diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2007-08-04 07:27:50 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2007-08-04 07:27:50 +0000 |
commit | 355b4abcee015c3fae9ac5653c25259e104a886c (patch) | |
tree | cfdb5b17f36b815bb358699cf420f64eba9dfe25 /cfrontend/Cshmgenproof1.v | |
parent | 22ff08b38616ceef336f5f974d4edc4d37d955e8 (diff) |
Fusion des modifications faites sur les branches "tailcalls" et "smallstep".
En particulier:
- Semantiques small-step depuis RTL jusqu'a PPC
- Cminor independant du processeur
- Ajout passes Selection et Reload
- Ajout des langages intermediaires CminorSel et LTLin correspondants
- Ajout des tailcalls depuis Cminor jusqu'a PPC
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@384 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'cfrontend/Cshmgenproof1.v')
-rw-r--r-- | cfrontend/Cshmgenproof1.v | 134 |
1 files changed, 50 insertions, 84 deletions
diff --git a/cfrontend/Cshmgenproof1.v b/cfrontend/Cshmgenproof1.v index bee0782..7ffd156 100644 --- a/cfrontend/Cshmgenproof1.v +++ b/cfrontend/Cshmgenproof1.v @@ -1,6 +1,7 @@ (** * Correctness of the C front end, part 1: syntactic properties *) Require Import Coqlib. +Require Import Errors. Require Import Maps. Require Import Integers. Require Import Floats. @@ -12,64 +13,28 @@ Require Import Globalenvs. Require Import Csyntax. Require Import Csem. Require Import Ctyping. +Require Import Cminor. Require Import Csharpminor. Require Import Cshmgen. -(** Monadic simplification *) - -Ltac monadSimpl1 := - match goal with - | [ |- (bind ?F ?G = Some ?X) -> _ ] => - unfold bind at 1; - generalize (refl_equal F); - pattern F at -1 in |- *; - case F; - [ (let EQ := fresh "EQ" in - (intro; intro EQ; try monadSimpl1)) - | intro; intro; discriminate ] - | [ |- (None = Some _) -> _ ] => - intro; discriminate - | [ |- (Some _ = Some _) -> _ ] => - let h := fresh "H" in - (intro h; injection h; intro; clear h) - | [ |- (_ = Some _) -> _ ] => - let EQ := fresh "EQ" in intro EQ - end. - -Ltac monadSimpl := - match goal with - | [ |- (bind ?F ?G = Some ?X) -> _ ] => monadSimpl1 - | [ |- (None = Some _) -> _ ] => monadSimpl1 - | [ |- (Some _ = Some _) -> _ ] => monadSimpl1 - | [ |- (?F _ _ _ _ _ _ = Some _) -> _ ] => unfold F; fold F; monadSimpl1 - | [ |- (?F _ _ _ _ _ = Some _) -> _ ] => unfold F; fold F; monadSimpl1 - | [ |- (?F _ _ _ _ = Some _) -> _ ] => unfold F; fold F; monadSimpl1 - | [ |- (?F _ _ _ = Some _) -> _ ] => unfold F; fold F; monadSimpl1 - | [ |- (?F _ _ = Some _) -> _ ] => unfold F; fold F; monadSimpl1 - | [ |- (?F _ = Some _) -> _ ] => unfold F; fold F; monadSimpl1 - end. - -Ltac monadInv H := - generalize H; monadSimpl. - (** Operations on types *) Lemma transl_fundef_sig1: forall f tf args res, - transl_fundef f = Some tf -> + transl_fundef f = OK tf -> classify_fun (type_of_fundef f) = fun_case_f args res -> funsig tf = signature_of_type args res. Proof. intros. destruct f; monadInv H. - monadInv EQ. rewrite <- H2. rewrite <- H3. simpl. + monadInv EQ. simpl. simpl in H0. inversion H0. reflexivity. - rewrite <- H2. simpl. + simpl. simpl in H0. congruence. Qed. Lemma transl_fundef_sig2: forall f tf args res, - transl_fundef f = Some tf -> + transl_fundef f = OK tf -> type_of_fundef f = Tfunction args res -> funsig tf = signature_of_type args res. Proof. @@ -80,7 +45,7 @@ Qed. Lemma var_kind_by_value: forall ty chunk, access_mode ty = By_value chunk -> - var_kind_of_type ty = Some(Vscalar chunk). + var_kind_of_type ty = OK(Vscalar chunk). Proof. intros ty chunk; destruct ty; simpl; try congruence. destruct i; try congruence; destruct s; congruence. @@ -89,7 +54,7 @@ Qed. Lemma sizeof_var_kind_of_type: forall ty vk, - var_kind_of_type ty = Some vk -> + var_kind_of_type ty = OK vk -> Csharpminor.sizeof vk = Csyntax.sizeof ty. Proof. intros ty vk. @@ -103,35 +68,35 @@ Qed. (** ** Some properties of the translation functions *) Lemma map_partial_names: - forall (A B: Set) (f: A -> option B) + forall (A B: Set) (f: A -> res B) (l: list (ident * A)) (tl: list (ident * B)), - map_partial f l = Some tl -> + map_partial prefix_var_name f l = OK tl -> List.map (@fst ident B) tl = List.map (@fst ident A) l. Proof. induction l; simpl. intros. inversion H. reflexivity. intro tl. destruct a as [id x]. destruct (f x); try congruence. - caseEq (map_partial f l); intros; try congruence. - inversion H0; subst tl. simpl. decEq. auto. + caseEq (map_partial prefix_var_name f l); simpl; intros; try congruence. + inv H0. simpl. decEq. auto. Qed. Lemma map_partial_append: - forall (A B: Set) (f: A -> option B) + forall (A B: Set) (f: A -> res B) (l1 l2: list (ident * A)) (tl1 tl2: list (ident * B)), - map_partial f l1 = Some tl1 -> - map_partial f l2 = Some tl2 -> - map_partial f (l1 ++ l2) = Some (tl1 ++ tl2). + map_partial prefix_var_name f l1 = OK tl1 -> + map_partial prefix_var_name f l2 = OK tl2 -> + map_partial prefix_var_name f (l1 ++ l2) = OK (tl1 ++ tl2). Proof. induction l1; intros until tl2; simpl. intros. inversion H. simpl; auto. destruct a as [id x]. destruct (f x); try congruence. - caseEq (map_partial f l1); intros; try congruence. - inversion H0. rewrite (IHl1 _ _ _ H H1). auto. + caseEq (map_partial prefix_var_name f l1); simpl; intros; try congruence. + inv H0. rewrite (IHl1 _ _ _ H H1). auto. Qed. Lemma transl_params_names: forall vars tvars, - transl_params vars = Some tvars -> + transl_params vars = OK tvars -> List.map (@fst ident memory_chunk) tvars = Ctyping.var_names vars. Proof. exact (map_partial_names _ _ chunk_of_type). @@ -139,7 +104,7 @@ Qed. Lemma transl_vars_names: forall vars tvars, - transl_vars vars = Some tvars -> + transl_vars vars = OK tvars -> List.map (@fst ident var_kind) tvars = Ctyping.var_names vars. Proof. exact (map_partial_names _ _ var_kind_of_type). @@ -148,8 +113,8 @@ Qed. Lemma transl_names_norepet: forall params vars sg tparams tvars body, list_norepet (var_names params ++ var_names vars) -> - transl_params params = Some tparams -> - transl_vars vars = Some tvars -> + transl_params params = OK tparams -> + transl_vars vars = OK tvars -> let f := Csharpminor.mkfunction sg tparams tvars body in list_norepet (fn_params_names f ++ fn_vars_names f). Proof. @@ -161,35 +126,35 @@ Qed. Lemma transl_vars_append: forall l1 l2 tl1 tl2, - transl_vars l1 = Some tl1 -> transl_vars l2 = Some tl2 -> - transl_vars (l1 ++ l2) = Some (tl1 ++ tl2). + transl_vars l1 = OK tl1 -> transl_vars l2 = OK tl2 -> + transl_vars (l1 ++ l2) = OK (tl1 ++ tl2). Proof. exact (map_partial_append _ _ var_kind_of_type). Qed. Lemma transl_params_vars: