//----------------------------------------------------------------------------- // // Copyright (C) Microsoft Corporation. All Rights Reserved. // //----------------------------------------------------------------------------- using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.Threading; using System.IO; using Microsoft.Boogie; using Graphing; using AI = Microsoft.AbstractInterpretationFramework; using Microsoft.Contracts; using Microsoft.Basetypes; using Microsoft.Boogie.VCExprAST; namespace VC { using Bpl = Microsoft.Boogie; public class VCGen : ConditionGeneration { /// /// Constructor. Initializes the theorem prover. /// public VCGen(Program! program, string/*?*/ logFilePath, bool appendLogFile) // throws ProverException { base(program); this.appendLogFile = appendLogFile; this.logFilePath = logFilePath; // base(); } private static AssumeCmd! AssertTurnedIntoAssume(AssertCmd! assrt) { Expr! expr = assrt.Expr; switch (CommandLineOptions.Clo.UseSubsumption) { case CommandLineOptions.SubsumptionOption.Never: expr = Expr.True; break; case CommandLineOptions.SubsumptionOption.Always: break; case CommandLineOptions.SubsumptionOption.NotForQuantifiers: if (expr is QuantifierExpr) { expr = Expr.True; } break; default: assert false; // unexpected case } return new AssumeCmd(assrt.tok, expr); } #region Soundness smoke tester class SmokeTester { VCGen! parent; Implementation! impl; Block! initial; Program! program; int id; Dictionary! copies = new Dictionary(); Dictionary! visited = new Dictionary(); VerifierCallback! callback; internal SmokeTester(VCGen! par, Implementation! i, Program! prog, VerifierCallback! callback) { parent = par; impl = i; initial = i.Blocks[0]; program = prog; this.callback = callback; } internal void Copy() { CloneBlock(impl.Blocks[0]); initial = GetCopiedBlocks()[0]; } internal void Test() throws UnexpectedProverOutputException; { DFS(initial); } void TopologicalSortImpl() { Graph dag = new Graph(); dag.AddSource((!)impl.Blocks[0]); // there is always at least one node in the graph foreach (Block b in impl.Blocks) { GotoCmd gtc = b.TransferCmd as GotoCmd; if (gtc != null) { assume gtc.labelTargets != null; foreach (Block! dest in gtc.labelTargets) { dag.AddEdge(b,dest); } } } impl.Blocks = new List(); foreach (Block! b in dag.TopologicalSort()) { impl.Blocks.Add(b); } } void Emit() { TopologicalSortImpl(); EmitImpl(impl, false); } // this one copies forward Block! CloneBlock(Block! b) { Block fake_res; if (copies.TryGetValue(b, out fake_res)) { return (!)fake_res; } Block! res; res = new Block(b.tok, b.Label, new CmdSeq(b.Cmds), null); copies[b] = res; if (b.TransferCmd is GotoCmd) { foreach (Block! ch in (!)((GotoCmd)b.TransferCmd).labelTargets) { CloneBlock(ch); } } foreach (Block! p in b.Predecessors) { res.Predecessors.Add(CloneBlock(p)); } return res; } // this one copies backwards Block! CopyBlock(Block! b) { Block fake_res; if (copies.TryGetValue(b, out fake_res)) { // fake_res should be Block! but the compiler fails return (!)fake_res; } Block! res; CmdSeq seq = new CmdSeq(); foreach (Cmd! c in b.Cmds) { AssertCmd turn = c as AssertCmd; if (!turnAssertIntoAssumes || turn == null) { seq.Add(c); } else { seq.Add(AssertTurnedIntoAssume(turn)); } } res = new Block(b.tok, b.Label, seq, null); copies[b] = res; foreach (Block! p in b.Predecessors) { res.Predecessors.Add(CopyBlock(p)); } return res; } List! GetCopiedBlocks() { // the order of nodes in res is random (except for the first one, being the entry) List res = new List(); res.Add(copies[initial]); foreach (KeyValuePair kv in copies) { GotoCmd go = kv.Key.TransferCmd as GotoCmd; ReturnCmd ret = kv.Key.TransferCmd as ReturnCmd; if (kv.Key != initial) { res.Add(kv.Value); } if (go != null) { GotoCmd copy = new GotoCmd(go.tok, new StringSeq(), new BlockSeq()); kv.Value.TransferCmd = copy; foreach (Block! b in (!)go.labelTargets) { Block c; if (copies.TryGetValue(b, out c)) { copy.AddTarget((!)c); } } } else if (ret != null) { kv.Value.TransferCmd = ret; } else { assume false; } } copies.Clear(); return res; } // check if e is true, false, !true, !false // if so return true and the value of the expression in val bool BooleanEval(Expr! e, ref bool val) { LiteralExpr lit = e as LiteralExpr; NAryExpr call = e as NAryExpr; if (lit != null && lit.isBool) { val = lit.asBool; return true; } else if (call != null && call.Fun is UnaryOperator && ((UnaryOperator)call.Fun).Op == UnaryOperator.Opcode.Not && BooleanEval((!)call.Args[0], ref val)) { val = !val; return true; } // this is for the 0bv32 != 0bv32 generated by vcc else if (call != null && call.Fun is BinaryOperator && ((BinaryOperator)call.Fun).Op == BinaryOperator.Opcode.Neq && call.Args[0] is LiteralExpr && ((!)call.Args[0]).Equals(call.Args[1])) { val = false; return true; } return false; } bool IsFalse(Expr! e) { bool val = false; return BooleanEval(e, ref val) && !val; } bool CheckUnreachable(Block! cur, CmdSeq! seq) throws UnexpectedProverOutputException; { foreach (Cmd cmd in seq) { AssertCmd assrt = cmd as AssertCmd; if (assrt != null && QKeyValue.FindBoolAttribute(assrt.Attributes, "PossiblyUnreachable")) return false; } DateTime start = DateTime.Now; if (CommandLineOptions.Clo.Trace) { System.Console.Write(" soundness smoke test #{0} ... ", id); } callback.OnProgress("smoke", id, id, 0.0); Token tok = new Token(); tok.val = "soundness smoke test assertion"; seq.Add(new AssertCmd(tok, Expr.False)); Block! copy = CopyBlock(cur); copy.Cmds = seq; List! backup = impl.Blocks; impl.Blocks = GetCopiedBlocks(); copy.TransferCmd = new ReturnCmd(Token.NoToken); if (CommandLineOptions.Clo.TraceVerify) { System.Console.WriteLine(); System.Console.WriteLine(" --- smoke #{0}, before passify", id); Emit(); } parent.current_impl = impl; parent.PassifyImpl(impl, program); Hashtable! label2Absy; Checker! ch = parent.FindCheckerFor(impl, CommandLineOptions.Clo.SmokeTimeout); VCExpr! vc = parent.GenerateVC(impl, out label2Absy, ch); impl.Blocks = backup; if (CommandLineOptions.Clo.TraceVerify) { System.Console.WriteLine(" --- smoke #{0}, after passify", id); Emit(); } ch.BeginCheck((!) impl.Name + "_smoke" + id++, vc, new ErrorHandler(label2Absy, this.callback)); ch.ProverDone.WaitOne(); ProverInterface.Outcome outcome = ch.ReadOutcome(); parent.current_impl = null; DateTime end = DateTime.Now; TimeSpan elapsed = end - start; if (CommandLineOptions.Clo.Trace) { System.Console.WriteLine(" [{0} s] {1}", elapsed.TotalSeconds, outcome == ProverInterface.Outcome.Valid ? "OOPS" : "OK" + (outcome == ProverInterface.Outcome.Invalid ? "" : " (" + outcome + ")")); } if (outcome == ProverInterface.Outcome.Valid) { // copy it again, so we get the version with calls, assignments and such copy = CopyBlock(cur); copy.Cmds = seq; impl.Blocks = GetCopiedBlocks(); TopologicalSortImpl(); callback.OnUnreachableCode(impl); impl.Blocks = backup; return true; } return false; } const bool turnAssertIntoAssumes = false; void DFS(Block! cur) throws UnexpectedProverOutputException; { if (visited.ContainsKey(cur)) return; visited[cur] = true; CmdSeq! seq = new CmdSeq(); foreach (Cmd! cmd_ in cur.Cmds) { Cmd! cmd = cmd_; AssertCmd assrt = cmd as AssertCmd; AssumeCmd assm = cmd as AssumeCmd; CallCmd call = cmd as CallCmd; bool assumeFalse = false; if (assrt != null) { // we're not going any further // it's clear the user expected unreachable code here // it's not clear where did he expect it, maybe it would be right to insert // a check just one command before if (IsFalse(assrt.Expr)) return; if (turnAssertIntoAssumes) { cmd = AssertTurnedIntoAssume(assrt); } } else if (assm != null) { if (IsFalse(assm.Expr)) assumeFalse = true; } else if (call != null) { foreach (Ensures! e in ((!)call.Proc).Ensures) { if (IsFalse(e.Condition)) assumeFalse = true; } } if (assumeFalse) { CheckUnreachable(cur, seq); return; } seq.Add(cmd); } GotoCmd go = cur.TransferCmd as GotoCmd; ReturnCmd ret = cur.TransferCmd as ReturnCmd; assume !(go!= null&&go.labelTargets==null&&go.labelNames!=null&&go.labelNames.Length>0) ; if (ret != null || (go != null && ((!)go.labelTargets).Length == 0)) { // we end in return, so there will be no more places to check CheckUnreachable(cur, seq); } else if (go != null) { bool needToCheck = true; // if all of our children have more than one parent, then // we're in the right place to check foreach (Block! target in (!)go.labelTargets) { if (target.Predecessors.Length == 1) { needToCheck = false; } } if (needToCheck) { CheckUnreachable(cur, seq); } foreach (Block! target in go.labelTargets) { DFS(target); } } } class ErrorHandler : ProverInterface.ErrorHandler { Hashtable! label2Absy; VerifierCallback! callback; public ErrorHandler(Hashtable! label2Absy, VerifierCallback! callback) { this.label2Absy = label2Absy; this.callback = callback; } public override Absy! Label2Absy(string! label) { int id = int.Parse(label); return (Absy!) label2Absy[id]; } public override void OnProverWarning(string! msg) { this.callback.OnWarning(msg); } } } #endregion #region Splitter class Split { class BlockStats { public bool big_block; public int id; public double assertion_cost; public double assumption_cost; // before multiplier public double incomming_paths; public List! virtual_successors = new List(); public List! virtual_predecesors = new List(); public Dictionary? reachable_blocks; public readonly Block! block; public BlockStats(Block! b, int i) { block = b; assertion_cost = -1; id = i; } } readonly List! blocks; readonly List! big_blocks = new List(); readonly Dictionary! stats = new Dictionary(); readonly int id; static int current_id; Block? split_block; bool assert_to_assume; List! assumized_branches = new List(); public AssertCmd? first_assert; double score; bool score_computed; double total_cost; int assertion_count; double assertion_cost; // without multiplication by paths Hashtable/*TransferCmd->ReturnCmd*/! gotoCmdOrigins; VCGen! parent; Implementation! impl; Dictionary! copies = new Dictionary(); bool doing_slice; double slice_initial_limit; double slice_limit; bool slice_pos; Dictionary! protected_from_assert_to_assume = new Dictionary(); Dictionary! keep_at_all = new Dictionary(); // async interface private Checker checker; private int splitNo; internal ErrorReporter reporter; public Split(List! blocks, Hashtable/*TransferCmd->ReturnCmd*/! gotoCmdOrigins, VCGen! par, Implementation! impl) { this.blocks = blocks; this.gotoCmdOrigins = gotoCmdOrigins; this.parent = par; this.impl = impl; this.id = current_id++; } public double Cost { get { ComputeBestSplit(); return total_cost; } } public bool LastChance { get { ComputeBestSplit(); return assertion_count == 1 && score < 0; } } public string Stats { get { ComputeBestSplit(); return string.Format("(cost:{0:0}/{1:0}{2})", total_cost, assertion_cost, LastChance ? " last" : ""); } } public void DumpDot(int no) { using (System.IO.StreamWriter sw = System.IO.File.CreateText(string.Format("split.