//----------------------------------------------------------------------------- // // Copyright (C) Microsoft Corporation. All Rights Reserved. // //----------------------------------------------------------------------------- using Microsoft.Contracts; namespace Microsoft.Boogie.AbstractInterpretation { using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using Microsoft.Boogie; using Cci = System.Compiler; using AI = Microsoft.AbstractInterpretationFramework; using Microsoft.Contracts; /// /// Defines invariant propagation methods over ASTs for an abstract interpretation policy. /// public class AbstractionEngine { private AI.Lattice! lattice; private Queue! procWorkItems; //PM: changed to generic queue private Queue/**/! callReturnWorkItems; private Cci.IRelation/**/ procedureImplementations; private class ProcedureWorkItem { [Rep] // KRML: this doesn't seem like the right designation to me; but I'm not sure what is public Procedure! Proc; public int Index; // pre state is Impl.Summary[Index] invariant 0 <= Index && Index < Proc.Summary.Count; public ProcedureWorkItem ([Captured] Procedure! p, AI.Lattice.Element! v, AI.Lattice! lattice) ensures p == Proc; { this.Proc = p; p.Summary.Add(new ProcedureSummaryEntry(lattice, v)); this.Index = p.Summary.Count - 1; // KRML: axioms are now in place: assume 0 <= Index && Index < Proc.Summary.Count; //PM: Should not be necessary once axioms for pure methods are there } } private readonly static AI.Logger! log = new AI.Logger("Engine"); public AbstractionEngine (AI.Lattice! lattice) { assume log.IsExposable; //PM: One would need static class invariants to prove this property expose(log) { log.Enabled = AI.Lattice.LogSwitch; } this.lattice = lattice; this.procWorkItems = new Queue(); this.callReturnWorkItems = new Queue(); // base(); } private Cci.IGraphNavigator ComputeCallGraph (Program! program) ensures this.procedureImplementations != null; { // Since implementations call procedures (impl. signatures) // rather than directly calling other implementations, we first // need to compute which implementations implement which // procedures and remember which implementations call which // procedures. Cci.IMutableRelation/**/ callsProcedure = new Cci.Relation(); Cci.IMutableRelation/**/ implementsProcedure = new Cci.Relation(); this.procedureImplementations = implementsProcedure; // ArrayList publics = new ArrayList(); // publicImpls = publics; foreach (Declaration member in program.TopLevelDeclarations) { Implementation impl = member as Implementation; if (impl != null) { implementsProcedure.Add(impl.Proc, impl); // if (impl.IsPublic) { publics.Add(impl); } // PR: what does "IsPublic" stand for? foreach (Block block in impl.Blocks) { foreach (Cmd cmd in block.Cmds) { CallCmd call = cmd as CallCmd; if (call != null) { callsProcedure.Add(impl, call.Proc); } } } } } // Now compute a graph from implementations to implementations. Cci.GraphBuilder callGraph = new Cci.GraphBuilder(); IEnumerable callerImpls = callsProcedure.GetKeys(); assume callerImpls != null; // because of non-generic collection foreach (Implementation caller in callerImpls) { IEnumerable callerProcs = callsProcedure.GetValues(caller); assume callerProcs != null; // because of non-generic collection foreach (Procedure callee in callerProcs) { IEnumerable calleeImpls = implementsProcedure.GetValues(callee); assume calleeImpls != null; // because of non-generic collection foreach (Implementation calleeImpl in calleeImpls) { callGraph.AddEdge(caller, calleeImpl); } } } return callGraph; } #if OLDCODE public void ComputeImplementationInvariants (Implementation impl) { // process each procedure implementation by recursively processing the first (entry) block... ComputeBlockInvariants(impl.Blocks[0], lattice.Top); // compute the procedure invariant by joining all terminal block invariants... AI.Lattice.Element