// RUN: %boogie -typeEncoding:n -logPrefix:0n "%s" > "%t" // RUN: %diff "%s.n.expect" "%t" // RUN: %boogie -typeEncoding:p -logPrefix:0p "%s" > "%t" // RUN: %diff "%s.p.expect" "%t" // RUN: %boogie -typeEncoding:a -logPrefix:0a "%s" > "%t" // RUN: %diff "%s.a.expect" "%t" // a property that should hold according to the Boogie semantics // (but no automatic theorem prover will be able to prove it) type C a; function sameType(x:a, y:b) returns (bool); axiom (forall x:a, y:b :: sameType(x,y) == (exists z:a :: y==z)); // Will be defined to hold whenever the type of y (i.e., b) // can be reached from the type of x (a) by applying the type // constructor C a finite number of times. In order words, // b = C^n(a) function rel(x:a, y:b) returns (bool); function relHelp(x:a, y:b, z:int) returns (bool); axiom (forall x:a, y:b :: relHelp(x, y, 0) == sameType(x, y)); axiom (forall n:int, x:a, y:b :: (n >= 0 ==> relHelp(x, y, n+1) == (exists z:c, y' : C c :: relHelp(x, z, n) && y==y'))); axiom (forall x:a, y:b :: rel(x, y) == (exists n:int :: n >= 0 && relHelp(x, y, n))); // Assert that from every type we can reach a type that is // minimal, i.e., that cannot be reached by applying C to some // other type. This will only hold in well-founded type // hierarchies procedure P() returns () { var v : C int; assert relHelp(7, 13, 0); assert rel(7, 13); assert (forall y:b :: (exists x:a :: // too hard for a theorem prover rel(x, y) && (forall z:c :: (rel(z, x) ==> sameType(z, x))))); }