{0}.dot", no))) { sw.WriteLine("digraph G {"); ComputeBestSplit(); List saved = assumized_branches; assumized_branches = new List(); DoComputeScore(false); assumized_branches = saved; foreach (Block! b in big_blocks) { BlockStats s = GetBlockStats(b); foreach (Block! t in s.virtual_successors) { sw.WriteLine("n{0} -> n{1};", s.id, GetBlockStats(t).id); } sw.WriteLine("n{0} [label=\"{1}:\\n({2:0.0}+{3:0.0})*{4:0.0}\"{5}];", s.id, b.Label, s.assertion_cost, s.assumption_cost, s.incomming_paths, s.assertion_cost > 0 ? ",shape=box" : ""); } sw.WriteLine("}"); sw.Close(); } string filename = string.Format("split.{0}.bpl", no); using (System.IO.StreamWriter sw = System.IO.File.CreateText(filename)) { int oldPrintUnstructured = CommandLineOptions.Clo.PrintUnstructured; CommandLineOptions.Clo.PrintUnstructured = 2; // print only the unstructured program bool oldPrintDesugaringSetting = CommandLineOptions.Clo.PrintDesugarings; CommandLineOptions.Clo.PrintDesugarings = false; List backup = impl.Blocks; impl.Blocks = blocks; impl.Emit(new TokenTextWriter(filename, sw, false), 0); impl.Blocks = backup; CommandLineOptions.Clo.PrintDesugarings = oldPrintDesugaringSetting; CommandLineOptions.Clo.PrintUnstructured = oldPrintUnstructured; } } int bsid; BlockStats! GetBlockStats(Block! b) { BlockStats s; if (!stats.TryGetValue(b, out s)) { s = new BlockStats(b, bsid++); stats[b] = s; } return (!)s; } double AssertionCost(PredicateCmd c) { return 1.0; } void CountAssertions(Block! b) { BlockStats s = GetBlockStats(b); if (s.assertion_cost >= 0) return; // already done s.big_block = true; s.assertion_cost = 0; s.assumption_cost = 0; foreach (Cmd c in b.Cmds) { if (c is AssertCmd) { double cost = AssertionCost((AssertCmd)c); s.assertion_cost += cost; assertion_count++; assertion_cost += cost; } else if (c is AssumeCmd) { s.assumption_cost += AssertionCost((AssumeCmd)c); } } foreach (Block! b in Exits(b)) { s.virtual_successors.Add(b); } if (s.virtual_successors.Count == 1) { Block next = s.virtual_successors[0]; BlockStats se = GetBlockStats(next); CountAssertions(next); if (next.Predecessors.Length > 1 || se.virtual_successors.Count != 1) return; s.virtual_successors[0] = se.virtual_successors[0]; s.assertion_cost += se.assertion_cost; s.assumption_cost += se.assumption_cost; se.big_block = false; } } Dictionary! ComputeReachableNodes(Block! b) { BlockStats s = GetBlockStats(b); if (s.reachable_blocks != null) { return s.reachable_blocks; } Dictionary blocks = new Dictionary(); s.reachable_blocks = blocks; blocks[b] = true; foreach (Block! succ in Exits(b)) { foreach (Block! r in ComputeReachableNodes(succ).Keys) { blocks[r] = true; } } return blocks; } double ProverCost(double vc_cost) { return vc_cost * vc_cost; } void ComputeBestSplit() { if (score_computed) return; score_computed = true; assertion_count = 0; foreach (Block! b in blocks) { CountAssertions(b); } foreach (Block! b in blocks) { BlockStats bs = GetBlockStats(b); if (bs.big_block) { big_blocks.Add(b); foreach (Block! ch in bs.virtual_successors) { BlockStats chs = GetBlockStats(ch); if (!chs.big_block) { Console.WriteLine("non-big {0} accessed from {1}", ch, b); DumpDot(-1); assert false; } chs.virtual_predecesors.Add(b); } } } assumized_branches.Clear(); total_cost = ProverCost(DoComputeScore(false)); score = double.PositiveInfinity; Block? best_split = null; List! saved_branches = new List(); foreach (Block! b in big_blocks) { GotoCmd gt = b.TransferCmd as GotoCmd; if (gt == null) continue; BlockSeq targ = (!)gt.labelTargets; if (targ.Length < 2) continue; // caution, we only consider two first exits double left0, right0, left1, right1; split_block = b; assumized_branches.Clear(); assumized_branches.Add((!)targ[0]); left0 = DoComputeScore(true); right0 = DoComputeScore(false); assumized_branches.Clear(); for (int idx = 1; idx < targ.Length; idx++) { assumized_branches.Add((!)targ[idx]); } left1 = DoComputeScore(true); right1 = DoComputeScore(false); double current_score = ProverCost(left1) + ProverCost(right1); double other_score = ProverCost(left0) + ProverCost(right0); if (other_score < current_score) { current_score = other_score; assumized_branches.Clear(); assumized_branches.Add((!)targ[0]); } if (current_score < score) { score = current_score; best_split = split_block; saved_branches.Clear(); saved_branches.AddRange(assumized_branches); } } if (CommandLineOptions.Clo.VcsPathSplitMult * score > total_cost) { split_block = null; score = -1; } else { assumized_branches = saved_branches; split_block = best_split; } } void UpdateIncommingPaths(BlockStats! s) { if (s.incomming_paths < 0.0) { int count = 0; s.incomming_paths = 0.0; if (!keep_at_all.ContainsKey(s.block)) return; foreach (Block! b in s.virtual_predecesors) { BlockStats! ch = GetBlockStats(b); UpdateIncommingPaths(ch); if (ch.incomming_paths > 0.0) { s.incomming_paths += ch.incomming_paths; count++; } } if (count > 1) { s.incomming_paths *= CommandLineOptions.Clo.VcsPathJoinMult; } } } void ComputeBlockSetsHelper(Block! b, bool allow_small) { if (keep_at_all.ContainsKey(b)) return; keep_at_all[b] = true; if (allow_small) { foreach (Block! ch in Exits(b)) { if (b == split_block && assumized_branches.Contains(ch)) continue; ComputeBlockSetsHelper(ch, allow_small); } } else { foreach (Block! ch in GetBlockStats(b).virtual_successors) { if (b == split_block && assumized_branches.Contains(ch)) continue; ComputeBlockSetsHelper(ch, allow_small); } } } void ComputeBlockSets(bool allow_small) { protected_from_assert_to_assume.Clear(); keep_at_all.Clear(); Debug.Assert(split_block == null || GetBlockStats(split_block).big_block); Debug.Assert(GetBlockStats(blocks[0]).big_block); if (assert_to_assume) { foreach (Block! b in allow_small ? blocks : big_blocks) { if (ComputeReachableNodes(b).ContainsKey((!)split_block)) { keep_at_all[b] = true; } } foreach (Block! b in assumized_branches) { foreach (Block! r in ComputeReachableNodes(b).Keys) { if (allow_small || GetBlockStats(r).big_block) { keep_at_all[r] = true; protected_from_assert_to_assume[r] = true; } } } } else { ComputeBlockSetsHelper(blocks[0], allow_small); } } bool ShouldAssumize(Block! b) { return assert_to_assume && !protected_from_assert_to_assume.ContainsKey(b); } double DoComputeScore(bool aa) { assert_to_assume = aa; ComputeBlockSets(false); foreach (Block! b in big_blocks) { GetBlockStats(b).incomming_paths = -1.0; } GetBlockStats(blocks[0]).incomming_paths = 1.0; double cost = 0.0; foreach (Block! b in big_blocks) { if (keep_at_all.ContainsKey(b)) { BlockStats s = GetBlockStats(b); UpdateIncommingPaths(s); double local = s.assertion_cost; if (ShouldAssumize(b)) { local = (s.assertion_cost + s.assumption_cost) * CommandLineOptions.Clo.VcsAssumeMult; } else { local = s.assumption_cost * CommandLineOptions.Clo.VcsAssumeMult + s.assertion_cost; } local = local + local * s.incomming_paths * CommandLineOptions.Clo.VcsPathCostMult; cost += local; } } return cost; } CmdSeq! SliceCmds(Block! b) { CmdSeq! seq = b.Cmds; if (!doing_slice && !ShouldAssumize(b)) return seq; CmdSeq! res = new CmdSeq(); foreach (Cmd! c in seq) { AssertCmd a = c as AssertCmd; Cmd! the_new = c; bool swap = false; if (a != null) { if (doing_slice) { double cost = AssertionCost(a); bool first = (slice_limit - cost) >= 0 || slice_initial_limit == slice_limit; slice_limit -= cost; swap = slice_pos == first; } else if (assert_to_assume) { swap = true; } else { assert false; } if (swap) { the_new = AssertTurnedIntoAssume(a); } } res.Add(the_new); } return res; } Block! CloneBlock(Block! b) { Block res; if (copies.TryGetValue(b, out res)) { return (!)res; } res = new Block(b.tok, b.Label, SliceCmds(b), b.TransferCmd); GotoCmd gt = b.TransferCmd as GotoCmd; copies[b] = res; if (gt != null) { GotoCmd newGoto = new GotoCmd(gt.tok, new StringSeq(), new BlockSeq()); res.TransferCmd = newGoto; int pos = 0; foreach (Block! ch in (!)gt.labelTargets) { assert doing_slice || (!assert_to_assume ==> (keep_at_all.ContainsKey(ch) || assumized_branches.Contains(ch))); if (doing_slice || ((b != split_block || assumized_branches.Contains(ch) == assert_to_assume) && keep_at_all.ContainsKey(ch))) { newGoto.AddTarget(CloneBlock(ch)); } pos++; } } return res; } Split! DoSplit() { copies.Clear(); CloneBlock(blocks[0]); List newBlocks = new List(); Hashtable newGotoCmdOrigins = new Hashtable(); foreach (Block! b in blocks) { Block tmp; if (copies.TryGetValue(b, out tmp)) { newBlocks.Add((!)tmp); if (gotoCmdOrigins.ContainsKey(b)) { newGotoCmdOrigins[tmp] = gotoCmdOrigins[b]; } foreach (Block! p in b.Predecessors) { Block tmp2; if (copies.TryGetValue(p, out tmp2)) { tmp.Predecessors.Add(tmp2); } } } } return new Split(newBlocks, newGotoCmdOrigins, parent, impl); } Split! SplitAt(int idx) { assert_to_assume = idx == 0; doing_slice = false; ComputeBlockSets(true); return DoSplit(); } Split! SliceAsserts(double limit, bool pos) { slice_pos = pos; slice_limit = limit; slice_initial_limit = limit; doing_slice = true; Split! r = DoSplit(); /* Console.WriteLine("split {0} / {1} -->", limit, pos); List tmp = impl.Blocks; impl.Blocks = r.blocks; EmitImpl(impl, false); impl.Blocks = tmp; */ return r; } void Print() { List tmp = impl.Blocks; impl.Blocks = blocks; EmitImpl(impl, false); impl.Blocks = tmp; } public Counterexample! ToCounterexample() { BlockSeq