post = lattice.Bottom; foreach (Block block in impl.Blocks) { if (block.TransferCmd is ReturnCmd) { AI.Lattice.Element postValue = block.PostInvariantBuckets[invariantIndex]; Debug.Assert(postValue != null); post = post.Join(postValue); } } impl.PostInvariant = post; // Now update the procedure to reflect the new properties // of this implementation. if (impl.Proc.PreInvariant <= impl.PreInvariant) { // Strengthen the precondition impl.Proc.PreInvariant = impl.PreInvariant; foreach (Implementation otherImpl in this.procedureImplementations.GetValues(impl.Proc)) { if (otherImpl == impl) { continue; } if (otherImpl.PreInvariant <= impl.Proc.PreInvariant) { // If another implementation of the same procedure has // a weaker precondition, re-do it with the stronger // precondition. otherImpl.PreInvariant = impl.Proc.PreInvariant; this.implWorkItems.Enqueue(otherImpl); } } } } #endif #if NOTYET public void ComputeSccInvariants (IEnumerable/**/ implementations) { Debug.Assert(this.implWorkItems.Count == 0); // no work left over from last SCC foreach (Implementation impl in implementations) { impl.AbstractFunction = AbstractFunction.Empty.WithPair(this.lattice.Bottom, this.lattice.Bottom); this.implWorkItems.Enqueue(impl); } while (this.implWorkItems.Count > 0) // until fixed point reached { Implementation impl = (Implementation)this.implWorkItems.Dequeue(); } } #endif public AI.Lattice.Element! ApplyProcedureSummary (CallCmd! call, Implementation! caller, AI.Lattice.Element! knownAtCallSite, CallSite! callSite) requires call.Proc != null; { Procedure! proc = call.Proc; // NOTE: Here, we count on the fact that an implementation's variables // are distinct from an implementation's procedure's variables. So, even for // a recursive implementation, we're free to use the implementation's // procedure's input parameters as though they were temporary local variables. // // Hence, in the program // procedure Foo (i:int); implementation Foo (i':int) { ...call Foo(i'+1)... } // we can treat the recursive call as // i:=i'+1; call Foo(i); // where the notation i' means a variable with the same (string) name as i, // but a different identity. AI.Lattice.Element! releventToCall = knownAtCallSite; for (int i=0; i; assume call.Ins[i] != null; //PM: this can be fixed once VariableSeq is replaced by List; Expr equality = Expr.Eq(Expr.Ident( (!) proc.InParams[i]), (!) call.Ins[i]); releventToCall = lattice.Constrain(releventToCall, equality.IExpr); } foreach (Variable! var in caller.LocVars) { releventToCall = this.lattice.Eliminate(releventToCall, var); } ProcedureSummary! summary = proc.Summary; ProcedureSummaryEntry applicableEntry = null; for (int i=0; i /// Compute the invariants for the program using the underlying abstract domain /// public void ComputeProgramInvariants (Program! program) { #if NOT_YET Cci.IGraphNavigator callGraph = #endif callGraph = this.ComputeCallGraph(program); assert this.procedureImplementations != null; Cci.IRelation! procedureImplementations = this.procedureImplementations; #if NOT_YET IEnumerable/**/ sccs = StronglyConnectedComponent.ConstructSCCs(publicImpls, callGraph); IList/**/ sortedSccs = GraphUtil.TopologicallySortComponentGraph(sccs); // Go bottom-up through the SCCs of the call graph foreach (IStronglyConnectedComponent scc in sortedSccs) { this.ComputeSccInvariants(scc.Nodes); } #endif AI.Lattice.Element! initialElement = this.lattice.Top; // Gather all the axioms to create the initial lattice element // Differently stated, it is the \alpha from axioms (i.e. first order formulae) to the underlyng abstract domain foreach (Declaration decl in program.TopLevelDeclarations) { Axiom ax = decl as Axiom; if (ax != null) { initialElement = this.lattice.Constrain(initialElement, ax.Expr.IExpr); } } // propagate over all procedures... foreach (Declaration decl in