizes the destination register
+ for an expression: if [optid] is [None], the destination is
+ a fresh register (not associated with any variable);
+ if [optid] is [Some id], the destination is the register
+ associated with local variable [id]. *)
+
+Inductive reg_map_ok: mapping -> reg -> option ident -> Prop :=
+ | reg_map_ok_novar: forall map rd,
+ ~reg_in_map map rd ->
+ reg_map_ok map rd None
+ | reg_map_ok_somevar: forall map rd id,
+ map.(map_vars)!id = Some rd ->
+ reg_map_ok map rd (Some id).
+
+Hint Resolve reg_map_ok_novar: rtlg.
+
+(** [tr_expr c map pr expr ns nd rd optid] holds if the graph [c],
between nodes [ns] and [nd], contains instructions that compute the
value of the Cminor expression [expr] and deposit this value in
register [rd]. [map] is a mapping from Cminor variables to the
corresponding RTL registers. [pr] is a list of RTL registers whose
values must be preserved during this computation. All registers
mentioned in [map] must also be preserved during this computation.
- To ensure this, we demand that the result registers of the instructions
- appearing on the path from [ns] to [nd] are neither in [pr] nor in [map].
+ (Exception: if [optid = Some id], the register associated with
+ local variable [id] can be assigned, but only at the end of the
+ expression evaluation.)
+ To ensure this property, we demand that the result registers of the
+ instructions appearing on the path from [ns] to [nd] are not in [pr],
+ and moreover that they satisfy the [reg_map_ok] predicate.
*)
Inductive tr_expr (c: code):
- mapping -> list reg -> expr -> node -> node -> reg -> Prop :=
- | tr_Evar: forall map pr id ns nd r rd,
+ mapping -> list reg -> expr -> node -> node -> reg -> option ident -> Prop :=
+ | tr_Evar: forall map pr id ns nd r rd dst,
map.(map_vars)!id = Some r ->
- (rd = r \/ ~reg_in_map map rd /\ ~In rd pr) ->
+ ((rd = r /\ dst = None) \/ (reg_map_ok map rd dst /\ ~In rd pr)) ->
tr_move c ns r nd rd ->
- tr_expr c map pr (Evar id) ns nd rd
- | tr_Eop: forall map pr op al ns nd rd n1 rl,
+ tr_expr c map pr (Evar id) ns nd rd dst
+ | tr_Eop: forall map pr op al ns nd rd n1 rl dst,
tr_exprlist c map pr al ns n1 rl ->
c!n1 = Some (Iop op rl rd nd) ->
- ~reg_in_map map rd -> ~In rd pr ->
- tr_expr c map pr (Eop op al) ns nd rd
- | tr_Eload: forall map pr chunk addr al ns nd rd n1 rl,
+ reg_map_ok map rd dst -> ~In rd pr ->
+ tr_expr c map pr (Eop op al) ns nd rd dst
+ | tr_Eload: forall map pr chunk addr al ns nd rd n1 rl dst,
tr_exprlist c map pr al ns n1 rl ->
c!n1 = Some (Iload chunk addr rl rd nd) ->
- ~reg_in_map map rd -> ~In rd pr ->
- tr_expr c map pr (Eload chunk addr al) ns nd rd
- | tr_Econdition: forall map pr b ifso ifnot ns nd rd ntrue nfalse,
+ reg_map_ok map rd dst -> ~In rd pr ->
+ tr_expr c map pr (Eload chunk addr al) ns nd rd dst
+ | tr_Econdition: forall map pr b ifso ifnot ns nd rd ntrue nfalse dst,
tr_condition c map pr b ns ntrue nfalse ->
- tr_expr c map pr ifso ntrue nd rd ->
- tr_expr c map pr ifnot nfalse nd rd ->
- tr_expr c map pr (Econdition b ifso ifnot) ns nd rd
- | tr_Elet: forall map pr b1 b2 ns nd rd n1 r,
+ tr_expr c map pr ifso ntrue nd rd dst ->
+ tr_expr c map pr ifnot nfalse nd rd dst ->
+ tr_expr c map pr (Econdition b ifso ifnot) ns nd rd dst
+ | tr_Elet: forall map pr b1 b2 ns nd rd n1 r dst,
~reg_in_map map r ->
- tr_expr c map pr b1 ns n1 r ->
- tr_expr c (add_letvar map r) pr b2 n1 nd rd ->
- tr_expr c map pr (Elet b1 b2) ns nd rd
- | tr_Eletvar: forall map pr n ns nd rd r,
+ tr_expr c map pr b1 ns n1 r None ->
+ tr_expr c (add_letvar map r) pr b2 n1 nd rd dst ->
+ tr_expr c map pr (Elet b1 b2) ns nd rd dst
+ | tr_Eletvar: forall map pr n ns nd rd r dst,
List.nth_error map.(map_letvars) n = Some r ->
- (rd = r \/ ~reg_in_map map rd /\ ~In rd pr) ->
+ ((rd = r /\ dst = None) \/ (reg_map_ok map rd dst /\ ~In rd pr)) ->
tr_move c ns r nd rd ->
- tr_expr c map pr (Eletvar n) ns nd rd
+ tr_expr c map pr (Eletvar n) ns nd rd dst
(** [tr_condition c map pr cond ns ntrue nfalse rd] holds if the graph [c],
starting at node [ns], contains instructions that compute the truth
@@ -694,7 +732,7 @@ with tr_exprlist (c: code):
| tr_Enil: forall map pr n,
tr_exprlist c map pr Enil n n nil
| tr_Econs: forall map pr a1 al ns nd r1 rl n1,
- tr_expr c map pr a1 ns n1 r1 ->
+ tr_expr c map pr a1 ns n1 r1 None ->
tr_exprlist c map (r1 :: pr) al n1 nd rl ->
tr_exprlist c map pr (Econs a1 al) ns nd (r1 :: rl).