trace = new BlockSeq(); foreach (Block! b in blocks) { trace.Add(b); } foreach (Block! b in blocks) { foreach (Cmd! c in b.Cmds) { if (c is AssertCmd) { return AssertCmdToCounterexample((AssertCmd)c, (!)b.TransferCmd, trace, null, new Dictionary()); } } } assume false; } public static List! DoSplit(Split! initial, double max_cost, int max) { List res = new List(); res.Add(initial); while (res.Count < max) { Split best = null; int best_idx = 0, pos = 0; foreach (Split! s in res) { s.ComputeBestSplit(); // TODO check total_cost first if (s.total_cost > max_cost && (best == null || best.total_cost < s.total_cost) && (s.assertion_count > 1 || s.split_block != null)) { best = s; best_idx = pos; } pos++; } if (best == null) break; // no split found Split! s0, s1; bool split_stats = CommandLineOptions.Clo.TraceVerify; if (split_stats) { Console.WriteLine("{0} {1} -->", best.split_block == null ? "SLICE" : ("SPLIT@" + best.split_block.Label), best.Stats); if (best.split_block != null) { GotoCmd g = best.split_block.TransferCmd as GotoCmd; if (g != null) { Console.Write(" exits: "); foreach (Block! b in (!)g.labelTargets) { Console.Write("{0} ", b.Label); } Console.WriteLine(""); Console.Write(" assumized: "); foreach (Block! b in best.assumized_branches) { Console.Write("{0} ", b.Label); } Console.WriteLine(""); } } } if (best.split_block != null) { s0 = best.SplitAt(0); s1 = best.SplitAt(1); } else { best.split_block = null; s0 = best.SliceAsserts(best.assertion_cost / 2, true); s1 = best.SliceAsserts(best.assertion_cost / 2, false); } if (true) { List ss = new List(); ss.Add(s0.blocks[0]); ss.Add(s1.blocks[0]); try { best.SoundnessCheck(new Dictionary(), best.blocks[0], ss); } catch (System.Exception e) { Console.WriteLine(e); best.DumpDot(-1); s0.DumpDot(-2); s1.DumpDot(-3); assert false; } } if (split_stats) { s0.ComputeBestSplit(); s1.ComputeBestSplit(); Console.WriteLine(" --> {0}", s0.Stats); Console.WriteLine(" --> {0}", s1.Stats); } if (CommandLineOptions.Clo.TraceVerify) { best.Print(); } res[best_idx] = s0; res.Add(s1); } return res; } public Checker! Checker { get { assert checker != null; return checker; } } public WaitHandle ProverDone { get { assert checker != null; return checker.ProverDone; } } public void ReadOutcome(ref Outcome cur_outcome, out bool prover_failed) throws UnexpectedProverOutputException; { ProverInterface.Outcome outcome = ((!)checker).ReadOutcome(); if (CommandLineOptions.Clo.Trace && splitNo >= 0) { System.Console.WriteLine(" --> split #{0} done, [{1} s] {2}", splitNo, checker.ProverRunTime.TotalSeconds, outcome); } if (CommandLineOptions.Clo.VcsDumpSplits) { DumpDot(splitNo); } prover_failed = false; switch (outcome) { case ProverInterface.Outcome.Valid: return; case ProverInterface.Outcome.Invalid: cur_outcome = Outcome.Errors; return; case ProverInterface.Outcome.OutOfMemory: prover_failed = true; if (cur_outcome != Outcome.Errors && cur_outcome != Outcome.Inconclusive) cur_outcome = Outcome.OutOfMemory; return; case ProverInterface.Outcome.TimeOut: prover_failed = true; if (cur_outcome != Outcome.Errors && cur_outcome != Outcome.Inconclusive) cur_outcome = Outcome.TimedOut; return; case ProverInterface.Outcome.Undetermined: prover_failed = true; if (cur_outcome != Outcome.Errors) cur_outcome = Outcome.Inconclusive; return; default: assert false; } } public void BeginCheck(VerifierCallback! callback, int no, int timeout) { splitNo = no; impl.Blocks = blocks; checker = parent.FindCheckerFor(impl, timeout); Hashtable/**/! label2absy; VCExpr! vc = parent.GenerateVC(impl, out label2absy, checker); if (CommandLineOptions.Clo.vcVariety == CommandLineOptions.VCVariety.Local) { reporter = new ErrorReporterLocal(gotoCmdOrigins, label2absy, impl.Blocks, parent.incarnationOriginMap, callback); } else { reporter = new ErrorReporter(gotoCmdOrigins, label2absy, impl.Blocks, parent.incarnationOriginMap, callback); } if (CommandLineOptions.Clo.TraceVerify && no >= 0) { Console.WriteLine("-- after split #{0}", no); Print(); } string! desc = (!) impl.Name; if (no >= 0) desc += "_split" + no; checker.BeginCheck(desc, vc, reporter); } private void SoundnessCheck(Dictionary! cache, Block! orig, List! copies) { { PureCollections.Tuple t = new PureCollections.Tuple(new PureCollections.Capacity(1 + copies.Count)); int i = 0; t[i++] = orig; foreach (Block! b in copies) { t[i++] = b; } if (cache.ContainsKey(t)) { return; } cache[t] = true; } for (int i = 0; i < orig.Cmds.Length; ++i) { Cmd cmd = orig.Cmds[i]; if (cmd is AssertCmd) { int found = 0; foreach (Block! c in copies) { if (c.Cmds[i] == cmd) { found++; } } if (found == 0) { throw new System.Exception(string.Format("missing assertion: {0}({1})", cmd.tok.filename, cmd.tok.line)); } } } foreach (Block! exit in Exits(orig)) { List! newcopies = new List(); foreach (Block! c in copies) { foreach (Block! cexit in Exits(c)) { if (cexit.Label == exit.Label) { newcopies.Add(cexit); } } } if (newcopies.Count == 0) { throw new System.Exception("missing exit " + exit.Label); } SoundnessCheck(cache, exit, newcopies); } } } #endregion protected VCExpr! GenerateVC(Implementation! impl, out Hashtable/**/! label2absy, Checker! ch) { TypecheckingContext tc = new TypecheckingContext(null); impl.Typecheck(tc); label2absy = new Hashtable/**/(); VCExpr! vc; switch (CommandLineOptions.Clo.vcVariety) { case CommandLineOptions.VCVariety.Structured: vc = VCViaStructuredProgram(impl, label2absy, ch.TheoremProver.Context); break; case CommandLineOptions.VCVariety.Block: vc = FlatBlockVC(impl, label2absy, false, false, false, ch.TheoremProver.Context); break; case CommandLineOptions.VCVariety.BlockReach: vc = FlatBlockVC(impl, label2absy, false, true, false, ch.TheoremProver.Context); break; case CommandLineOptions.VCVariety.Local: vc = FlatBlockVC(impl, label2absy, true, false, false, ch.TheoremProver.Context); break; case CommandLineOptions.VCVariety.BlockNested: vc = NestedBlockVC(impl, label2absy, false, ch.TheoremProver.Context); break; case CommandLineOptions.VCVariety.BlockNestedReach: vc = NestedBlockVC(impl, label2absy, true, ch.TheoremProver.Context); break; case CommandLineOptions.VCVariety.Dag: if (((!)CommandLineOptions.Clo.TheProverFactory).SupportsDags) { vc = DagVC((!)impl.Blocks[0], label2absy, new Hashtable/**/(), ch.TheoremProver.Context); } else { vc = LetVC((!)impl.Blocks[0], label2absy, ch.TheoremProver.Context); } break; case CommandLineOptions.VCVariety.Doomed: vc = FlatBlockVC(impl, label2absy, false, false, true, ch.TheoremProver.Context); break; default: assert false; // unexpected enumeration value } return vc; } void CheckIntAttributeOnImpl(Implementation! impl, string! name, ref int val) { if (!((!)impl.Proc).CheckIntAttribute(name, ref val) || !impl.CheckIntAttribute(name, ref val)) { Console.WriteLine("ignoring ill-formed {:{0} ...} attribute on {1}, parameter should be an int", name, impl.Name); } } public override Outcome VerifyImplementation(Implementation! impl, Program! program, VerifierCallback! callback) throws UnexpectedProverOutputException; { if (impl.SkipVerification) { return Outcome.Inconclusive; // not sure about this one } callback.OnProgress("VCgen", 0, 0, 0.0); ConvertCFG2DAG(impl, program); SmokeTester smoke_tester = null; if (CommandLineOptions.Clo.SoundnessSmokeTest) { smoke_tester = new SmokeTester(this, impl, program, callback); smoke_tester.Copy(); } Hashtable/*TransferCmd->ReturnCmd*/ gotoCmdOrigins = PassifyImpl(impl, program); double max_vc_cost = CommandLineOptions.Clo.VcsMaxCost; int tmp_max_vc_cost = -1, max_splits = CommandLineOptions.Clo.VcsMaxSplits, max_kg_splits = CommandLineOptions.Clo.VcsMaxKeepGoingSplits; CheckIntAttributeOnImpl(impl, "vcs_max_cost", ref tmp_max_vc_cost); CheckIntAttributeOnImpl(impl, "vcs_max_splits", ref max_splits); CheckIntAttributeOnImpl(impl, "vcs_max_keep_going_splits", ref max_kg_splits); if (tmp_max_vc_cost >= 0) { max_vc_cost = tmp_max_vc_cost; } Outcome outcome = Outcome.Correct; int cores = CommandLineOptions.Clo.VcsCores; Stack work = new Stack(); List currently_running = new List(); ResetPredecessors(impl.Blocks); work.Push(new Split(impl.Blocks, gotoCmdOrigins, this, impl)); bool keep_going = max_kg_splits > 1; int total = 0; int no = max_splits == 1 && !keep_going ? -1 : 0; bool first_round = true; bool do_splitting = keep_going || max_splits > 1; double remaining_cost = 0.0, proven_cost = 0.0; if (do_splitting) { remaining_cost = work.Peek().Cost; } while (work.Count > 0 || currently_running.Count > 0) { bool prover_failed = false; Split! s; if (work.Count > 0 && currently_running.Count < cores) { s = work.Pop(); if (first_round && max_splits > 1) { prover_failed = true; remaining_cost -= s.Cost; } else { if (CommandLineOptions.Clo.Trace && no >= 0) { System.Console.WriteLine(" checking split {1}/{2}, {3:0.00}%, {0} ...", s.Stats, no + 1, total, 100 * proven_cost / (proven_cost + remaining_cost)); } callback.OnProgress("VCprove", no < 0 ? 0 : no, total, proven_cost / (remaining_cost + proven_cost)); s.BeginCheck(callback, no, (keep_going && s.LastChance) ? CommandLineOptions.Clo.VcsFinalAssertTimeout : keep_going ? CommandLineOptions.Clo.VcsKeepGoingTimeout : CommandLineOptions.Clo.ProverKillTime); no++; currently_running.Add(s); } } else { WaitHandle[] handles = new WaitHandle[currently_running.Count]; for (int i = 0; i < currently_running.Count; ++i) { handles[i] = currently_running[i].ProverDone; } int index = WaitHandle.WaitAny(handles); s = currently_running[index]; currently_running.RemoveAt(index); if (do_splitting) { remaining_cost -= s.Cost; } s.ReadOutcome(ref outcome, out prover_failed); if (do_splitting) { if (prover_failed) { // even if the prover fails, we have learned something, i.e., it is // annoying to watch Boogie say Timeout, 0.00% a couple of times proven_cost += s.Cost / 100; } else { proven_cost += s.Cost; } } callback.OnProgress("VCprove", no < 0 ? 