diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2014-03-27 13:44:24 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2014-03-27 13:44:24 +0000 |
commit | 57f18784d1fac0123cdb51ed67ae761100509c1f (patch) | |
tree | 62442626d829f8605a98aed1cd67f2eda8a9c778 /common | |
parent | 75fea20a8289e4441819b45d7ce750eda1b53ad1 (diff) |
Revised division of labor between RTLtyping and Lineartyping:
- RTLtyping no longer keeps track of single-precision floats,
switches from subtype-based inference to unification-based inference.
- Unityping: new library for unification-based inference.
- Locations: don't normalize at assignment in a stack slot
- Allocation, Allocproof: simplify accordingly.
- Lineartyping: add inference of machine registers that contain
a single-precision float.
- Stackingproof: adapted accordingly.
This addresses a defect report by D. Dickman whereas RTLtyping was rejecting code that used a RTL pseudoreg to hold both double- and single-precision floats.
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2435 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'common')
-rw-r--r-- | common/Unityping.v | 435 |
1 files changed, 435 insertions, 0 deletions
diff --git a/common/Unityping.v b/common/Unityping.v new file mode 100644 index 0000000..d108c87 --- /dev/null +++ b/common/Unityping.v @@ -0,0 +1,435 @@ +(* *********************************************************************) +(* *) +(* The Compcert verified compiler *) +(* *) +(* Xavier Leroy, INRIA Paris-Rocquencourt *) +(* *) +(* Copyright Institut National de Recherche en Informatique et en *) +(* Automatique. All rights reserved. This file is distributed *) +(* under the terms of the GNU General Public License as published by *) +(* the Free Software Foundation, either version 2 of the License, or *) +(* (at your option) any later version. This file is also distributed *) +(* under the terms of the INRIA Non-Commercial License Agreement. *) +(* *) +(* *********************************************************************) + +(* A solver for unification constraints. *) + +Require Import Recdef Coqlib Maps Errors. + +Local Open Scope nat_scope. +Local Open Scope error_monad_scope. + +(** This module provides a solver for sets of unification constraints of the + following kinds: [T(x) = base-type] or [T(x) = T(y)]. + The unknowns are the types [T(x)] of every identifier [x]. *) + +(** The interface for base types. *) + +Module Type TYPE_ALGEBRA. + +Variable t: Type. +Variable eq: forall (x y: t), {x=y} + {x<>y}. +Variable default: t. + +End TYPE_ALGEBRA. + +(** The constraint solver. *) + +Module UniSolver (T: TYPE_ALGEBRA). + +(* The current set of constraints is represented by a record with two components: +- [te_typ]: a partial map from variables to types +- [te_equ]: a list of pairs [(x,y)] of variables, indicating that + the type of [x] must be equal to the type of [y]. +*) + +Definition constraint : Type := (positive * positive)%type. + +Record typenv : Type := Typenv { + te_typ: PTree.t T.t; (**r mapping var -> typ *) + te_equ: list constraint (**r additional equality constraints *) +}. + +Definition initial : typenv := {| te_typ := PTree.empty _; te_equ := nil |}. + +(** Add the constraint [T(x) = ty]. *) + +Definition set (e: typenv) (x: positive) (ty: T.t) : res typenv := + match e.(te_typ)!x with + | None => + OK {| te_typ := PTree.set x ty e.(te_typ); + te_equ := e.(te_equ) |} + | Some ty' => + if T.eq ty ty' + then OK e + else Error (MSG "bad definition/use of variable " :: POS x :: nil) + end. + +Fixpoint set_list (e: typenv) (rl: list positive) (tyl: list T.t) {struct rl}: res typenv := + match rl, tyl with + | nil, nil => OK e + | r1::rs, ty1::tys => do e1 <- set e r1 ty1; set_list e1 rs tys + | _, _ => Error (msg "arity mismatch") + end. + +(** Add the constraint [T(x) = T(y)]. + The boolean result is [true] if the types of [x] or [y] could be + made more precise. Otherwise, [te_typ] does not change and + [false] is returned. *) + +Definition move (e: typenv) (r1 r2: positive) : res (bool * typenv) := + if peq r1 r2 then OK (false, e) else + match e.