@@ -757,24 +795,24 @@ Inductive tr_stmt (c: code) (map: mapping):
stmt -> node -> node -> list node -> labelmap -> node -> option reg -> Prop :=
| tr_Sskip: forall ns nexits ngoto nret rret,
tr_stmt c map Sskip ns ns nexits ngoto nret rret
- | tr_Sassign: forall id a ns nd nexits ngoto nret rret rt n,
- tr_expr c map nil a ns n rt ->
- tr_store_var c map rt id n nd ->
+ | tr_Sassign: forall id a ns nd nexits ngoto nret rret r,
+ map.(map_vars)!id = Some r ->
+ tr_expr c map nil a ns nd r (Some id) ->
tr_stmt c map (Sassign id a) ns nd nexits ngoto nret rret
| tr_Sstore: forall chunk addr al b ns nd nexits ngoto nret rret rd n1 rl n2,
tr_exprlist c map nil al ns n1 rl ->
- tr_expr c map rl b n1 n2 rd ->
+ tr_expr c map rl b n1 n2 rd None ->
c!n2 = Some (Istore chunk addr rl rd nd) ->
tr_stmt c map (Sstore chunk addr al b) ns nd nexits ngoto nret rret
| tr_Scall: forall optid sig b cl ns nd nexits ngoto nret rret rd n1 rf n2 n3 rargs,
- tr_expr c map nil b ns n1 rf ->
+ tr_expr c map nil b ns n1 rf None ->
tr_exprlist c map (rf :: nil) cl n1 n2 rargs ->
c!n2 = Some (Icall sig (inl _ rf) rargs rd n3) ->
tr_store_optvar c map rd optid n3 nd ->
~reg_in_map map rd ->
tr_stmt c map (Scall optid sig b cl) ns nd nexits ngoto nret rret
| tr_Stailcall: forall sig b cl ns nd nexits ngoto nret rret n1 rf n2 rargs,
- tr_expr c map nil b ns n1 rf ->
+ tr_expr c map nil b ns n1 rf None ->
tr_exprlist c map (rf :: nil) cl n1 n2 rargs ->
c!n2 = Some (Itailcall sig (inl _ rf) rargs) ->
tr_stmt c map (Stailcall sig b cl) ns nd nexits ngoto nret rret
@@ -799,13 +837,13 @@ Inductive tr_stmt (c: code) (map: mapping):
tr_stmt c map (Sexit n) ns nd nexits ngoto nret rret
| tr_Sswitch: forall a cases default ns nd nexits ngoto nret rret n r t,
validate_switch default cases t = true ->
- tr_expr c map nil a ns n r ->
+ tr_expr c map nil a ns n r None ->
tr_switch c map r nexits t n ->
tr_stmt c map (Sswitch a cases default) ns nd nexits ngoto nret rret
| tr_Sreturn_none: forall nret nd nexits ngoto,
tr_stmt c map (Sreturn None) nret nd nexits ngoto nret None
| tr_Sreturn_some: forall a ns nd nexits ngoto nret rret,
- tr_expr c map nil a ns nret rret ->
+ tr_expr c map nil a ns nret rret None ->
tr_stmt c map (Sreturn (Some a)) ns nd nexits ngoto nret (Some rret)
| tr_Slabel: forall lbl s ns nd nexits ngoto nret rret n,
ngoto!lbl = Some n ->
@@ -850,9 +888,9 @@ Qed.