0 : no, total, proven_cost / (remaining_cost + proven_cost)); if (prover_failed && !first_round && s.LastChance) { string! msg = "some timeout"; if (s.reporter != null && s.reporter.resourceExceededMessage != null) { msg = s.reporter.resourceExceededMessage; } callback.OnCounterexample(s.ToCounterexample(), msg); outcome = Outcome.Errors; break; } assert prover_failed || outcome == Outcome.Correct || outcome == Outcome.Errors; } if (prover_failed) { int splits = first_round && max_splits > 1 ? max_splits : max_kg_splits; if (splits > 1) { List tmp = Split.DoSplit(s, max_vc_cost, splits); max_vc_cost = 1.0; // for future first_round = false; //tmp.Sort(new Comparison(Split.Compare)); foreach (Split! a in tmp) { work.Push(a); total++; remaining_cost += a.Cost; } if (outcome != Outcome.Errors) { outcome = Outcome.Correct; } } else { assert outcome != Outcome.Correct; if (outcome == Outcome.TimedOut) { string! msg = "some timeout"; if (s.reporter != null && s.reporter.resourceExceededMessage != null) { msg = s.reporter.resourceExceededMessage; } callback.OnTimeout(msg); } else if (outcome == Outcome.OutOfMemory) { string! msg = "out of memory"; if (s.reporter != null && s.reporter.resourceExceededMessage != null) { msg = s.reporter.resourceExceededMessage; } callback.OnOutOfMemory(msg); } break; } } } if (outcome == Outcome.Correct && smoke_tester != null) { smoke_tester.Test(); } callback.OnProgress("done", 0, 0, 1.0); return outcome; } public class ErrorReporter : ProverInterface.ErrorHandler { Hashtable/*TransferCmd->ReturnCmd*/! gotoCmdOrigins; Hashtable/**/! label2absy; List! blocks; protected Dictionary! incarnationOriginMap; protected VerifierCallback! callback; internal string? resourceExceededMessage; static System.IO.TextWriter? modelWriter; public static TextWriter! ModelWriter { get { if (ErrorReporter.modelWriter == null) ErrorReporter.modelWriter = CommandLineOptions.Clo.PrintErrorModelFile == null ? Console.Out : new StreamWriter(CommandLineOptions.Clo.PrintErrorModelFile, false); return ErrorReporter.modelWriter; } } public ErrorReporter(Hashtable/*TransferCmd->ReturnCmd*/! gotoCmdOrigins, Hashtable/**/! label2absy, List! blocks, Dictionary! incarnationOriginMap, VerifierCallback! callback) { this.gotoCmdOrigins = gotoCmdOrigins; this.label2absy = label2absy; this.blocks = blocks; this.incarnationOriginMap = incarnationOriginMap; this.callback = callback; // base(); } public override void OnModel(IList! labels, ErrorModel errModel) { if (CommandLineOptions.Clo.PrintErrorModel >= 1 && errModel != null) { errModel.Print(ErrorReporter.ModelWriter); ErrorReporter.ModelWriter.Flush(); } Hashtable traceNodes = new Hashtable(); foreach (string! s in labels) { Absy! absy =Label2Absy(s); if (traceNodes.ContainsKey(absy)) System.Console.WriteLine("Warning: duplicate label: " + s + " read while tracing nodes"); else traceNodes.Add(absy, null); } BlockSeq! trace = new BlockSeq(); Block! entryBlock = (!) this.blocks[0]; assert traceNodes.Contains(entryBlock); trace.Add(entryBlock); Counterexample newCounterexample = TraceCounterexample(entryBlock, traceNodes, trace, errModel, incarnationOriginMap); if (newCounterexample == null) return; #region Map passive program errors back to original program errors ReturnCounterexample returnExample = newCounterexample as ReturnCounterexample; if (returnExample != null) { foreach (Block! b in returnExample.Trace) { assume b.TransferCmd != null; ReturnCmd cmd = (ReturnCmd) gotoCmdOrigins[b.TransferCmd]; if (cmd != null) { returnExample.FailingReturn = cmd; break; } } } #endregion callback.OnCounterexample(newCounterexample, null); } public override Absy! Label2Absy(string! label) { int id = int.Parse(label); return (Absy!) label2absy[id]; } public override void OnResourceExceeded(string! msg) { resourceExceededMessage = msg; } public override void OnProverWarning(string! msg) { callback.OnWarning(msg); } } public class ErrorReporterLocal : ErrorReporter { public ErrorReporterLocal(Hashtable/*TransferCmd->ReturnCmd*/! gotoCmdOrigins, Hashtable/**/! label2absy, List! blocks, Dictionary! incarnationOriginMap, VerifierCallback! callback) { base(gotoCmdOrigins, label2absy, blocks, incarnationOriginMap, callback); // here for aesthetic purposes } public override void OnModel(IList! labels, ErrorModel errModel) { // We ignore the error model here for enhanced error message purposes. // It is only printed to the command line. if (CommandLineOptions.Clo.PrintErrorModel >= 1 && errModel != null) { if (CommandLineOptions.Clo.PrintErrorModelFile != null) { errModel.Print(ErrorReporter.ModelWriter); ErrorReporter.ModelWriter.Flush(); } } List traceNodes = new List(); List assertNodes = new List(); foreach (string! s in labels) { Absy node = Label2Absy(s); if (node is Block) { Block b = (Block)node; traceNodes.Add(b); } else { AssertCmd a = (AssertCmd)node; assertNodes.Add(a); } } assert assertNodes.Count > 0; assert traceNodes.Count == assertNodes.Count; foreach (AssertCmd a in assertNodes) { // find the corresponding Block (assertNodes.Count is likely to be 1, or small in any case, so just do a linear search here) foreach (Block b in traceNodes) { if (b.Cmds.Has(a)) { BlockSeq trace = new BlockSeq(); trace.Add(b); Counterexample newCounterexample = AssertCmdToCounterexample(a, (!)b.TransferCmd, trace, errModel, incarnationOriginMap); callback.OnCounterexample(newCounterexample, null); goto NEXT_ASSERT; } } assert false; // there was no block that contains the assert NEXT_ASSERT: {} } } } protected void ConvertCFG2DAG(Implementation! impl, Program! program) { impl.PruneUnreachableBlocks(); // This is needed for VCVariety.BlockNested, and is otherwise just an optimization current_impl = impl; variable2SequenceNumber = new Hashtable/*Variable -> int*/(); incarnationOriginMap = new Dictionary(); #region Debug Tracing if (CommandLineOptions.Clo.TraceVerify) { Console.WriteLine("original implementation"); EmitImpl(impl, false); } #endregion #region Debug Tracing if (CommandLineOptions.Clo.TraceVerify) { Console.WriteLine("after desugaring sugared commands like procedure calls"); EmitImpl(impl, true); } #endregion ComputePredecessors(impl.Blocks); #region Convert program CFG into a DAG #region Use the graph library to figure out where the (natural) loops are #region Create the graph by adding the source node and each edge Graph! g = GraphFromImpl(impl); #endregion g.ComputeLoops(); // this is the call that does all of the processing if (!g.Reducible) { throw new VCGenException("Irreducible flow graphs are unsupported."); } #endregion #region Cut the backedges, push assert/assume statements from loop header into predecessors, change them all into assume statements at top of loop, introduce havoc statements foreach (Block! header in (!) g.Headers) { IDictionary backEdgeNodes = new Dictionary(); foreach (Block! b in (!) g.BackEdgeNodes(header)) { backEdgeNodes.Add(b, null); } #region Find the (possibly empty) prefix of assert commands in the header, replace each assert with an assume of the same condition CmdSeq prefixOfPredicateCmdsInit = new CmdSeq(); CmdSeq prefixOfPredicateCmdsMaintained = new CmdSeq(); for (int i = 0, n = header.Cmds.Length; i < n; i++) { PredicateCmd a = header.Cmds[i] as PredicateCmd; if (a != null) { if (a is AssertCmd) { Bpl.AssertCmd c = (AssertCmd) a; Bpl.AssertCmd b = new Bpl.LoopInitAssertCmd(c.tok, c.Expr); b.ErrorData = c.ErrorData; prefixOfPredicateCmdsInit.Add(b); b = new Bpl.LoopInvMaintainedAssertCmd(c.tok, c.Expr); b.ErrorData = c.ErrorData; prefixOfPredicateCmdsMaintained.Add(b); header.Cmds[i] = new AssumeCmd(c.tok,c.Expr); } else { assert a is AssumeCmd; if (Bpl.CommandLineOptions.Clo.AlwaysAssumeFreeLoopInvariants) { // Usually, "free" stuff, like free loop invariants (and the assume statements // that stand for such loop invariants) are ignored on the checking side. This // command-line option changes that behavior to always assume the conditions. prefixOfPredicateCmdsInit.Add(a); prefixOfPredicateCmdsMaintained.Add(a); } } } else if ( header.Cmds[i] is CommentCmd ) { // ignore } else { break; // stop when an assignment statement (or any other non-predicate cmd) is encountered } } #endregion #region Copy the prefix of predicate commands into each predecessor. Do this *before* cutting the backedge!! for ( int predIndex = 0, n = header.Predecessors.Length; predIndex < n; predIndex++ ) { Block! pred = (!)header.Predecessors[predIndex]; // Create a block between header and pred for the predicate commands if header has more than one successor // or if pred is a back edge node GotoCmd gotocmd = pred.TransferCmd as GotoCmd; if ((backEdgeNodes.ContainsKey(pred)) || (gotocmd != null && gotocmd.labelNames != null && gotocmd.labelNames.Length > 1)) { Block! newBlock = CreateBlockBetween(predIndex, header); impl.Blocks.Add(newBlock); // if pred is a back edge node, then now newBlock is the back edge node if (backEdgeNodes.ContainsKey(pred)) { backEdgeNodes.Remove(pred); backEdgeNodes.Add(newBlock,null); } pred = newBlock; } // Add the predicate commands if (backEdgeNodes.ContainsKey(pred)){ pred.Cmds.AddRange(prefixOfPredicateCmdsMaintained); } else { pred.Cmds.AddRange(prefixOfPredicateCmdsInit); } } #endregion #region Cut the back edge foreach (Block! backEdgeNode in (!)backEdgeNodes.Keys) { Debug.Assert(backEdgeNode.TransferCmd is GotoCmd,"An node was identified as the source for a backedge, but it does not have a goto command."); GotoCmd gtc = backEdgeNode.TransferCmd as GotoCmd; if (gtc != null && gtc.labelTargets != null && gtc.labelTargets.Length > 1 ) { // then remove the backedge by removing the target block from the list of gotos BlockSeq remainingTargets = new BlockSeq(); StringSeq remainingLabels = new StringSeq(); assume gtc.labelNames != null; for (int i = 0, n = gtc.labelTargets.Length; i < n; i++) { if ( gtc.labelTargets[i] != header ) { remainingTargets.Add(gtc.labelTargets[i]); remainingLabels.Add(gtc.labelNames[i]); } } gtc.labelTargets = remainingTargets; gtc.labelNames = remainingLabels; } else { // This backedge is the only out-going edge from this node. // Add an "assume false" statement to the end of the statements // inside of the block and change the goto command to a return command. AssumeCmd ac = new AssumeCmd(Token.NoToken,Expr.False); backEdgeNode.Cmds.Add(ac); backEdgeNode.TransferCmd = new ReturnCmd(Token.NoToken); } #region Remove the backedge node from the list of predecessor nodes in the header BlockSeq newPreds = new BlockSeq(); foreach ( Block p in header.Predecessors ) { if ( p != backEdgeNode ) newPreds.Add(p); } header.Predecessors = newPreds; #endregion } #endregion #region Collect all variables that are assigned to in all of the natural loops for which this is the header VariableSeq varsToHavoc = new VariableSeq(); foreach (Block! backEdgeNode in (!) g.BackEdgeNodes(header)) { foreach ( Block! b in g.NaturalLoops(header,backEdgeNode) ) { foreach ( Cmd! c in b.Cmds ) { c.AddAssignedVariables(varsToHavoc); } } } IdentifierExprSeq havocExprs = new IdentifierExprSeq(); foreach ( Variable! v in varsToHavoc ) { IdentifierExpr ie = new IdentifierExpr(Token.NoToken, v); if(!havocExprs.Has(ie)) havocExprs.Add(ie); } // pass the token of the enclosing loop header to the HavocCmd so we can reconstruct // the source location for this later on HavocCmd hc = new HavocCmd(header.tok,havocExprs); CmdSeq newCmds = new CmdSeq(); newCmds.Add(hc); foreach ( Cmd c in header.Cmds ) { newCmds.Add(c); } header.Cmds = newCmds; #endregion } #endregion #endregion Convert program CFG into a DAG #region Debug Tracing if (CommandLineOptions.Clo.TraceVerify) { Console.WriteLine("after conversion into a DAG"); EmitImpl(impl, true); } #endregion } protected Hashtable/*TransferCmd->ReturnCmd*/! PassifyImpl(Implementation! impl, Program! program) { Hashtable/*TransferCmd->ReturnCmd*/ gotoCmdOrigins = new Hashtable/*TransferCmd->ReturnCmd*/(); Block/*?*/ exitBlock = GenerateUnifiedExit(impl, gotoCmdOrigins); #region Debug Tracing if (CommandLineOptions.Clo.TraceVerify) { Console.WriteLine("after creating a unified exit block"); EmitImpl(impl, true); } #endregion #region Insert pre- and post-conditions and where clauses as assume and assert statements { CmdSeq cc = new CmdSeq(); // where clauses of global variables foreach (Declaration d in program.TopLevelDeclarations) { GlobalVariable gvar = d as GlobalVariable; if (gvar != null && gvar.TypedIdent.WhereExpr != null) { Cmd c = new AssumeCmd(gvar.tok, gvar.TypedIdent.WhereExpr); cc.Add(c); } } // where clauses of in- and out-parameters cc.AddRange(GetParamWhereClauses(impl)); // where clauses of local variables foreach (Variable! lvar in impl.LocVars) { if (lvar.TypedIdent.WhereExpr != null) { Cmd c = new AssumeCmd(lvar.tok, lvar.TypedIdent.WhereExpr); cc.Add(c); } } InjectPreconditions(impl); //cc.AddRange(GetPre(impl)); Block! entryBlock = (!) impl.Blocks[0]; cc.AddRange(entryBlock.Cmds); entryBlock.Cmds = cc; InjectPostConditions(impl,exitBlock,gotoCmdOrigins); //CmdSeq! post = GetPost(impl); //exitBlock.Cmds.AddRange(post); } #endregion #region Debug Tracing if (CommandLineOptions.Clo.TraceVerify) { Console.WriteLine("after inserting pre- and post-conditions"); EmitImpl(impl, true); } #endregion AddBlocksBetween(impl); #region Debug Tracing if (CommandLineOptions.Clo.TraceVerify) { Console.WriteLine("after adding empty blocks before all blocks with more than one predecessor"); EmitImpl(impl, true); } #endregion Convert2PassiveCmd(impl); #region Peep-hole optimizations if (CommandLineOptions.Clo.RemoveEmptyBlocks){ #region Get rid of empty blocks { Block! entryBlock = (!) impl.Blocks[0]; RemoveEmptyBlocks(entryBlock); impl.PruneUnreachableBlocks(); } #endregion Get rid of empty blocks #region Debug Tracing if (CommandLineOptions.Clo.TraceVerify) { Console.WriteLine("after peep-hole optimizations"); EmitImpl(impl, true); } #endregion } #endregion Peep-hole optimizations // #region Constant Folding // #endregion // #region Debug Tracing // if (CommandLineOptions.Clo.TraceVerify) // { // Console.WriteLine("after constant folding"); // EmitImpl(impl, true); // } // #endregion return gotoCmdOrigins; } static Counterexample TraceCounterexample(Block! b, Hashtable! traceNodes, BlockSeq! trace, ErrorModel errModel, Dictionary! incarnationOriginMap) { // After translation, all potential errors come from asserts. CmdSeq! cmds = b.Cmds; TransferCmd! transferCmd = (!)b.TransferCmd; for (int i = 0; i < cmds.Length; i++) { Cmd! cmd = (!) cmds[i]; // Skip if 'cmd' not contained in the trace or not an assert if (!(cmd is AssertCmd) || !traceNodes.Contains(cmd)) continue; return AssertCmdToCounterexample((AssertCmd)cmd, transferCmd, trace, errModel, incarnationOriginMap); } GotoCmd gotoCmd = transferCmd as GotoCmd; if (gotoCmd != null) { foreach (Block! bb in (!)gotoCmd.labelTargets) { if (traceNodes.Contains(bb)){ trace.Add(bb); return TraceCounterexample(bb, traceNodes, trace, errModel, incarnationOriginMap); } } } return null; // Debug.Fail("Could not find failing node."); // throw new Microsoft.Contracts.AssertException(); } static void /*return printable error!*/ ApplyEnhancedErrorPrintingStrategy (Bpl.Expr! expr, Hashtable /*Variable -> Expr*/! incarnationMap, MiningStrategy errorDataEnhanced, ErrorModel! errModel, Dictionary! exprToPrintableValue, List! relatedInformation, bool printInternalStateDumpOnce, Dictionary! incarnationOriginMap) { if (errorDataEnhanced is ListOfMiningStrategies) { ListOfMiningStrategies loms = (ListOfMiningStrategies) errorDataEnhanced; List! l = loms.msList; for (int i = 0; i < l.Count; i++) { MiningStrategy ms = l[i]; if (ms != null) { ApplyEnhancedErrorPrintingStrategy(expr, incarnationMap, l[i], errModel, exprToPrintableValue, relatedInformation, false, incarnationOriginMap); } } } else if (errorDataEnhanced is EEDTemplate /*EDEverySubExpr*/) { EEDTemplate eedT = (EEDTemplate) errorDataEnhanced; string reason = eedT.reason; List listOfExprs = eedT.exprList; if (listOfExprs != null) { List holeFillers = new List(); for (int i = 0; i < listOfExprs.Count; i++) { bool alreadySet = false; foreach (KeyValuePair kvp in exprToPrintableValue) { Bpl.Expr! e = kvp.Key; Bpl.Expr! f = listOfExprs[i]; // the strings are compared instead of the actual expressions because // the expressions might not be identical, but their print-out strings will be if (e.ToString() == f.ToString()) { object o = kvp.Value; if (o != null) { holeFillers.Add(o.ToString()); alreadySet = true; break; } } } if (!alreadySet) { // no information about that Expression found, so put in holeFillers.Add(""); } } reason = FormatReasonString(reason, holeFillers); } if (reason != null) { relatedInformation.Add("(related information): "+reason); } } else { // define new templates here! } if (printInternalStateDumpOnce) { ComputeAndTreatHeapSuccessions(incarnationMap, errModel, incarnationOriginMap, relatedInformation); // default action: print all values! foreach (KeyValuePair kvp in exprToPrintableValue) { object o = kvp.Value; if (o != null) { // We do not want to print LiteralExprs because that gives things like 0 == 0. // If both arguments to the string.Format are the same it is also useless, // as that would print e.g. $a == $a. if (!(kvp.Key is LiteralExpr)&& kvp.Key.ToString() != o.ToString()) { string boogieExpr; // check whether we are handling BPL or SSC input if (CommandLineOptions.Clo.RunningBoogieOnSsc) { boogieExpr = Helpers.PrettyPrintBplExpr(kvp.Key); } else { boogieExpr = kvp.Key.ToString(); } relatedInformation.Add("(internal state dump): "+string.Format("{0} == {1}", boogieExpr, o)); } } } } } static void ComputeAndTreatHeapSuccessions(System.Collections.Hashtable! incarnationMap, ErrorModel! errModel, Dictionary! incarnationOriginMap, List! relatedInformation) { List heapSuccList = ComputeHeapSuccessions(incarnationMap, errModel); TreatHeapSuccessions(heapSuccList, incarnationMap, errModel, incarnationOriginMap, relatedInformation); } static List ComputeHeapSuccessions(System.Collections.Hashtable! incarnationMap, ErrorModel! errModel) { // find the heap variable Variable heap = null; ICollection ic = incarnationMap.Keys; foreach (object o in ic) { if (o is GlobalVariable) { GlobalVariable gv = (GlobalVariable) o; if (gv.Name == "$Heap") { heap = gv; } } } List heapIdSuccession = new List(); if (heap == null) { // without knowing the name of the current heap we cannot create a heap succession! } else { object oHeap = incarnationMap[heap]; if (oHeap != null) { string currentHeap = oHeap.ToString(); int currentHeapId; if (errModel.identifierToPartition.TryGetValue(currentHeap, out currentHeapId)) { while (currentHeapId != -1) { if (!heapIdSuccession.Contains(currentHeapId)) { heapIdSuccession.Add(currentHeapId); currentHeapId = ComputePredecessorHeapId(currentHeapId, errModel); } else { // looping behavior, just stop here and do not add this value (again!) break; } } } } } if (heapIdSuccession.Count > 0) { int heapId = heapIdSuccession[heapIdSuccession.Count-1]; List strl = errModel.partitionToIdentifiers[heapId]; if (strl != null && strl.Contains("$Heap")) { // we have a proper succession of heaps that starts with $Heap return heapIdSuccession; } else { // no proper heap succession, not starting with $Heap! return null; } } else { // no heap succession found because either the $Heap does not have a current incarnation // or because (unlikely!) the model is somehow messed up return null; } } static int ComputePredecessorHeapId(int id, ErrorModel! errModel) { //check "$HeapSucc" and "store2" functions: List heapSuccPredIdList = new List(); List> heapSuccFunc; errModel.definedFunctions.TryGetValue("$HeapSucc", out heapSuccFunc); if (heapSuccFunc != null) { foreach (List heapSuccFuncDef in heapSuccFunc) { // do not look at the else case of the function def, so check .Count if (heapSuccFuncDef != null && heapSuccFuncDef.Count == 3 && heapSuccFuncDef[1] == id) { // make sure each predecessor is put into the list at most once if (!heapSuccPredIdList.Contains(heapSuccFuncDef[0])) { heapSuccPredIdList.Add(heapSuccFuncDef[0]); } } } } List store2PredIdList = new List();; List> store2Func; errModel.definedFunctions.TryGetValue("store2", out store2Func); if (store2Func != null) { foreach (List store2FuncDef in store2Func) { // do not look at the else case of the function def, so check .Count if (store2FuncDef != null && store2FuncDef.Count == 5 && store2FuncDef[4] == id) { // make