(te_typ)!r1, e.(te_typ)!r2 with + | None, None => + OK (false, {| te_typ := e.(te_typ); te_equ := (r1, r2) :: e.(te_equ) |}) + | Some ty1, None => + OK (true, {| te_typ := PTree.set r2 ty1 e.(te_typ); te_equ := e.(te_equ) |}) + | None, Some ty2 => + OK (true, {| te_typ := PTree.set r1 ty2 e.(te_typ); te_equ := e.(te_equ) |}) + | Some ty1, Some ty2 => + if T.eq ty1 ty2 + then OK (false, e) + else Error(MSG "ill-typed move from " :: POS r1 :: MSG " to " :: POS r2 :: nil) + end. + +(** Solve the remaining subtyping constraints by iteration. *) + +Fixpoint solve_rec (e: typenv) (changed: bool) (q: list constraint) : res (typenv * bool) := + match q with + | nil => + OK (e, changed) + | (r1, r2) :: q' => + do (changed1, e1) <- move e r1 r2; solve_rec e1 (changed || changed1) q' + end. + +(** Measuring the state *) + +Lemma move_shape: + forall e r1 r2 changed e', + move e r1 r2 = OK (changed, e') -> + (e'.(te_equ) = e.(te_equ) \/ e'.(te_equ) = (r1, r2) :: e.(te_equ)) + /\ (changed = true -> e'.(te_equ) = e.(te_equ)). +Proof. + unfold move; intros. + destruct (peq r1 r2). inv H. auto. + destruct e.(te_typ)!r1 as [ty1|]; destruct e.(te_typ)!r2 as [ty2|]; inv H; simpl. + destruct (T.eq ty1 ty2); inv H1. auto. + auto. + auto. + split. auto. intros. discriminate. +Qed. + +Lemma length_move: + forall e r1 r2 changed e', + move e r1 r2 = OK (changed, e') -> + length e'.(te_equ) + (if changed then 1 else 0) <= S(length e.(te_equ)). +Proof. + unfold move; intros. + destruct (peq r1 r2). inv H. omega. + destruct e.(te_typ)!r1 as [ty1|]; destruct e.(te_typ)!r2 as [ty2|]; inv H; simpl. + destruct (T.eq ty1 ty2); inv H1. omega. + omega. + omega. + omega. +Qed. + +Lemma length_solve_rec: + forall q e ch e' ch', + solve_rec e ch q = OK (e', ch') -> + length e'.(te_equ) + (if ch' && negb ch then 1 else 0) <= length e.(te_equ) + length q. +Proof. + induction q; simpl; intros. +- inv H. replace (ch' && negb ch') with false. omega. destruct ch'; auto. +- destruct a as [r1 r2]; monadInv H. rename x0 into e0. rename x into ch0. + exploit IHq; eauto. intros A. + exploit length_move; eauto. intros B. + set (X := (if ch' && negb (ch || ch0) then 1 else 0)) in *. + set (Y := (if ch0 then 1 else 0)) in *. + set (Z := (if ch' && negb ch then 1 else 0)) in *. + cut (Z <= X + Y). intros. omega. + unfold X, Y, Z. destruct ch'; destruct ch; destruct ch0; simpl; auto. +Qed. + +Definition weight_typenv (e: typenv) : nat := length e.(te_equ). + + +(** Iterative solving of the remaining constraints *) + +Function solve_constraints (e: typenv) {measure weight_typenv e}: res typenv := + match solve_rec {| te_typ := e.(te_typ); te_equ := nil |} false e.(te_equ) with + | OK(e', false) => OK e (**r no more changes, fixpoint reached *) + | OK(e', true) => solve_constraints e' (**r one more iteration *) + | Error msg => Error msg + end. +Proof. + intros. exploit length_solve_rec; eauto. simpl. intros. + unfold weight_typenv. omega. +Qed. + +Definition typassign := positive -> T.t. + +Definition makeassign (e: typenv) : typassign := + fun x => match e.(te_typ)!x with Some ty => ty | None => T.default end. + +Definition solve (e: typenv) : res typassign := + do e' <- solve_constraints e; OK(makeassign e'). + +(** What it means to be a solution *) + +Definition satisf (te: typassign) (e: typenv) : Prop := + (forall x ty, e.(te_typ)!x = Some ty -> te x = ty) +/\ (forall x y, In (x, y) e.