Lemma tr_expr_incr:
forall s1 s2, state_incr s1 s2 ->
- forall map pr a ns nd rd,
- tr_expr s1.(st_code) map pr a ns nd rd ->
- tr_expr s2.(st_code) map pr a ns nd rd
+ forall map pr a ns nd rd dst,
+ tr_expr s1.(st_code) map pr a ns nd rd dst ->
+ tr_expr s2.(st_code) map pr a ns nd rd dst
with tr_condition_incr:
forall s1 s2, state_incr s1 s2 ->
forall map pr a ns ntrue nfalse,
@@ -894,7 +932,7 @@ Lemma transl_expr_charact:
(OK: target_reg_ok map pr a rd)
(VALID: regs_valid pr s)
(VALID2: reg_valid rd s),
- tr_expr s'.(st_code) map pr a ns nd rd
+ tr_expr s'.(st_code) map pr a ns nd rd None
with transl_condexpr_charact:
forall a map ntrue nfalse s ns s' pr INCR
@@ -913,11 +951,11 @@ with transl_exprlist_charact:
tr_exprlist s'.(st_code) map pr al ns nd rl.
Proof.
- induction a; intros; try (monadInv TR).
+ induction a; intros; try (monadInv TR); saturateTrans.
(* Evar *)
generalize EQ; unfold find_var. caseEq (map_vars map)!i; intros; inv EQ1.
econstructor; eauto.
- inv OK. left; congruence. right; eauto.
+ inv OK. left; split; congruence. right; eauto with rtlg.
eapply add_move_charact; eauto.
(* Eop *)
inv OK.
@@ -930,15 +968,14 @@ Proof.
(* Econdition *)
inv OK.
econstructor; eauto with rtlg.
- eapply transl_condexpr_charact; eauto with rtlg.
apply tr_expr_incr with s1; auto.
- eapply transl_expr_charact; eauto with rtlg. constructor; auto.
+ eapply transl_expr_charact; eauto 2 with rtlg. constructor; auto.
apply tr_expr_incr with s0; auto.
- eapply transl_expr_charact; eauto with rtlg. constructor; auto.
+ eapply transl_expr_charact; eauto 2 with rtlg. constructor; auto.
(* Elet *)
inv OK.
econstructor. eapply new_reg_not_in_map; eauto with rtlg.
- eapply transl_expr_charact; eauto with rtlg.
+ eapply transl_expr_charact; eauto 3 with rtlg.
apply tr_expr_incr with s1; auto.
eapply transl_expr_charact. eauto.
apply add_letvar_valid; eauto with rtlg.
@@ -952,12 +989,12 @@ Proof.
generalize EQ; unfold find_letvar. caseEq (nth_error (map_letvars map) n); intros; inv EQ0.
monadInv EQ1.
econstructor; eauto with rtlg.
- inv OK. left; congruence. right; eauto.
+ inv OK. left; split; congruence. right; eauto with rtlg.
eapply add_move_charact; eauto.
monadInv EQ1.
(* Conditions *)
- induction a; intros; try (monadInv TR).
+ induction a; intros; try (monadInv TR); saturateTrans.
(* CEtrue *)
constructor.
@@ -976,7 +1013,7 @@ Proof.
(* Lists *)
- induction al; intros; try (monadInv TR).
+ induction al; intros; try (monadInv TR); saturateTrans.
(* Enil *)
destruct rl; inv TR. constructor.
@@ -991,6 +1028,49 @@ Proof.
red; intros; apply VALID2; auto with coqlib.
Qed.
+(** A variant of [transl_expr_charact], for use when the destination
+ register is the one associated with a variable. *)
+
+Lemma transl_expr_assign_charact:
+ forall id a map rd nd s ns s' INCR
+ (TR: transl_expr map a rd nd s = OK ns s' INCR)
+ (WF: map_valid map s)
+ (OK: reg_map_ok map rd (Some id)),
+ tr_expr s'.(st_code) map nil a ns nd rd (Some id).
+Proof.
+ induction a; intros; monadInv TR; saturateTrans.
+ (* Evar *)
+ generalize EQ; unfold find_var. caseEq (map_vars map)!i; intros; inv EQ1.
+ econstructor; eauto.
+ eapply add_move_charact; eauto.
+ (* Eop *)
+ econstructor; eauto with rtlg.
+ eapply transl_exprlist_charact; eauto with rtlg.
+ (* Eload *)
+ econstructor; eauto with rtlg.
+ eapply transl_exprlist_charact; eauto with rtlg.
+ (* Econdition *)
+ econstructor; eauto with rtlg.
+ eapply transl_condexpr_charact; eauto with rtlg.
+ apply tr_expr_incr with s1; auto.
+ eapply IHa1; eauto 2 with rtlg.
+ apply tr_expr_incr with s0; auto.
+ eapply IHa2; eauto 2 with rtlg.
+ (* Elet *)
+ econstructor. eapply new_reg_not_in_map; eauto with rtlg.
+ eapply transl_expr_charact; eauto 3 with rtlg.
+ apply tr_expr_incr with s1; auto.
