1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
class Termination {
method A(N: int)
requires 0 <= N;
{
var i := 0;
while (i < N)
invariant i <= N;
// this will be heuristically inferred: decreases N - i;
{
i := i + 1;
}
}
method B(N: int)
requires 0 <= N;
{
var i := N;
while (true)
invariant 0 <= i;
decreases i;
{
i := i - 1;
if (!(0 <= i)) {
break;
}
}
assert i == -1;
}
method Lex() {
call x := Update();
call y := Update();
while (!(x == 0 && y == 0))
invariant 0 <= x && 0 <= y;
decreases x, y;
{
if (0 < y) {
y := y - 1;
} else {
x := x - 1;
call y := Update();
}
}
}
method Update() returns (r: int)
ensures 0 <= r;
{
r := 8;
}
method M() {
var b := true;
var i := 500;
var r := new Termination;
var s := {12, 200};
var q := [5, 8, 13];
while (true)
decreases b, i, r;
// invariant b ==> 0 <= i;
decreases s, q;
{
if (12 in s) {
s := s - {12};
} else if (b) {
b := !b;
i := i + 1;
} else if (20 <= i) {
i := i - 20;
} else if (r != null) {
r := null;
} else if (|q| != 0) {
q := q[1..];
} else {
break;
}
}
}
method Q<T>(list: List<T>) {
var l := list;
while (l != #List.Nil)
decreases l;
{
call x, l := Traverse(l);
}
}
method Traverse<T>(a: List<T>) returns (val: T, b: List<T>);
requires a != #List.Nil;
ensures a == #List.Cons(val, b);
}
datatype List<T> {
Nil;
Cons(T, List<T>);
}
method FailureToProveTermination0(N: int)
{
var n := N;
while (n < 100) { // error: may not terminate
n := n - 1;
}
}
method FailureToProveTermination1(x: int, y: int, N: int)
{
var n := N;
while (x < y && n < 100) // error: cannot prove termination from the heuristically chosen termination metric
{
n := n + 1;
}
}
method FailureToProveTermination2(x: int, y: int, N: int)
{
var n := N;
while (x < y && n < 100) // error: cannot prove termination from the given (bad) termination metric
decreases n - x;
{
n := n + 1;
}
}
method FailureToProveTermination3(x: int, y: int, N: int)
{
var n := N;
while (x < y && n < 100)
decreases 100 - n;
{
n := n + 1;
}
}
method FailureToProveTermination4(x: int, y: int, N: int)
{
var n := N;
while (n < 100 && x < y)
decreases 100 - n;
{
n := n + 1;
}
}
method FailureToProveTermination5(b: bool, N: int)
{
var n := N;
while (b && n < 100) // here, the heuristics are good enough to prove termination
{
n := n + 1;
}
}
class Node {
var next: Node;
var footprint: set<Node>;
function Valid(): bool
reads this, footprint;
// In a previous (and weaker) axiomatization of sets, there had been two problems
// with trying to prove the termination of this function. First, the default
// decreases clause (derived from the reads clause) had been done incorrectly for
// a list of expressions. Second, the set axiomatization had not been strong enough.
{
this in footprint && !(null in footprint) &&
(next != null ==> next in footprint &&
next.footprint < footprint &&
this !in next.footprint &&
next.Valid())
}
}
method DecreasesYieldsAnInvariant(z: int) {
var x := 100;
var y := 1;
var z := z; // make parameter into a local variable
while (x != y)
// inferred: decreases |x - y|;
invariant (0 < x && 0 < y) || (x < 0 && y < 0);
{
if (z == 52) {
break;
} else if (x < y) {
y := y - 1;
} else {
x := x - 1;
}
x := -x;
y := -y;
z := z + 1;
}
assert x - y < 100; // follows from the fact that no loop iteration increases what's in the 'decreases' clause
}
|