sure each predecessor is put into the list at most once if (!store2PredIdList.Contains(store2FuncDef[0])) { store2PredIdList.Add(store2FuncDef[0]); } } } } if (heapSuccPredIdList.Count + store2PredIdList.Count > 0) { if (store2PredIdList.Count == 1) { return store2PredIdList[0]; } else if (store2PredIdList.Count == 0) { if (heapSuccPredIdList.Count == 1) { return heapSuccPredIdList[0]; } else { //(heapSuccPredIdList.Count > 1) if (heapSuccPredIdList.Count == 2) { // if one of the 2 is a self-loop, take the other! if (heapSuccPredIdList[0] == id) { return heapSuccPredIdList[1]; } else if (heapSuccPredIdList[1] == id) { return heapSuccPredIdList[0]; } else { //no self-loop, two different predecessors, cannot choose return -1; } } else { // at least 3 different predecessors available, one of them could be a self-loop, but // we cannot choose between the other 2 (or more) candidates return -1; } } } else { // more than one result in the succession coming from store2, no way // to decide which is right, end here return -1; } } else { // no predecessor found return -1; } } static void TreatHeapSuccessions (List heapSuccessionList, System.Collections.Hashtable! incarnationMap, ErrorModel! errModel, Dictionary! incarnationOriginMap, List! relatedInformation) { if (heapSuccessionList == null) { // empty list of heap successions, nothing we can do! return; } // primarily look for $o and $f (with skolem-id stuff) and then look where they were last changed! // find the o and f variables Variable dollarO = null; Variable dollarF = null; ICollection ic = incarnationMap.Keys; foreach (object o in ic) { if (o is BoundVariable) { BoundVariable bv = (BoundVariable) o; if (bv.Name == "$o") { dollarO = bv; } else if (bv.Name == "$f") { dollarF = bv; } } } if (dollarO == null || dollarF == null) { // without knowing the name of the current incarnation of $Heap, $o and $f we don't do anything here } else { object objO = incarnationMap[dollarO]; object objF = incarnationMap[dollarF]; if (objO != null && objF != null) { int zidO = errModel.identifierToPartition[objO.ToString()]; int zidF = errModel.identifierToPartition[objF.ToString()]; List> select2Func = null; if (errModel.definedFunctions.TryGetValue("select2", out select2Func) && select2Func != null) { // check for all changes to $o.$f! List heapsChangedOFZid = new List(); int oldValueZid = -1; int newValueZid = -1; for (int i = 0; i < heapSuccessionList.Count; i++) { bool foundValue = false; foreach (List f in select2Func) { if (f != null && f.Count == 4 && f[0] == heapSuccessionList[i] && f[1] == zidO && f[2] == zidF) { newValueZid = f[3]; foundValue = true; break; } } if (!foundValue) { // get default of the function once Leo&Nikolaj have changed it so the default is type correct // for now treat it as a -1 ! // the last element of select2Func is the else case, it has only 1 element, so grab that: // newValueZid = (select2Func[select2Func.Count-1])[0]; newValueZid = -1; } if (oldValueZid != newValueZid) { // there was a change here, record that in the list: if (oldValueZid != -1) { // don't record a change at the "initial" location, which refers to the $Heap in // its current incarnation, and is marked by the oldValueZid being uninitialized heapsChangedOFZid.Add(heapSuccessionList[i-1]); } oldValueZid = newValueZid; } } foreach (int id in heapsChangedOFZid) { //get the heap name out of the errModel for this zid: List l = errModel.partitionToIdentifiers[id]; List heaps = new List(); if (l!=null) { foreach (string s in l) { if (s.StartsWith("$Heap")) { heaps.Add(s); } } } // easy case first: if (heaps.Count == 1) { string heapName = heaps[0]; // we have a string with the name of the heap, but we need to get the // source location out of a map that uses Incarnations! ICollection incOrgMKeys = incarnationOriginMap.Keys; foreach (Incarnation inc in incOrgMKeys) { if (inc!= null) { if (inc.Name == heapName) { Absy source = null; incarnationOriginMap.TryGetValue(inc, out source); if (source != null) { if (source is Block) { Block b = (Block) source; string fileName = b.tok.filename; if (fileName != null) { fileName = fileName.Substring(fileName.LastIndexOf('\\') + 1); } relatedInformation.Add("(related information): Changed $o.$f here: " + fileName + "(" + b.tok.line + "," + b.tok.col + ")"); } else if (source is Cmd) { Cmd c = (Cmd) source; string fileName = c.tok.filename; if (fileName != null) { fileName = fileName.Substring(fileName.LastIndexOf('\\') + 1); } relatedInformation.Add("(related information) Changed $o.$f here: " + fileName + "(" + c.tok.line + "," + c.tok.col + ")"); } else { assert false; } } } } } } else { // more involved! best use some of the above code and try to synchronize joint parts // here there is more than one "$Heap@i" in the partition, check if they all agree on one // source location or maybe if some of them are joins (i.e. blocks) that should be ignored } } } } } } static string FormatReasonString (string reason, List holeFillers) { if (holeFillers != null) { // in case all elements of holeFillers are "" we can not say anything useful // so just say nothing and return null bool allUnknown = true; foreach (string s in holeFillers) { if (s != "") { allUnknown = false; break; } } if (allUnknown) { return null; } string[] a = holeFillers.ToArray(); reason = string.Format(reason, a); } return reason; } static object ValueFromZID (ErrorModel! errModel, int id) { return ValueFromZID(errModel, id, null); } static object ValueFromZID (ErrorModel! errModel, int id, string searchForAlternate) { object o = errModel.partitionToValue[id]; if (o != null) { return o; } else { // more elaborate scheme to find something better, as in: look at the identifiers that // this partition maps to, or similar things! //treatment for 'null': int idForNull = -1; if (errModel.valueToPartition.TryGetValue("nullObject", out idForNull) && idForNull == id) { return "nullObject"; } string returnStr = null; // "good identifiers" if there is no value found are 'unique consts' or // '$in' parameters; '$in' parameters are treated, unclear how to get 'unique const' info List identifiers = errModel.partitionToIdentifiers[id]; if (identifiers != null) { foreach (string s in identifiers) { //$in parameters are (more) interesting than other identifiers, return the // first one found if (s.EndsWith("$in")) { returnStr = s; break; } } } // try to get mappings from one identifier to another if there are exactly // two identifiers in the partition, where one of them is the identifier for which // we search for alternate encodings (third parameter of the method) [or an incarnation // of such an identifier] if (returnStr == null && searchForAlternate != null && identifiers != null && identifiers.Count == 2) { if (identifiers[0] == searchForAlternate || identifiers[0].StartsWith(searchForAlternate + ".sk.")) { returnStr = identifiers[1]; } else if (identifiers[1] == searchForAlternate || identifiers[1].StartsWith(searchForAlternate + ".sk.")) { returnStr = identifiers[0]; } } if (returnStr != null) { return Helpers.BeautifyBplString(returnStr); } return null; } } static int TreatInterpretedFunction(string! functionName, List! zargs, ErrorModel! errModel) { if (zargs.Count != 2) { //all interpreted functions are binary, so there have to be exactly two arguments return -1; } else { object arg0 = ValueFromZID(errModel, zargs[0]); object arg1 = ValueFromZID(errModel, zargs[1]); if (arg0 is BigNum && arg1 is BigNum) { BigNum arg0i = (BigNum)arg0; BigNum arg1i = (BigNum)arg1; BigNum result; if (functionName == "+") { result = arg0i + arg1i; } else if (functionName == "-") { result = arg0i - arg1i; } else /*if (functionName == "*")*/ { result = arg0i * arg1i; } int returnId = -1; if (errModel.valueToPartition.TryGetValue(result, out returnId)) { return returnId; } else { return -1; } } else { //both arguments need to be integers for this to work! return -1; } } } static int TreatFunction (string! functionName, List! zargs, bool undefined, ErrorModel! errModel) { List> functionDef; if ((!errModel.definedFunctions.TryGetValue(functionName, out functionDef) && functionName != "+" && functionName != "-" && functionName != "*") || undefined) { // no fitting function found or one of the arguments is undefined return -1; } else { if (functionName == "+" || functionName == "-" || functionName == "*") { return TreatInterpretedFunction(functionName, zargs, errModel); } assert functionDef != null; foreach (List pWiseF in functionDef) { assert pWiseF != null; // else case in the function definition: if (pWiseF.Count == 1) { return pWiseF[0]; } // number of arguments is exactly the right number assert zargs.Count == pWiseF.Count - 1; if (forall{int i in (0: zargs.Count); zargs[i] == pWiseF[i]}) { return pWiseF[pWiseF.Count - 1]; } } // all functions should have an 'else ->' case defined, therefore this should be // unreachable code! assert false; } } //returned int is zID static int GetValuesFromModel (Bpl.Expr! expr, Hashtable /*Variable -> Expr*/! incarnationMap, ErrorModel! errModel, Dictionary! exprToPrintableValue) modifies exprToPrintableValue.