+ eapply IHa2; eauto.
+ apply add_letvar_valid; eauto with rtlg.
+ inv OK. constructor. auto.
+ (* Eletvar *)
+ generalize EQ; unfold find_letvar. caseEq (nth_error (map_letvars map) n); intros; inv EQ0.
+ monadInv EQ1.
+ econstructor; eauto with rtlg.
+ eapply add_move_charact; eauto.
+ monadInv EQ1.
+Qed.
+
Lemma tr_store_var_incr:
forall s1 s2, state_incr s1 s2 ->
forall map rs id ns nd,
@@ -1084,17 +1164,18 @@ Lemma transl_switch_charact:
transl_switch r nexits t s = OK ns s' incr ->
tr_switch s'.(st_code) map r nexits t ns.
Proof.
- induction t; simpl; intros.
+ induction t; simpl; intros; saturateTrans.
+
exploit transl_exit_charact; eauto. intros [A B].
econstructor; eauto.
monadInv H1.
exploit transl_exit_charact; eauto. intros [A B]. subst s1.
- econstructor; eauto with rtlg.
+ econstructor; eauto 2 with rtlg.
apply tr_switch_incr with s0; eauto with rtlg.
monadInv H1.
- econstructor; eauto with rtlg.
+ econstructor; eauto 2 with rtlg.
apply tr_switch_incr with s1; eauto with rtlg.
apply tr_switch_incr with s0; eauto with rtlg.
@@ -1115,39 +1196,38 @@ Lemma transl_stmt_charact:
(OK: return_reg_ok s map rret),
tr_stmt s'.(st_code) map stmt ns nd nexits ngoto nret rret.
Proof.
- induction stmt; intros; simpl in TR; try (monadInv TR).
+ induction stmt; intros; simpl in TR; try (monadInv TR); saturateTrans.
(* Sskip *)
constructor.
(* Sassign *)
- econstructor. eapply transl_expr_charact; eauto with rtlg.
- apply tr_store_var_incr with s1; auto with rtlg.
- eapply store_var_charact; eauto.
+ revert EQ. unfold find_var. case_eq (map_vars map)!i; intros; monadInv EQ.
+ econstructor. eauto.
+ eapply transl_expr_assign_charact; eauto with rtlg.
+ constructor. auto.
(* Sstore *)
econstructor; eauto with rtlg.
- eapply transl_exprlist_charact; eauto with rtlg.
- apply tr_expr_incr with s3; eauto with rtlg.
- eapply transl_expr_charact; eauto with rtlg.
+ eapply transl_exprlist_charact; eauto 3 with rtlg.
+ apply tr_expr_incr with s3; auto.
+ eapply transl_expr_charact; eauto 4 with rtlg.
(* Scall *)
- assert (state_incr s0 s2) by eauto with rtlg.
- assert (state_incr s2 s4) by eauto with rtlg.
- assert (state_incr s4 s6) by eauto with rtlg.
- econstructor; eauto with rtlg.
- eapply transl_expr_charact; eauto with rtlg.
+ econstructor; eauto 4 with rtlg.
+ eapply transl_expr_charact; eauto 3 with rtlg.
apply tr_exprlist_incr with s6. auto.
- eapply transl_exprlist_charact; eauto with rtlg.
- eapply alloc_regs_target_ok with (s1 := s1); eauto with rtlg.
- apply regs_valid_cons; eauto with rtlg.
- apply regs_valid_incr with s1; eauto with rtlg.
- apply regs_valid_cons; eauto with rtlg.
- apply tr_store_optvar_incr with s4; eauto with rtlg.
+ eapply transl_exprlist_charact; eauto 3 with rtlg.
+ eapply alloc_regs_target_ok with (s1 := s1); eauto 3 with rtlg.
+ apply regs_valid_cons; eauto 3 with rtlg.
+ apply regs_valid_incr with s1; eauto 3 with rtlg.
+ apply regs_valid_cons; eauto 3 with rtlg.
+ apply regs_valid_incr with s2; eauto 3 with rtlg.
+ apply tr_store_optvar_incr with s4; auto.
eapply store_optvar_charact; eauto with rtlg.
(* Stailcall *)
assert (RV: regs_valid (x :: nil) s1).
- apply regs_valid_cons; eauto with rtlg.
- econstructor; eauto with rtlg.
- eapply transl_expr_charact; eauto with rtlg.
+ apply regs_valid_cons; eauto 3 with rtlg.
+ econstructor; eauto 3 with rtlg.
+ eapply transl_expr_charact; eauto 3 with rtlg.
apply tr_exprlist_incr with s4; auto.
- eapply transl_exprlist_charact; eauto with rtlg.
+ eapply transl_exprlist_charact; eauto 4 with rtlg.
(* Sseq *)
econstructor.
apply tr_stmt_incr with s0; auto.