forall params tparams, - transl_params params = Some tparams -> + transl_params params = OK tparams -> transl_vars params = - Some (List.map (fun id_chunk => (fst id_chunk, Vscalar (snd id_chunk))) tparams). + OK (List.map (fun id_chunk => (fst id_chunk, Vscalar (snd id_chunk))) tparams). Proof. induction params; intro tparams; simpl. intros. inversion H. reflexivity. destruct a as [id x]. unfold chunk_of_type. caseEq (access_mode x); try congruence. intros chunk AM. - caseEq (transl_params params); intros; try congruence. - inversion H0. + caseEq (transl_params params); simpl; intros; try congruence. + inv H0. rewrite (var_kind_by_value _ _ AM). rewrite (IHparams _ H). reflexivity. Qed. Lemma transl_fn_variables: forall params vars sg tparams tvars body, - transl_params params = Some tparams -> - transl_vars vars = Some tvars -> + transl_params params = OK tparams -> + transl_vars vars = OK tvars -> let f := Csharpminor.mkfunction sg tparams tvars body in - transl_vars (params ++ vars) = Some (fn_variables f). + transl_vars (params ++ vars) = OK (fn_variables f). Proof. intros. generalize (transl_params_vars _ _ H); intro. @@ -212,35 +177,36 @@ Qed. Lemma transl_expr_lvalue: forall ge e m1 a ty t m2 loc ofs ta, Csem.eval_lvalue ge e m1 (Expr a ty) t m2 loc ofs -> - transl_expr (Expr a ty) = Some ta -> - (exists id, a = Csyntax.Evar id /\ var_get id ty = Some ta) \/ - (exists tb, transl_lvalue (Expr a ty) = Some tb /\ - make_load tb ty = Some ta). + transl_expr (Expr a ty) = OK ta -> + (exists id, a = Csyntax.Evar id /\ var_get id ty = OK ta) \/ + (exists tb, transl_lvalue (Expr a ty) = OK tb /\ + make_load tb ty = OK ta). Proof. intros. inversion H; subst; clear H; simpl in H0. left; exists id; auto. left; exists id; auto. - monadInv H0. right. exists e0; split; auto. - simpl. monadInv H0. right. exists e2; split; auto. - simpl. rewrite H6 in H0. rewrite H6. - monadInv H0. right. - exists (make_binop Oadd e0 (make_intconst (Int.repr z))). split; auto. - simpl. rewrite H10 in H0. rewrite H10. - monadInv H0. right. - exists e0; auto. + monadInv H0. right. exists x; split; auto. + simpl. monadInv H0. right. exists x1; split; auto. + simpl. rewrite EQ; rewrite EQ1. simpl. auto. + rewrite H6 in H0. monadInv H0. right. + exists (Ebinop Oadd x (make_intconst (Int.repr x0))). split; auto. + simpl. rewrite H6. rewrite EQ. rewrite EQ1. auto. + rewrite H10 in H0. monadInv H0. right. + exists x; split; auto. + simpl. rewrite H10. auto. Qed. Lemma transl_stmt_Sfor_start: forall nbrk ncnt s1 e2 s3 s4 ts, - transl_statement nbrk ncnt (Sfor s1 e2 s3 s4) = Some ts -> + transl_statement nbrk ncnt (Sfor s1 e2 s3 s4) = OK ts -> exists ts1, exists ts2, ts = Sseq ts1 ts2 - /\ transl_statement nbrk ncnt s1 = Some ts1 - /\ transl_statement nbrk ncnt (Sfor Csyntax.Sskip e2 s3 s4) = Some (Sseq Sskip ts2). + /\ transl_statement nbrk ncnt s1 = OK ts1 + /\ transl_statement nbrk ncnt (Sfor Csyntax.Sskip e2 s3 s4) = OK (Sseq Sskip ts2). Proof. - intros. monadInv H. simpl. - exists s; exists (Sblock (Sloop (Sseq s0 (Sseq (Sblock s5) s2)))). - intuition. + intros. monadInv H. econstructor; econstructor. + split. reflexivity. split. auto. simpl. + rewrite EQ1; rewrite EQ0; rewrite EQ2; auto. Qed. (** Properties related to switch constructs *) |