program.TopLevelDeclarations) { Procedure proc = decl as Procedure; if (proc != null) { this.procWorkItems.Enqueue(new ProcedureWorkItem(proc, initialElement, this.lattice)); } } // analyze all the procedures... while (this.procWorkItems.Count + this.callReturnWorkItems.Count > 0) { while (this.procWorkItems.Count > 0) { ProcedureWorkItem workItem = this.procWorkItems.Dequeue(); ProcedureSummaryEntry summaryEntry = (!) workItem.Proc.Summary[workItem.Index]; if (((!) procedureImplementations.GetValues(workItem.Proc)).Count == 0) { // This procedure has no given implementations. We therefore treat the procedure // according to its specification only. if (!CommandLineOptions.Clo.IntraproceduralInfer) { AI.Lattice.Element post = summaryEntry.OnEntry; // BUGBUG. Here, we should process "post" according to the requires, modifies, ensures // specification of the procedure, including any OLD expressions in the postcondition. AI.Lattice.Element atReturn = post; if ( ! this.lattice.LowerThan(atReturn, summaryEntry.OnExit)) { // If the results of this analysis are strictly worse than // what we previous knew for the same input assumptions, // update the summary and re-do the call sites. summaryEntry.OnExit = this.lattice.Join(summaryEntry.OnExit, atReturn); foreach (CallSite callSite in summaryEntry.ReturnPoints) { this.callReturnWorkItems.Enqueue(callSite); } } } } else { // There are implementations, so do inference based on those implementations if (!CommandLineOptions.Clo.IntraproceduralInfer) { summaryEntry.OnExit = lattice.Bottom; } // For each implementation in the procedure... foreach (Implementation! impl in (!) procedureImplementations.GetValues(workItem.Proc)) { // process each procedure implementation by recursively processing the first (entry) block... ((!)impl.Blocks[0]).Lattice = lattice; ComputeBlockInvariants(impl, (!) impl.Blocks[0], summaryEntry.OnEntry); if (!CommandLineOptions.Clo.IntraproceduralInfer) { // compute the procedure invariant by joining all terminal block invariants... AI.Lattice.Element post = lattice.Bottom; foreach (Block block in impl.Blocks) { if (block.TransferCmd is ReturnCmd) { // note: if program control cannot reach this block, then postValue will be null if (block.PostInvariant != null) { post = (AI.Lattice.Element) lattice.Join(post, block.PostInvariant); } } } AI.Lattice.Element atReturn = post; foreach (Variable! var in impl.LocVars) { atReturn = this.lattice.Eliminate(atReturn, var); } foreach (Variable! var in impl.InParams) { atReturn = this.lattice.Eliminate(atReturn, var); } if ( ! this.lattice.LowerThan(atReturn, summaryEntry.OnExit)) { // If the results of this analysis are strictly worse than // what we previous knew for the same input assumptions, // update the summary and re-do the call sites. summaryEntry.OnExit = this.lattice.Join(summaryEntry.OnExit, atReturn); foreach (CallSite callSite in summaryEntry.ReturnPoints) { this.callReturnWorkItems.Enqueue(callSite); } } } } } } while (this.callReturnWorkItems.Count > 0) { CallSite callSite = (CallSite!) this.callReturnWorkItems.Dequeue(); PropagateStartingAtStatement( callSite.Impl, callSite.Block, callSite.Statement, callSite.KnownBeforeCall); } } // both queues } private static int freshVarId = 0; private static Variable! FreshVar(Boogie.Type! ty) { Variable fresh = new LocalVariable(Token.NoToken, new TypedIdent(Token.NoToken, "fresh" + freshVarId, ty)); freshVarId++; return fresh; } private delegate CallSite! MarkCallSite(AI.Lattice.Element! currentValue); /// /// Given a basic block, it propagates the abstract state at the entry point through the exit point of the block /// The implementation that owns the block /// The from where we propagate /// /// The initial value /// private void PropagateStartingAtStatement (Implementation! impl, Block! block, int statementIndex, AI.Lattice.Element! currentValue) { assume