*; { // call GetValuesFromModel on all proper subexpressions, returning their value, // so they only have to be computed once! if (expr is LiteralExpr) { // nothing needs to be added to the exprToPrintableValue map, because e.g. 0 -> 0 is not interesting object o = ((LiteralExpr) expr).Val; if (o == null) { o = "nullObject"; } int idForExprVal; if (errModel.valueToPartition.TryGetValue(o, out idForExprVal)) { return idForExprVal; } else { return -1; } } else if (expr is IdentifierExpr) { // if the expression expr is in the incarnation map, then use its incarnation, // otherwise just use the actual expression string s = ((IdentifierExpr) expr).Name; object o = null; Variable v = ((IdentifierExpr) expr).Decl; if (v != null && incarnationMap.ContainsKey(v)) { if (incarnationMap[v] is IdentifierExpr!) { s = ((IdentifierExpr!) incarnationMap[v]).Name; } else if (incarnationMap[v] is LiteralExpr!) { o = ((LiteralExpr!) incarnationMap[v]).Val; } } // if o is not null, then we got a LiteralExpression, that needs separate treatment if (o == null) { // if the expression (respectively its incarnation) is mapped to some partition // then return that id, else return the error code -1 if (errModel.identifierToPartition.ContainsKey(s)) { int i = errModel.identifierToPartition[s]; // if the key is already in the map we can assume that it is the same map we would // get now and thus just ignore it if (!exprToPrintableValue.ContainsKey(expr)) { exprToPrintableValue.Add(expr, ValueFromZID(errModel, i, ((IdentifierExpr) expr).Name)); } return i; } else { return -1; } } else if (errModel.valueToPartition.ContainsKey(o)) { int i = errModel.valueToPartition[o]; if (!exprToPrintableValue.ContainsKey(expr)) exprToPrintableValue.Add(expr, ValueFromZID(errModel, i)); return i; } else { return -1; } } else if (expr is Bpl.NAryExpr) { Bpl.NAryExpr e = (Bpl.NAryExpr)expr; List zargs = new List(); bool undefined = false; // do the recursion first foreach (Expr argument in ((NAryExpr) expr).Args) { int zid = -1; if (argument != null) { zid = GetValuesFromModel(argument, incarnationMap, errModel, exprToPrintableValue); } // if one of the arguments is 'undefined' then return -1 ('noZid') for this // but make sure the recursion is complete first1 if (zid == -1) { undefined = true; } zargs.Add(zid); } IAppliable! fun = e.Fun; string functionName = fun.FunctionName; // PR: convert to select1, select2, etc in case of a map? // same as IndexedExpr: int id = TreatFunction(functionName, zargs, undefined, errModel); if (id != -1 && !exprToPrintableValue.ContainsKey(expr)) { exprToPrintableValue.Add(expr, ValueFromZID(errModel, id)); } return id; } else if (expr is Bpl.OldExpr) { //Bpl.OldExpr e = (Bpl.OldExpr)expr; // We do not know which heap is the old heap and what the latest state change was, // therefore we cannot return anything useful here! return -1; } else if (expr is Bpl.QuantifierExpr) { Bpl.QuantifierExpr q = (Bpl.QuantifierExpr)expr; for (int i = 0; i < q.Dummies.Length; i++) { Bpl.Variable v = q.Dummies[i]; if (v != null) { // add to the incarnation map a connection between the bound variable v // of the quantifier and its skolemized incarnation, if available, // i.e., search through the list of identifiers in the model and look for // v.sk.(q.SkolemId), only pick those that are directly associated to a value // DISCLAIMER: of course it is very well possible that one of these incarnations // could be used without actually having a value, but it seems better to pick those // with a value, that is they are more likely to contribute useful information to // the output List quantVarIncarnationList = new List(); List incarnationZidList = new List(); int numberOfNonNullValueIncarnations = 0; for (int j = 0; j < errModel.partitionToIdentifiers.Count; j++){ List pti = errModel.partitionToIdentifiers[j]; if (pti != null) { for (int k = 0; k < pti.Count; k++) { // look for v.sk.(q.SkolemId) // if there is more than one look at if there is exactly one with a non-null value // associated, see above explanation if (pti[k].StartsWith(v + ".sk." + q.SkolemId) && errModel.partitionToValue[errModel.identifierToPartition[pti[k]]] != null) { quantVarIncarnationList.Add(new Bpl.IdentifierExpr(Bpl.Token.NoToken, pti[k], new Bpl.UnresolvedTypeIdentifier(Token.NoToken, "TName"))); incarnationZidList.Add(j); if (errModel.partitionToValue[errModel.identifierToPartition[pti[k]]] != null) { numberOfNonNullValueIncarnations++; } } } } } // only one such variable found, associate it with v if (quantVarIncarnationList.Count == 1) { incarnationMap[v] = quantVarIncarnationList[0]; } else if (quantVarIncarnationList.Count > 1 && numberOfNonNullValueIncarnations == 1) { // if there are multiple candidate incarnations and exactly one of them has a value // we can pick that one; otherwise it is not clear how to pick one out of multiple // incarnations without a value or out of multiple incarnations with a value associated for (int n = 0; n < incarnationZidList.Count; n++) { if (errModel.partitionToValue[incarnationZidList[n]] != null) { // quantVarIncarnationList and incarnationZidList are indexed in lockstep, so if // for the associated zid the partitionToValue map is non-null then that is the one // thus distinguished incarnation we want to put into the incarnationMap incarnationMap[v] = quantVarIncarnationList[n]; break; } } } } } // generate the value of the body but do not return that outside GetValuesFromModel(q.Body, incarnationMap, errModel, exprToPrintableValue); // the quantifier cannot contribute any one value to the rest of the // expression, thus just return -1 return -1; } else if (expr is Bpl.BvExtractExpr) { Bpl.BvExtractExpr ex = (Bpl.BvExtractExpr) expr; Bpl.Expr e0 = ex.Bitvector; Bpl.Expr e1 = new LiteralExpr(Token.NoToken, BigNum.FromInt(ex.Start)); Bpl.Expr e2 = new LiteralExpr(Token.NoToken, BigNum.FromInt(ex.End)); string functionName = "$bv_extract"; List zargs = new List(); bool undefined = false; int zid = -1; zid = GetValuesFromModel(e0, incarnationMap, errModel, exprToPrintableValue); if (zid == -1) { undefined = true; } zargs.Add(zid); zid = -1; zid = GetValuesFromModel(e1, incarnationMap, errModel, exprToPrintableValue); if (zid == -1) { undefined = true; } zargs.Add(zid); zid = -1; zid = GetValuesFromModel(e2, incarnationMap, errModel, exprToPrintableValue); if (zid == -1) { undefined = true; } zargs.Add(zid); //same as NAryExpr: int id = TreatFunction(functionName, zargs, undefined, errModel); if (id != -1 && !exprToPrintableValue.ContainsKey(expr)) { exprToPrintableValue.Add(expr, ValueFromZID(errModel, id)); } return id; } else if (expr is Bpl.BvConcatExpr) { // see comment above Bpl.BvConcatExpr bvc = (Bpl.BvConcatExpr) expr; string functionName = "$bv_concat"; List zargs = new List(); bool undefined = false; int zid = -1; zid = GetValuesFromModel(bvc.E0, incarnationMap, errModel, exprToPrintableValue); if (zid == -1) { undefined = true; } zargs.Add(zid); zid = -1; zid = GetValuesFromModel(bvc.E0, incarnationMap, errModel, exprToPrintableValue); if (zid == -1) { undefined = true; } zargs.Add(zid); //same as NAryExpr: int id = TreatFunction(functionName, zargs, undefined, errModel); if (id != -1 && !exprToPrintableValue.ContainsKey(expr)) { exprToPrintableValue.Add(expr, ValueFromZID(errModel, id)); } return id; } else { assert false; // unexpected Bpl.Expr } return -1; } static Counterexample! AssertCmdToCounterexample (AssertCmd! cmd, TransferCmd! transferCmd, BlockSeq! trace, ErrorModel errModel, Dictionary! incarnationOriginMap) { List! relatedInformation = new List(); if (CommandLineOptions.Clo.EnhancedErrorMessages == 1) { if (cmd.OrigExpr != null && cmd.IncarnationMap != null && errModel != null) { // get all possible information first Dictionary exprToPrintableValue = new Dictionary(); GetValuesFromModel(cmd.OrigExpr, cmd.IncarnationMap, errModel, exprToPrintableValue); // then apply the strategies ApplyEnhancedErrorPrintingStrategy(cmd.OrigExpr, cmd.IncarnationMap, cmd.ErrorDataEnhanced, errModel, exprToPrintableValue, relatedInformation, true, incarnationOriginMap); } } // See if it is a special assert inserted in translation if (cmd is AssertRequiresCmd) { AssertRequiresCmd! assertCmd = (AssertRequiresCmd)cmd; CallCounterexample cc = new CallCounterexample(trace, assertCmd.Call, assertCmd.Requires); cc.relatedInformation = relatedInformation; return cc; } else if (cmd is AssertEnsuresCmd) { AssertEnsuresCmd! assertCmd = (AssertEnsuresCmd)cmd; ReturnCounterexample rc = new ReturnCounterexample(trace, transferCmd, assertCmd.Ensures); rc.relatedInformation = relatedInformation; return rc; } else { AssertCounterexample ac = new AssertCounterexample(trace, (AssertCmd)cmd); ac.relatedInformation = relatedInformation; return ac; } } // static void EmitImpl(Implementation! impl, bool printDesugarings) { // int oldPrintUnstructured = CommandLineOptions.Clo.PrintUnstructured; // CommandLineOptions.Clo.PrintUnstructured = 2; // print only the unstructured program // bool oldPrintDesugaringSetting = CommandLineOptions.Clo.PrintDesugarings; // CommandLineOptions.Clo.PrintDesugarings = printDesugarings; // impl.Emit(new TokenTextWriter("", Console.Out, false), 0); // CommandLineOptions.Clo.PrintDesugarings = oldPrintDesugaringSetting; // CommandLineOptions.Clo.PrintUnstructured = oldPrintUnstructured; // } static VCExpr! LetVC(Block! startBlock, Hashtable/**/! label2absy, ProverContext! proverCtxt) { Hashtable/**/! blockVariables = new Hashtable/**/(); List! bindings = new List(); VCExpr startCorrect = LetVC(startBlock, label2absy, blockVariables, bindings, proverCtxt); return proverCtxt.ExprGen.Let(bindings, startCorrect); } static VCExpr! LetVC(Block! block, Hashtable/**/! label2absy, Hashtable/**/! blockVariables, List! bindings, ProverContext! proverCtxt) { VCExpressionGenerator! gen = proverCtxt.ExprGen; VCExprVar v = (VCExprVar)blockVariables[block]; if (v == null) { /* * For block A (= block), generate: * LET_binding A_correct = wp(A_body, (/\ S \in Successors(A) :: S_correct)) * with the side effect of adding the let bindings to "bindings" for any * successor not yet visited. */ VCExpr SuccCorrect; GotoCmd gotocmd = block.TransferCmd as GotoCmd; if (gotocmd == null) { SuccCorrect = VCExpressionGenerator.True; } else { assert gotocmd.labelTargets != null; List SuccCorrectVars = new List(gotocmd.labelTargets.Length); foreach (Block! successor in gotocmd.labelTargets) { VCExpr s = LetVC(successor, label2absy, blockVariables, bindings, proverCtxt); SuccCorrectVars.Add(s); } SuccCorrect = gen.NAry(VCExpressionGenerator.AndOp, SuccCorrectVars); } VCContext context = new VCContext(label2absy, proverCtxt); VCExpr vc = Wlp.Block(block, SuccCorrect, context); v = gen.Variable(block.Label + "_correct", Bpl.Type.Bool); bindings.Add(gen.LetBinding(v, vc)); blockVariables.Add(block, v); } return v; } static VCExpr! DagVC(Block! block, Hashtable/**/! label2absy, Hashtable/**/! blockEquations, ProverContext! proverCtxt) { VCExpressionGenerator! gen = proverCtxt.ExprGen; VCExpr vc = (VCExpr)blockEquations[block]; if (vc != null) { return vc; } /* * For block