type byte; function OneByteToInt(byte) returns (int); function TwoBytesToInt(byte, byte) returns (int); function FourBytesToInt(byte, byte, byte, byte) returns (int); axiom(forall b0:byte, c0:byte :: {OneByteToInt(b0), OneByteToInt(c0)} OneByteToInt(b0) == OneByteToInt(c0) ==> b0 == c0); axiom(forall b0:byte, b1: byte, c0:byte, c1:byte :: {TwoBytesToInt(b0, b1), TwoBytesToInt(c0, c1)} TwoBytesToInt(b0, b1) == TwoBytesToInt(c0, c1) ==> b0 == c0 && b1 == c1); axiom(forall b0:byte, b1: byte, b2:byte, b3:byte, c0:byte, c1:byte, c2:byte, c3:byte :: {FourBytesToInt(b0, b1, b2, b3), FourBytesToInt(c0, c1, c2, c3)} FourBytesToInt(b0, b1, b2, b3) == FourBytesToInt(c0, c1, c2, c3) ==> b0 == c0 && b1 == c1 && b2 == c2 && b3 == c3); // Mutable var Mem_BYTE:[int]byte; var alloc:[int]name; function Field(int) returns (name); function Base(int) returns (int); // Constants const unique UNALLOCATED:name; const unique ALLOCATED: name; const unique FREED:name; const unique BYTE:name; function Equal([int]bool, [int]bool) returns (bool); function Subset([int]bool, [int]bool) returns (bool); function Disjoint([int]bool, [int]bool) returns (bool); function Empty() returns ([int]bool); function Singleton(int) returns ([int]bool); function Reachable([int,int]bool, int) returns ([int]bool); function Union([int]bool, [int]bool) returns ([int]bool); function Intersection([int]bool, [int]bool) returns ([int]bool); function Difference([int]bool, [int]bool) returns ([int]bool); function Dereference([int]bool, [int]int) returns ([int]bool); function Inverse(f:[int]int, x:int) returns ([int]bool); function AtLeast(int, int) returns ([int]bool); function Rep(int, int) returns (int); axiom(forall n:int, x:int, y:int :: {AtLeast(n,x)[y]} AtLeast(n,x)[y] ==> x <= y && Rep(n,x) == Rep(n,y)); axiom(forall n:int, x:int, y:int :: {AtLeast(n,x),Rep(n,x),Rep(n,y)} x <= y && Rep(n,x) == Rep(n,y) ==> AtLeast(n,x)[y]); axiom(forall n:int, x:int :: {AtLeast(n,x)} AtLeast(n,x)[x]); axiom(forall n:int, x:int, z:int :: {PLUS(x,n,z)} Rep(n,x) == Rep(n,PLUS(x,n,z))); axiom(forall n:int, x:int :: {Rep(n,x)} (exists k:int :: Rep(n,x) - x == n*k)); function Array(int, int, int) returns ([int]bool); axiom(forall x:int, n:int, z:int :: {Array(x,n,z)} z <= 0 ==> Equal(Array(x,n,z), Empty())); axiom(forall x:int, n:int, z:int :: {Array(x,n,z)} z > 0 ==> Equal(Array(x,n,z), Difference(AtLeast(n,x),AtLeast(n,PLUS(x,n,z))))); axiom(forall x:int :: !Empty()[x]); axiom(forall x:int, y:int :: {Singleton(y)[x]} Singleton(y)[x] <==> x == y); axiom(forall y:int :: {Singleton(y)} Singleton(y)[y]); /* this formulation of Union IS more complete than the earlier one */ /* (A U B)[e], A[d], A U B = Singleton(c), d != e */ axiom(forall x:int, S:[int]bool, T:[int]bool :: {Union(S,T)[x]} Union(S,T)[x] <==> S[x] || T[x]); axiom(forall x:int, S:[int]bool, T:[int]bool :: {Union(S,T), S[x]} S[x] ==> Union(S,T)[x]); axiom(forall x:int, S:[int]bool, T:[int]bool :: {Union(S,T), T[x]} T[x] ==> Union(S,T)[x]); axiom(forall x:int, S:[int]bool, T:[int]bool :: {Intersection(S,T)[x]} Intersection(S,T)[x] <==> S[x] && T[x]); axiom(forall x:int, S:[int]bool, T:[int]bool :: {Intersection(S,T), S[x]} S[x] && T[x] ==> Intersection(S,T)[x]); axiom(forall x:int, S:[int]bool, T:[int]bool :: {Intersection(S,T), T[x]} S[x] && T[x] ==> Intersection(S,T)[x]); axiom(forall x:int, S:[int]bool, T:[int]bool :: {Difference(S,T)[x]} Difference(S,T)[x] <==> S[x] && !T[x]); axiom(forall x:int, S:[int]bool, T:[int]bool :: {Difference(S,T), S[x]} S[x] ==> Difference(S,T)[x] || T[x]); axiom(forall x:int, S:[int]bool, M:[int]int :: {Dereference(S,M)[x]} Dereference(S,M)[x] ==> (exists y:int :: x == M[y] && S[y])); axiom(forall x:int, S:[int]bool, M:[int]int :: {M[x], S[x], Dereference(S,M)} S[x] ==> Dereference(S,M)[M[x]]); axiom(forall x:int, y:int, S:[int]bool, M:[int]int :: {Dereference(S,M[x := y])} !S[x] ==> Equal(Dereference(S,M[x := y]), Dereference(S,M))); axiom(forall x:int, y:int, S:[int]bool, M:[int]int :: {Dereference(S,M[x := y])} S[x] && Equal(Intersection(Inverse(M,M[x]), S), Singleton(x)) ==> Equal(Dereference(S,M[x := y]), Union(Difference(Dereference(S,M), Singleton(M[x])), Singleton(y)))); axiom(forall x:int, y:int, S:[int]bool, M:[int]int :: {Dereference(S,M[x := y])} S[x] && !Equal(Intersection(Inverse(M,M[x]), S), Singleton(x)) ==> Equal(Dereference(S,M[x := y]), Union(Dereference(S,M), Singleton(y)))); axiom(forall f:[int]int, x:int :: {Inverse(f,f[x])} Inverse(f,f[x])[x]); axiom(forall f:[int]int, x:int, y:int :: {Inverse(f[x := y],y)} Equal(Inverse(f[x := y],y), Union(Inverse(f,y), Singleton(x)))); axiom(forall f:[int]int, x:int, y:int, z:int :: {Inverse(f[x := y],z)} y == z || Equal(Inverse(f[x := y],z), Difference(Inverse(f,z), Singleton(x)))); axiom(forall S:[int]bool, T:[int]bool :: {Equal(S,T)} Equal(S,T) <==> Subset(S,T) && Subset(T,S)); axiom(forall x:int, S:[int]bool, T:[int]bool :: {S[x], Subset(S,T)} S[x] && Subset(S,T) ==> T[x]); axiom(forall S:[int]bool, T:[int]bool :: {Subset(S,T)} Subset(S,T) || (exists x:int :: S[x] && !T[x])); axiom(forall x:int, S:[int]bool, T:[int]bool :: {S[x], Disjoint(S,T), T[x]} !(S[x] && Disjoint(S,T) && T[x])); axiom(forall S:[int]bool, T:[int]bool :: {Disjoint(S,T)} Disjoint(S,T) || (exists x:int :: S[x] && T[x])); function Unified([name][int]int) returns ([int]int); axiom(forall M:[name][int]int, x:int :: {Unified(M)[x]} Unified(M)[x] == M[Field(x)][x]); axiom(forall M:[name][int]int, x:int, y:int :: {Unified(M[Field(x) := M[Field(x)][x := y]])} Unified(M[Field(x) := M[Field(x)][x := y]]) == Unified(M)[x := y]); // Memory model var Mem: [name][int]int; function Match(a:int, t:name) returns (bool); function HasType(v:int, t:name) returns (bool); function Values(t:name) returns ([int]bool); axiom(forall v:int, t:name :: {Values(t)[v]} Values(t)[v] ==> HasType(v, t)); axiom(forall v:int, t:name :: {HasType(v, t), Values(t)} HasType(v, t) ==> Values(t)[v]); // Field declarations // Type declarations const unique INT4_name:name; const unique PINT4_name:name; // Field definitions // Type definitions axiom(forall a:int :: {Match(a, INT4_name)} Match(a, INT4_name) <==> Field(a) == INT4_name); axiom(forall v:int :: HasType(v, INT4_name)); axiom(forall a:int :: {Match(a, PINT4_name)} Match(a, PINT4_name) <==> Field(a) == PINT4_name); axiom(forall v:int :: {HasType(v, PINT4_name)} {Match(v, INT4_name)} HasType(v, PINT4_name) <==> (v == 0 || (v > 0 && Match(v, INT4_name)))); function MINUS_BOTH_PTR_OR_BOTH_INT(a:int, b:int, size:int) returns (int); axiom(forall a:int, b:int, size:int :: {MINUS_BOTH_PTR_OR_BOTH_INT(a,b,size)} size * MINUS_BOTH_PTR_OR_BOTH_INT(a,b,size) <= a - b && a - b < size * (MINUS_BOTH_PTR_OR_BOTH_INT(a,b,size) + 1)); function MINUS_LEFT_PTR(a:int, a_size:int, b:int) returns (int); axiom(forall a:int, a_size:int, b:int :: {MINUS_LEFT_PTR(a,a_size,b)} MINUS_LEFT_PTR(a,a_size,b) == a - a_size * b); function PLUS(a:int, a_size:int, b:int) returns (int); axiom(forall a:int, a_size:int, b:int :: {PLUS(a,a_size,b)} PLUS(a,a_size,b) == a + a_size * b); function MULT(a:int, b:int) returns (int); // a*b axiom(forall a:int, b:int :: {MULT(a,b)} MULT(a,b) == a * b); function DIV(a:int, b:int) returns (int); // a/b axiom(forall a:int, b:int :: {DIV(a,b)} a >= 0 && b > 0 ==> b * DIV(a,b) <= a && a < b * (DIV(a,b) + 1) ); axiom(forall a:int, b:int :: {DIV(a,b)} a >= 0 && b < 0 ==> b * DIV(a,b) <= a && a < b * (DIV(a,b) - 1) ); axiom(forall a:int, b:int :: {DIV(a,b)} a < 0 && b > 0 ==> b * DIV(a,b) >= a && a > b * (DIV(a,b) - 1) ); axiom(forall a:int, b:int :: {DIV(a,b)} a < 0 && b < 0 ==> b * DIV(a,b) >= a && a > b * (DIV(a,b) + 1) ); function BINARY_BOTH_INT(a:int, b:int) returns (int); function POW2(a:int) returns (bool); axiom POW2(1); axiom POW2(2); axiom POW2(4); axiom POW2(8); axiom POW2(16); axiom POW2(32); axiom POW2(64); axiom POW2(128); axiom POW2(256); axiom POW2(512); axiom POW2(1024); axiom POW2(2048); axiom POW2(4096); axiom POW2(8192); axiom POW2(16384); axiom POW2(32768); axiom POW2(65536); axiom POW2(131072); axiom POW2(262144); axiom POW2(524288); axiom POW2(1048576); axiom POW2(2097152); axiom POW2(4194304); axiom POW2(8388608); axiom POW2(16777216); axiom POW2(33554432); function choose(a:bool, b:int, c:int) returns (x:int); axiom(forall a:bool, b:int, c:int :: {choose(a,b,c)} a ==> choose(a,b,c) == b); axiom(forall a:bool, b:int, c:int :: {choose(a,b,c)} !a ==> choose(a,b,c) == c); function BIT_BAND(a:int, b:int) returns (x:int); axiom(forall a:int, b:int :: {BIT_BAND(a,b)} a == b ==> BIT_BAND(a,b) == a); axiom(forall a:int, b:int :: {BIT_BAND(a,b)} POW2(a) && POW2(b) && a != b ==> BIT_BAND(a,b) == 0); axiom(forall a:int, b:int :: {BIT_BAND(a,b)} a == 0 || b == 0 ==> BIT_BAND(a,b) == 0); function BIT_BOR(a:int, b:int) returns (x:int); function BIT_BXOR(a:int, b:int) returns (x:int); function BIT_BNOT(a:int) returns (int); function LIFT(a:bool) returns (int); axiom(forall a:bool :: {LIFT(a)} a <==> LIFT(a) != 0); function NOT(a:int) returns (int); axiom(forall a:int :: {NOT(a)} a == 0 ==> NOT(a) != 0); axiom(forall a:int :: {NOT(a)} a != 0 ==> NOT(a) == 0); function NULL_CHECK(a:int) returns (int); axiom(forall a:int :: {NULL_CHECK(a)} a == 0 ==> NULL_CHECK(a) != 0); axiom(forall a:int :: {NULL_CHECK(a)} a != 0 ==> NULL_CHECK(a) == 0); procedure nondet_choice() returns (x:int); procedure havoc_assert(i:int); requires (i != 0); procedure havoc_assume(i:int); ensures (i != 0); procedure __HAVOC_free(a:int); modifies alloc; ensures (forall x:int :: {alloc[x]} x == a || old(alloc)[x] == alloc[x]); ensures (alloc[a] == FREED); // Additional checks guarded by tranlator flags // requires alloc[a] == ALLOCATED; // requires Base(a) == a; procedure __HAVOC_malloc(obj_size:int) returns (new:int); requires obj_size >= 0; modifies alloc; ensures (new > 0); ensures (forall x:int :: {Base(x)} new <= x && x < new+obj_size ==> Base(x) == new); ensures (forall x:int :: {alloc[x]} x == new || old(alloc)[x] == alloc[x]); ensures old(alloc)[new] == UNALLOCATED && alloc[new] == ALLOCATED; procedure _strdup(str:int) returns (new:int); procedure _xstrcasecmp(a0:int, a1:int) returns (ret:int); procedure _xstrcmp(a0:int, a1:int) returns (ret:int); procedure main ( ) returns ($result.main$3.5$1$:int) modifies alloc; //TAG: no freed locations ensures(forall f:int :: {alloc[Base(f)]} old(alloc)[Base(f)] == UNALLOCATED || old(alloc)[Base(f)] == alloc[Base(f)]); modifies Mem; //TAG: no updated memory locations ensures(forall