(te_equ) -> te x = te y). + +Lemma satisf_initial: forall te, satisf te initial. +Proof. + unfold initial; intros; split; simpl; intros. + rewrite PTree.gempty in H; discriminate. + contradiction. +Qed. + +(** Soundness proof *) + +Lemma set_incr: + forall te x ty e e', set e x ty = OK e' -> satisf te e' -> satisf te e. +Proof. + unfold set; intros. destruct (te_typ e)!x as [ty'|] eqn:E. +- destruct (T.eq ty ty'); inv H. auto. +- inv H. destruct H0 as [A B]; simpl in *. red; split; intros; auto. + apply A. rewrite PTree.gso by congruence. auto. +Qed. + +Hint Resolve set_incr: ty. + +Lemma set_sound: + forall te x ty e e', set e x ty = OK e' -> satisf te e' -> te x = ty. +Proof. + unfold set; intros. destruct H0 as [P Q]. + destruct (te_typ e)!x as [ty'|] eqn:E. +- destruct (T.eq ty ty'); inv H. eauto. +- inv H. simpl in P. apply P. apply PTree.gss. +Qed. + +Lemma set_list_incr: + forall te xl tyl e e', set_list e xl tyl = OK e' -> satisf te e' -> satisf te e. +Proof. + induction xl; destruct tyl; simpl; intros; monadInv H; eauto with ty. +Qed. + +Hint Resolve set_list_incr: ty. + +Lemma set_list_sound: + forall te xl tyl e e', set_list e xl tyl = OK e' -> satisf te e' -> map te xl = tyl. +Proof. + induction xl; destruct tyl; simpl; intros; monadInv H. + auto. + f_equal. eapply set_sound; eauto with ty. eauto. +Qed. + +Lemma move_incr: + forall te e r1 r2 e' changed, + move e r1 r2 = OK(changed, e') -> satisf te e' -> satisf te e. +Proof. + unfold move; intros. destruct H0 as [P Q]. + destruct (peq r1 r2). inv H; split; auto. + destruct (te_typ e)!r1 as [ty1|] eqn:E1; + destruct (te_typ e)!r2 as [ty2|] eqn:E2. +- destruct (T.eq ty1 ty2); inv H. split; auto. +- inv H; simpl in *; split; auto. intros. apply P. + rewrite PTree.gso by congruence. auto. +- inv H; simpl in *; split; auto. intros. apply P. + rewrite PTree.gso by congruence. auto. +- inv H; simpl in *; split; auto. +Qed. + +Hint Resolve move_incr: ty. + +Lemma move_sound: + forall te e r1 r2 e' changed, + move e r1 r2 = OK(changed, e') -> satisf te e' -> te r1 = te r2. +Proof. + unfold move; intros. destruct H0 as [P Q]. + destruct (peq r1 r2). congruence. + destruct (te_typ e)!r1 as [ty1|] eqn:E1; + destruct (te_typ e)!r2 as [ty2|] eqn:E2. +- destruct (T.eq ty1 ty2); inv H. erewrite ! P by eauto. auto. +- inv H; simpl in *. rewrite (P r1 ty1). rewrite (P r2 ty1). auto. + apply PTree.gss. rewrite PTree.gso by congruence. auto. +- inv H; simpl in *. rewrite (P r1 ty2). rewrite (P r2 ty2). auto. + rewrite PTree.gso by congruence. auto. apply PTree.gss. +- inv H; simpl in *. apply Q; auto. +Qed. + +Lemma solve_rec_incr: + forall te q e changed e' changed', + solve_rec e changed q = OK(e', changed') -> satisf te e' -> satisf te e. +Proof. + induction q; simpl; intros. +- inv H. auto. +- destruct a as [r1 r2]; monadInv H. eauto with ty. +Qed. + +Lemma solve_rec_sound: + forall te r1 r2 q e changed e' changed', + solve_rec e changed q = OK(e', changed') -> In (r1, r2) q -> satisf te e' -> + te r1 = te r2. +Proof. + induction q; simpl; intros. +- contradiction. +- destruct a as [r3 r4]; monadInv H. destruct H0. + + inv H. eapply move_sound; eauto. eapply solve_rec_incr; eauto. + + eapply IHq; eauto with ty. +Qed. + +Lemma move_false: + forall e r1 r2 e', + move e r1 r2 = OK(false, e') -> + te_typ e' = te_typ e /\ makeassign e r1 = makeassign e r2. +Proof. + unfold move; intros. + destruct (peq r1 r2). inv H. split; auto. + unfold makeassign; + destruct (te_typ e)!r1 as [ty1|] eqn:E1; + destruct (te_typ e)!r2 as [ty2|] eqn:E2. +- destruct (T.eq ty1 ty2); inv H. auto. +- discriminate. +- discriminate. +- inv H. split; auto. +Qed. + +Lemma solve_rec_false: + forall r1 r2 q e changed e', + solve_rec e changed q = OK(e', false) -> + changed = false /\ + (In (r1, r2) q -> makeassign e r1 = makeassign e r2). +Proof. + induction q; simpl; intros. +- inv H. tauto. +- destruct a as [r3 r4]; monadInv H. + exploit IHq; eauto. intros [P Q]. + destruct changed; try discriminate. destruct x; try discriminate. + exploit move_false; eauto. intros [U V]. + split. auto. intros [A|A]. inv A. auto. exploit Q; auto. + unfold makeassign; rewrite U; auto. +Qed. + +Lemma solve_constraints_incr: + forall te e e', solve_constraints e = OK e' -> satisf te e' -> satisf te e. +Proof. + intros te e; functional induction (solve_constraints e); intros. +- inv H. auto. +- exploit