log.IsPeerConsistent; log.DbgMsg(string.Format("{0}:", block.Label)); log.DbgMsgIndent(); #region Apply the abstract transition relation to the statements in the block for (int cmdIndex = statementIndex; cmdIndex < block.Cmds.Length; cmdIndex++) { Cmd! cmd = (!) block.Cmds[cmdIndex]; // Fetch the command currentValue = Step(cmd, currentValue, impl, // Apply the transition function delegate (AI.Lattice.Element! currentValue) { return new CallSite(impl, block, cmdIndex, currentValue); } ); } block.PostInvariant = currentValue; // The invariant at the exit point of the block is that of the last statement log.DbgMsg(string.Format("pre {0}", ((!)block.PreInvariant).ToString())); log.DbgMsg(string.Format("post {0}", (block.PostInvariant).ToString())); log.DbgMsgUnindent(); #endregion #region Propagate the post-condition to the successor nodes GotoCmd @goto = block.TransferCmd as GotoCmd; if (@goto != null) { // labelTargets is non-null after calling Resolve in a prior phase. assume @goto.labelTargets != null; // For all the successors of this block, propagate the abstract state foreach (Block! succ in @goto.labelTargets) { if(impl.Blocks.Contains(succ)) { succ.Lattice = block.Lattice; // The lattice is the same // Propagate the post-abstract state of this block to the successor ComputeBlockInvariants(impl, succ, block.PostInvariant); } } } #endregion } /// /// The abstract transition relation. /// private AI.Lattice.Element! Step(Cmd! cmd, AI.Lattice.Element! pre, Implementation! impl, MarkCallSite/*?*/ callSiteMarker) { assume log.IsPeerConsistent; log.DbgMsg(string.Format("{0}", cmd)); log.DbgMsgIndent(); AI.Lattice.Element! currentValue = pre; // Case split... #region AssignCmd if (cmd is AssignCmd) { // parallel assignment // we first eliminate map assignments AssignCmd! assmt = ((AssignCmd)cmd).AsSimpleAssignCmd; //PM: Assume variables have been resolved assume forall {AssignLhs! lhs in assmt.Lhss; lhs.DeepAssignedVariable != null}; List! freshLhs = new List (); foreach (AssignLhs! lhs in assmt.Lhss) freshLhs.Add(Expr.Ident(FreshVar(((!)lhs.DeepAssignedVariable) .TypedIdent.Type))); for (int i = 0; i < freshLhs.Count; ++i) currentValue = this.lattice.Constrain(currentValue, Expr.Eq(freshLhs[i], assmt.Rhss[i]).IExpr); foreach (AssignLhs! lhs in assmt.Lhss) currentValue = this.lattice.Eliminate(currentValue, (!)lhs.DeepAssignedVariable); for (int i = 0; i < freshLhs.Count; ++i) currentValue = this.lattice.Rename(currentValue, (!)freshLhs[i].Decl, (!)assmt.Lhss[i].DeepAssignedVariable); } /* if (cmd is SimpleAssignCmd) { SimpleAssignCmd! assmt = (SimpleAssignCmd)cmd; assume assmt.Lhs.Decl != null; //PM: Assume variables have been resolved Variable! dest = assmt.Lhs.Decl; Variable! fresh = FreshVar(dest.TypedIdent.Type); IdentifierExpr newLhs = Expr.Ident(fresh); Expr equality = Expr.Eq(newLhs, assmt.Rhs); currentValue = this.lattice.Constrain(currentValue, equality.IExpr); currentValue = this.lattice.Eliminate(currentValue, dest); currentValue = this.lattice.Rename(currentValue, fresh, dest); } #endregion #region ArrayAssignCmd else if (cmd is ArrayAssignCmd) { ArrayAssignCmd assmt = (ArrayAssignCmd)cmd; assume assmt.Array.Type != null; //PM: assume that type checker has run ArrayType! arrayType = (ArrayType)assmt.Array.Type; Variable newHeapVar = FreshVar(arrayType); IdentifierExpr newHeap = Expr.Ident(newHeapVar); IdentifierExpr oldHeap = assmt.Array; assume oldHeap.Decl != null; //PM: assume that variable has been resolved // For now, we only know how to handle heaps if (arrayType.IndexType0.IsRef && arrayType.IndexType1 != null && arrayType.IndexType1.IsName) { //PM: The following assertion follows from a nontrivial invariant of ArrayAssignCmd, //PM: which we do not have yet. Therefore, we put in an assume fo now. assume assmt.Index1 != null; assert assmt.Index1 != null; // heap succession predicate