f: name, m:int :: {Mem[f][m]} Mem[f][m] == old(Mem[f])[m]); free ensures(Mem[Field(0)][0] == old(Mem[Field(0)])[0]); //TAG: Type Safety Precondition requires(forall a:int :: {Mem[Field(a)][a]} HasType(Mem[Field(a)][a], Field(a))); //TAG: Type Safety Postcondition ensures(forall a:int :: {Mem[Field(a)][a]} HasType(Mem[Field(a)][a], Field(a))); ensures(HasType($result.main$3.5$1$, INT4_name)); { var havoc_stringTemp:int; var condVal:int; var $a$1$4.6$main : int; var b : int; var c : int; var flag : int; var tempBoogie0:int; var tempBoogie1:int; var tempBoogie2:int; var tempBoogie3:int; var tempBoogie4:int; var tempBoogie5:int; var tempBoogie6:int; var tempBoogie7:int; var tempBoogie8:int; var tempBoogie9:int; var tempBoogie10:int; var tempBoogie11:int; var tempBoogie12:int; var tempBoogie13:int; var tempBoogie14:int; var tempBoogie15:int; var tempBoogie16:int; var tempBoogie17:int; var tempBoogie18:int; var tempBoogie19:int; start: assume(HasType($a$1$4.6$main, INT4_name)); assume(HasType(b, INT4_name)); assume(HasType(c, INT4_name)); assume(HasType(flag, INT4_name)); assume(HasType($result.main$3.5$1$, INT4_name)); goto label_3; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(20) label_1: assume (forall m:int :: {Mem[Field(m)][m]} alloc[Base(m)] != ALLOCATED && old(alloc)[Base(m)] != ALLOCATED ==> Mem[Field(m)][m] == old(Mem[Field(m)])[m]); return; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(20) label_2: assume false; return; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(4) label_3: goto label_4; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(4) label_4: goto label_5; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(4) label_5: goto label_6; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(5) label_6: goto label_7; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(7) label_7: c := LIFT(b < $a$1$4.6$main) ; //TAG: Type Safety Assertion assert(forall a:int :: {Mem[Field(a)][a]} HasType(Mem[Field(a)][a], Field(a))); assert(HasType($a$1$4.6$main, INT4_name)); assert(HasType(b, INT4_name)); assert(HasType(c, INT4_name)); assert(HasType(flag, INT4_name)); goto label_8; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(9) label_8: goto label_8_true , label_8_false ; label_8_true : assume (c != 0); goto label_10; label_8_false : assume (c == 0); goto label_9; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(12) label_9: flag := 0 ; //TAG: Type Safety Assertion assert(forall a:int :: {Mem[Field(a)][a]} HasType(Mem[Field(a)][a], Field(a))); assert(HasType($a$1$4.6$main, INT4_name)); assert(HasType(b, INT4_name)); assert(HasType(c, INT4_name)); assert(HasType(flag, INT4_name)); goto label_11; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(10) label_10: flag := 1 ; //TAG: Type Safety Assertion assert(forall a:int :: {Mem[Field(a)][a]} HasType(Mem[Field(a)][a], Field(a))); assert(HasType($a$1$4.6$main, INT4_name)); assert(HasType(b, INT4_name)); assert(HasType(c, INT4_name)); assert(HasType(flag, INT4_name)); goto label_11; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(15) label_11: goto label_11_true , label_11_false ; label_11_true : assume (b < $a$1$4.6$main); goto label_13; label_11_false : assume !(b < $a$1$4.6$main); goto label_12; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(18) label_12: //TAG: flag == 0 assert (flag == 0); goto label_1; // c:\espmain1\esp\tests\hvregr\split_memory\014\bool_vals_gt.c(16) label_13: //TAG: flag == 1 assert (flag == 1); goto label_1; }