solve_rec_incr; eauto. intros [A B]. + split; auto. intros; eapply solve_rec_sound; eauto. +- discriminate. +Qed. + +Lemma solve_constraints_sound: + forall e e', solve_constraints e = OK e' -> satisf (makeassign e') e'. +Proof. + intros e0; functional induction (solve_constraints e0); intros. +- inv H. split; intros. + unfold makeassign; rewrite H. split; auto with ty. + exploit solve_rec_false. eauto. intros [A B]. eapply B; eauto. +- eauto. +- discriminate. +Qed. + +Theorem solve_sound: + forall e te, solve e = OK te -> satisf te e. +Proof. + unfold solve; intros. monadInv H. + eapply solve_constraints_incr. eauto. eapply solve_constraints_sound; eauto. +Qed. + +(** Completeness proof *) + +Lemma set_complete: + forall te e x ty, + satisf te e -> te x = ty -> exists e', set e x ty = OK e' /\ satisf te e'. +Proof. + unfold set; intros. generalize H; intros [P Q]. + destruct (te_typ e)!x as [ty1|] eqn:E. +- replace ty1 with ty. rewrite dec_eq_true. exists e; auto. + exploit P; eauto. congruence. +- econstructor; split; eauto. split; simpl; intros; auto. + rewrite PTree.gsspec in H1. destruct (peq x0 x). congruence. eauto. +Qed. + +Lemma set_list_complete: + forall te xl tyl e, + satisf te e -> map te xl = tyl -> + exists e', set_list e xl tyl = OK e' /\ satisf te e'. +Proof. + induction xl; intros; inv H0; simpl. + econstructor; eauto. + exploit (set_complete te e a (te a)); auto. intros (e1 & P & Q). + exploit (IHxl (map te xl) e1); auto. intros (e2 & U & V). + exists e2; split; auto. rewrite P; auto. +Qed. + +Lemma move_complete: + forall te e r1 r2, + satisf te e -> te r1 = te r2 -> + exists changed e', move e r1 r2 = OK(changed, e') /\ satisf te e'. +Proof. + unfold move; intros. elim H; intros P Q. + assert (Q': forall x y, In (x, y) ((r1, r2) :: te_equ e) -> te x = te y). + { intros. destruct H1; auto. congruence. } + destruct (peq r1 r2). econstructor; econstructor; eauto. + destruct (te_typ e)!r1 as [ty1|] eqn:E1; + destruct (te_typ e)!r2 as [ty2|] eqn:E2. +- replace ty2 with ty1. rewrite dec_eq_true. econstructor; econstructor; eauto. + exploit (P r1); eauto. exploit (P r2); eauto. congruence. +- econstructor; econstructor; split; eauto. + split; simpl; intros; auto. rewrite PTree.gsspec in H1. destruct (peq x r2). + inv H1. rewrite <- H0. eauto. + eauto. +- econstructor; econstructor; split; eauto. + split; simpl; intros; auto. rewrite PTree.gsspec in H1. destruct (peq x r1). + inv H1. rewrite H0. eauto. + eauto. +- econstructor; econstructor; split; eauto. + split; eauto. +Qed. + +Lemma solve_rec_complete: + forall te q e changed, + satisf te e -> + (forall r1 r2, In (r1, r2) q -> te r1 = te r2) -> + exists e' changed', solve_rec e changed q = OK(e', changed') /\ satisf te e'. +Proof. + induction q; simpl; intros. +- econstructor; econstructor; eauto. +- destruct a as [r1 r2]. + exploit (move_complete te e r1 r2); auto. intros (changed1 & e1 & A & B). + exploit (IHq e1 (changed || changed1)); auto. intros (e' & changed' & C & D). + exists e'; exists changed'. rewrite A; simpl; rewrite C; auto. +Qed. + +Lemma solve_constraints_complete: + forall te e, satisf te e -> exists e', solve_constraints e = OK e' /\ satisf te e'. +Proof. + intros te e. functional induction (solve_constraints e); intros. +- exists e; auto. +- exploit (solve_rec_complete te (te_equ e) {| te_typ := te_typ e; te_equ := nil |} false). + destruct H; split; auto. simpl; tauto. + destruct H; auto. + intros (e1 & changed1 & P & Q). + apply IHr. congruence. +- exploit (solve_rec_complete te (te_equ e) {| te_typ := te_typ e; te_equ := nil |} false). + destruct H; split; auto. simpl; tauto. + destruct H; auto. + intros (e1 & changed1 & P & Q). + congruence. +Qed. + +Lemma solve_complete: + forall te e, satisf te e -> exists te', solve e = OK te'. +Proof. + intros. unfold solve. + destruct (solve_constraints_complete te e H) as (e' & P & Q). + econstructor. rewrite P. simpl. eauto. +Qed. + +End UniSolver. + |