A (= block), generate: * wp(A_body, (/\ S \in Successors(A) :: DagVC(S))) */ VCExpr SuccCorrect = null; GotoCmd gotocmd = block.TransferCmd as GotoCmd; if (gotocmd != null) { foreach (Block! successor in (!)gotocmd.labelTargets) { VCExpr c = DagVC(successor, label2absy, blockEquations, proverCtxt); SuccCorrect = SuccCorrect == null ? c : gen.And(SuccCorrect, c); } } if (SuccCorrect == null) { SuccCorrect = VCExpressionGenerator.True; } VCContext context = new VCContext(label2absy, proverCtxt); vc = Wlp.Block(block, SuccCorrect, context); // gen.MarkAsSharedFormula(vc); PR: don't know yet what to do with this guy blockEquations.Add(block, vc); return vc; } static VCExpr! FlatBlockVC(Implementation! impl, Hashtable/**/! label2absy, bool local, bool reach, bool doomed, ProverContext! proverCtxt) requires local ==> !reach; // "reach" must be false for local { VCExpressionGenerator! gen = proverCtxt.ExprGen; Hashtable/* Block --> VCExprVar */ BlkCorrect = BlockVariableMap(impl.Blocks, "_correct", gen); Hashtable/* Block --> VCExprVar */ BlkReached = reach ? BlockVariableMap(impl.Blocks, "_reached", gen) : null; List blocks = impl.Blocks; // block sorting is now done on the VCExpr // if (!local && ((!)CommandLineOptions.Clo.TheProverFactory).NeedsBlockSorting) { // blocks = SortBlocks(blocks); // } VCExpr proofObligation; if (!local) { proofObligation = (VCExprVar!)BlkCorrect[impl.Blocks[0]]; } else { List conjuncts = new List(blocks.Count); foreach (Block! b in blocks) { VCExpr v = (VCExprVar!)BlkCorrect[b]; conjuncts.Add(v); } proofObligation = gen.NAry(VCExpressionGenerator.AndOp, conjuncts); } VCContext! context = new VCContext(label2absy, proverCtxt); List programSemantics = new List(blocks.Count); foreach (Block! b in blocks) { /* * In block mode, * For a return block A, generate: * A_correct <== wp(A_body, true) [post-condition has been translated into an assert] * For all other blocks, generate: * A_correct <== wp(A_body, (/\ S \in Successors(A) :: S_correct)) * * In doomed mode, proceed as in block mode, except for a return block A, generate: * A_correct <== wp(A_body, false) [post-condition has been translated into an assert] * * In block reach mode, the wp(A_body,...) in the equations above change to: * A_reached ==> wp(A_body,...) * and the conjunction above changes to: * (/\ S \in Successors(A) :: S_correct \/ (\/ T \in Successors(A) && T != S :: T_reached)) * * In local mode, generate: * A_correct <== wp(A_body, true) */ VCExpr! SuccCorrect; if (local) { SuccCorrect = VCExpressionGenerator.True; } else { SuccCorrect = SuccessorsCorrect(b, BlkCorrect, BlkReached, doomed, gen); } VCExpr wlp = Wlp.Block(b, SuccCorrect, context); if (BlkReached != null) { wlp = gen.Implies((VCExprVar!)BlkReached[b], wlp); } VCExprVar okVar = (VCExprVar!)BlkCorrect[b]; VCExprLetBinding binding = gen.LetBinding(okVar, wlp); programSemantics.Add(binding); } return gen.Let(programSemantics, proofObligation); } private static Hashtable/* Block --> VCExprVar */! BlockVariableMap(List! blocks, string! suffix, Microsoft.Boogie.VCExpressionGenerator! gen) { Hashtable/* Block --> VCExprVar */ map = new Hashtable/* Block --> (Let)Variable */(); foreach (Block! b in blocks) { VCExprVar! v = gen.Variable(b.Label+suffix, Bpl.Type.Bool); map.Add(b, v); } return map; } private static VCExpr! SuccessorsCorrect( Block! b, Hashtable/* Block --> VCExprVar */! BlkCorrect, Hashtable/* Block --> VCExprVar */ BlkReached, bool doomed, Microsoft.Boogie.VCExpressionGenerator! gen) { VCExpr SuccCorrect = null; GotoCmd gotocmd = b.TransferCmd as GotoCmd; if (gotocmd != null) { foreach (Block! successor in (!)gotocmd.labelTargets) { // c := S_correct VCExpr c = (VCExprVar!)BlkCorrect[successor]; if (BlkReached != null) { // c := S_correct \/ Sibling0_reached \/ Sibling1_reached \/ ...; foreach (Block! successorSibling in gotocmd.labelTargets) { if (successorSibling != successor) { c = gen.Or(c, (VCExprVar!)BlkReached[successorSibling]); } } } SuccCorrect = SuccCorrect == null ? c : gen.And(SuccCorrect, c); } } if (SuccCorrect == null) { return VCExpressionGenerator.True; } else if (doomed) { return VCExpressionGenerator.False; } else { return SuccCorrect; } } static VCExpr! NestedBlockVC(Implementation! impl, Hashtable/**/! label2absy, bool reach, ProverContext! proverCtxt) requires impl.Blocks.Count != 0; { VCExpressionGenerator! gen = proverCtxt.ExprGen; Graph! g = GraphFromImpl(impl); Hashtable/* Block --> VCExprVar */ BlkCorrect = BlockVariableMap(impl.Blocks, "_correct", gen); Hashtable/* Block --> VCExprVar */ BlkReached = reach ? BlockVariableMap(impl.Blocks, "_reached", gen) : null; Block! startBlock = (!) impl.Blocks[0]; VCExpr proofObligation = (VCExprVar!)BlkCorrect[startBlock]; VCContext! context = new VCContext(label2absy, proverCtxt); Hashtable/*Block->int*/ totalOrder = new Hashtable/*Block->int*/(); { List blocks = impl.Blocks; // block sorting is now done on the VCExpr // if (((!)CommandLineOptions.Clo.TheProverFactory).NeedsBlockSorting) { // blocks = SortBlocks(blocks); // } int i = 0; foreach (Block b in blocks) { totalOrder[b] = i; i++; } } VCExprLetBinding programSemantics = NestedBlockEquation((!)impl.Blocks[0], BlkCorrect, BlkReached, totalOrder, context, g, gen); List ps = new List(1); ps.Add(programSemantics); return gen.Let(ps, proofObligation); } private static VCExprLetBinding! NestedBlockEquation(Block! b, Hashtable/*Block-->VCExprVar*/! BlkCorrect, Hashtable/*Block-->VCExprVar*/ BlkReached, Hashtable/*Block->int*/! totalOrder, VCContext! context, Graph! g, Microsoft.Boogie.VCExpressionGenerator! gen) { /* * For a block b, return: * LET_BINDING b_correct = wp(b_body, X) * where X is: * LET (THOSE d \in DirectDominates(b) :: BlockEquation(d)) * IN (/\ s \in Successors(b) :: s_correct) * * When the VC-expression generator does not support LET expresions, this * will eventually turn into: * b_correct <== wp(b_body, X) * where X is: * (/\ s \in Successors(b) :: s_correct) * <== * (/\ d \in DirectDominatees(b) :: BlockEquation(d)) * * In both cases above, if BlkReached is non-null, then the wp expression * is instead: * b_reached ==> wp(b_body, X) */ VCExpr! SuccCorrect = SuccessorsCorrect(b, BlkCorrect, null, false, gen); List bindings = new List(); foreach (Block! dominee in GetSortedBlocksImmediatelyDominatedBy(g, b, totalOrder)) { VCExprLetBinding c = NestedBlockEquation(dominee, BlkCorrect, BlkReached, totalOrder, context, g, gen); bindings.Add(c); } VCExpr X = gen.Let(bindings, SuccCorrect); VCExpr wlp = Wlp.Block(b, X, context); if (BlkReached != null) { wlp = gen.Implies((VCExprVar!)BlkReached[b], wlp); } VCExprVar okVar = (VCExprVar!)BlkCorrect[b]; return gen.LetBinding(okVar, wlp); } /// /// Returns a list of g.ImmediatelyDominatedBy(b), but in a sorted order, hoping to steer around /// the nondeterminism problems we've been seeing by using just this call. /// static List! GetSortedBlocksImmediatelyDominatedBy(Graph! g, Block! b, Hashtable/*Block->int*/! totalOrder) { List list = new List(); foreach (Block! dominee in g.ImmediatelyDominatedBy(b)) { list.Add(dominee); } list.Sort(new Comparison(delegate (Block! x, Block! y) {return (int)(!)totalOrder[x] - (int)(!)totalOrder[y];} )); return list; } static VCExpr! VCViaStructuredProgram (Implementation! impl, Hashtable/**/! label2absy, ProverContext! proverCtxt) { #region Convert block structure back to a "regular expression" RE! r = DAG2RE.Transform((!)impl.Blocks[0]); #endregion VCContext! ctxt = new VCContext(label2absy, proverCtxt); #region Send wlp(program,true) to Simplify return Wlp.RegExpr(r, VCExpressionGenerator.True, ctxt); #endregion } /// /// Remove the empty blocks reachable from the block. /// It changes the visiting state of the blocks, so that if you want to visit again the blocks, you have to reset them... /// static BlockSeq! RemoveEmptyBlocks(Block! b) { assert b.TraversingStatus == Block.VisitState.ToVisit; BlockSeq retVal = removeEmptyBlocksWorker(b, true); return retVal; } private static BlockSeq! removeEmptyBlocksWorker(Block! b, bool startNode) { BlockSeq bs = new BlockSeq(); GotoCmd gtc = b.TransferCmd as GotoCmd; // b has no successors if (gtc == null || gtc.labelTargets == null || gtc.labelTargets.Length == 0) { if (b.Cmds.Length != 0){ // only empty blocks are removed... bs.Add(b); } return bs; } else if(b.TraversingStatus == Block.VisitState.ToVisit) // if b has some successors and we have not seen it so far... { b.TraversingStatus = Block.VisitState.BeingVisited; // recursively call this method on each successor // merge result into a *set* of blocks Dictionary mergedSuccessors = new Dictionary(); foreach (Block! dest in gtc.labelTargets){ BlockSeq! ys = removeEmptyBlocksWorker(dest, false); foreach (Block successor in ys){ if (!mergedSuccessors.ContainsKey(successor)) mergedSuccessors.Add(successor,true); } } b.TraversingStatus = Block.VisitState.AlreadyVisited; BlockSeq setOfSuccessors = new BlockSeq(); foreach (Block d in mergedSuccessors.Keys) setOfSuccessors.Add(d); if (b.Cmds.Length == 0 && !startNode) return setOfSuccessors; // otherwise, update the list of successors of b to be the blocks in setOfSuccessors gtc.labelTargets = setOfSuccessors; gtc.labelNames = new StringSeq(); foreach (Block! d in setOfSuccessors) gtc.labelNames.Add(d.Label); return new BlockSeq(b); } else // b has some successors, but we are already visiting it, or we have already visited it... { return new BlockSeq(b); } } static Graph! GraphFromImpl(Implementation! impl) { Graph! g = new Graph(); g.AddSource((!)impl.Blocks[0]); // there is always at least one node in the graph foreach (Block! b in impl.Blocks) { GotoCmd gtc = b.TransferCmd as GotoCmd; if (gtc != null) { foreach (Block! dest in (!)gtc.labelTargets) { g.AddEdge(b,dest); } } } return g; } static void DumpMap(Hashtable /*Variable->Expr*/! map) { foreach (DictionaryEntry de in map) { Variable! v = (Variable!)de.Key; Expr! e = (Expr!)de.Value; Console.Write(" "); v.Emit(new TokenTextWriter("", Console.Out, false), 0); Console.Write(" --> "); e.Emit(new TokenTextWriter("", Console.Out, false)); Console.WriteLine(); } } } }