Expr heapsucc = Expr.HeapSucc(oldHeap, newHeap, assmt.Index0, assmt.Index1); currentValue = this.lattice.Constrain(currentValue, heapsucc.IExpr); } else { // TODO: We can do this case as well if the heap succession array can handle non-heap arrays } // new select expression IndexedExpr newLhs = new IndexedExpr(Token.NoToken, newHeap, assmt.Index0, assmt.Index1); Expr equality = Expr.Eq(newLhs, assmt.Rhs); currentValue = this.lattice.Constrain(currentValue, equality.IExpr); currentValue = this.lattice.Eliminate(currentValue, oldHeap.Decl); currentValue = this.lattice.Rename(currentValue, newHeapVar, oldHeap.Decl); } */ #endregion #region Havoc else if (cmd is HavocCmd) { HavocCmd havoc = (HavocCmd)cmd; foreach (IdentifierExpr! id in havoc.Vars) { currentValue = this.lattice.Eliminate(currentValue, (!)id.Decl); } } #endregion #region PredicateCmd else if (cmd is PredicateCmd) { //System.Console.WriteLine("Abstract State BEFORE " + ((PredicateCmd) cmd).Expr + " : " +this.lattice.ToPredicate(currentValue)); Expr! embeddedExpr = (!)((PredicateCmd)cmd).Expr; List! conjuncts = flatConjunction(embeddedExpr); // Handle "assume P && Q" as if it was "assume P; assume Q" foreach(Expr! c in conjuncts) { currentValue = this.lattice.Constrain(currentValue, c.IExpr); } //System.Console.WriteLine("Abstract State AFTER assert/assume "+ this.lattice.ToPredicate(currentValue)); } #endregion #region CallCmd else if (cmd is CallCmd) { CallCmd call = (CallCmd)cmd; if (!CommandLineOptions.Clo.IntraproceduralInfer) { // Interprocedural analysis if (callSiteMarker == null) { throw new System.InvalidOperationException("INTERNAL ERROR: Context does not allow CallCmd."); } CallSite here = callSiteMarker(currentValue); currentValue = ApplyProcedureSummary(call, impl, currentValue, here); } else { // Intraprocedural analysis StateCmd statecmd = call.Desugaring as StateCmd; if (statecmd != null) { // Iterate the abstract transition on all the commands in the desugaring of the call foreach (Cmd! callDesug in statecmd.Cmds) { currentValue = Step(callDesug, currentValue, impl, null); } // Now, project out the local variables foreach (Variable! local in statecmd.Locals) { currentValue = this.lattice.Eliminate(currentValue, local); } } else throw new System.InvalidOperationException("INTERNAL ERROR: CallCmd does not desugar to StateCmd."); } } #endregion #region CommentCmd else if (cmd is CommentCmd) { // skip } #endregion else if (cmd is SugaredCmd) { // other sugared commands are treated like their desugaring SugaredCmd sugar = (SugaredCmd)cmd; Cmd desugaring = sugar.Desugaring; if (desugaring is StateCmd) { StateCmd statecmd = (StateCmd)desugaring; // Iterate the abstract transition on all the commands in the desugaring of the call foreach (Cmd! callDesug in statecmd.Cmds) { currentValue = Step(callDesug, currentValue, impl, null); } // Now, project out the local variables foreach (Variable! local in statecmd.Locals) { currentValue = this.lattice.Eliminate(currentValue, local); } } else { currentValue = Step(desugaring, currentValue, impl, null); } } else { assert false; // unknown command } log.DbgMsgUnindent(); return currentValue; } /// /// Flat an expresion in the form P AND Q ... AND R into a list [P, Q, ..., R] /// private List! flatConjunction(Expr! embeddedExpr) { List! retValue = new List(); NAryExpr e = embeddedExpr as NAryExpr; if(e != null && e.Fun.FunctionName.CompareTo("&&") == 0) { // if it is a conjunction foreach(Expr! arg in e.Args) { List! newConjuncts = flatConjunction(arg); retValue.AddRange(newConjuncts); } } else { retValue.Add(embeddedExpr); } return retValue; } /// /// Compute the invariants for a basic block /// The implementation the block belongs to /// The block for which we compute the invariants /// The "init" abstract state for the block /// private void ComputeBlockInvariants (Implementation! impl, Block! block, AI.Lattice.Element! incomingValue) { if (block.PreInvariant == null) // block has not yet been processed { assert block.PostInvariant == null; // To a first approximation the block is unreachable block.PreInvariant = this.lattice.Bottom; block.PostInvariant = this.lattice.Bottom; } assert block.PreInvariant != null; assert block.PostInvariant != null; #region Check if we have reached a postfixpoint if (lattice.LowerThan(incomingValue, block.PreInvariant)) { // We have reached a post-fixpoint, so we are done... #if DEBUG_PRINT System.Console.WriteLine("@@ Compared for block {0}:", block.Label); System.Console.WriteLine("@@ {0}", lattice.ToPredicate(incomingValue)); System.Console.WriteLine("@@ {0}", lattice.ToPredicate(block.PreInvariant)); System.Console.WriteLine("@@ result = True"); System.Console.WriteLine("@@ end Compare"); #endif return; } #if DEBUG_PRINT // Compute the free variables in incoming and block.PreInvariant FreeVariablesVisitor freeVarsVisitorForA = new FreeVariablesVisitor(); FreeVariablesVisitor freeVarsVisitorForB = new FreeVariablesVisitor(); lattice.ToPredicate(incomingValue).DoVisit(freeVarsVisitorForA); lattice.ToPredicate(block.PreInvariant).DoVisit(freeVarsVisitorForB); List! freeVarsOfA = freeVarsVisitorForA.FreeVariables; List! freeVarsOfB = freeVarsVisitorForB.FreeVariables; System.Console.WriteLine("@@ Compared for block {0}:", block.Label); System.Console.WriteLine("@@ Incoming: {0}", lattice.ToPredicate((!) incomingValue)); System.Console.WriteLine("@@ Free Variables : {0}", ToString(freeVarsOfA)); System.Console.WriteLine("@@ Previous: {0}", lattice.ToPredicate(block.PreInvariant)); System.Console.WriteLine("@@ Free Variables : {0}", ToString(freeVarsOfB)); System.Console.WriteLine("@@ result = False"); System.Console.WriteLine("@@ end Compare"); string operation = ""; #endif #endregion #region If it is not the case, then join or widen the incoming abstract state with the previous one if (block.widenBlock) // If the considered block is the entry point of a loop { if( block.iterations <= CommandLineOptions.Clo.StepsBeforeWidening+1) { #if DEBUG_PRINT operation = "join"; #endif block.PreInvariant = (AI.Lattice.Element) lattice.Join( block.PreInvariant, incomingValue); } else { #if DEBUG_PRINT operation = "widening"; #endif // The default is to have have a widening that perform a (approximation of) the closure of the operands, so to improve the precision // block.PreInvariant = WideningWithClosure.MorePreciseWiden(lattice, (!) block.PreInvariant, incomingValue); block.PreInvariant = (AI.Lattice.Element) lattice.Widen( block.PreInvariant, incomingValue); } block.iterations++; } else { #if DEBUG_PRINT operation = "join"; #endif block.PreInvariant = (AI.Lattice.Element) lattice.Join( block.PreInvariant, incomingValue); } #if DEBUG_PRINT System.Console.WriteLine("@@ {0} for block {1}:", operation, block.Label); System.Console.WriteLine("@@ {0}", lattice.ToPredicate(block.PreInvariant)); System.Console.WriteLine("@@ end"); #endif #endregion #region Propagate the entry abstract state through the method PropagateStartingAtStatement(impl, block, 0, (!) block.PreInvariant.Clone()); #endregion } #if DEBUG_PRINT private string! ToString(List! vars) { string s = ""; foreach(AI.IVariable! v in vars) { s += v.Name +" "; } return s; } #endif /// /// Analyze the given set of blocks. /// The set of blocks to analyze /// The initial block (from where we start the analysis /// The initial abstract state /// public void AnalyzeBlocks(ICollection! blocks, Block! entryPoint, AI.MathematicalLattice.Element! initialState) requires blocks.Contains(entryPoint); { TypeVariableSeq! dummyVarSeq = new TypeVariableSeq(); VariableSeq! dummySeq = new VariableSeq(); List blockSequence = new List(); foreach(Block! block in blocks) { blockSequence.Add(block); } Implementation dummyImplementation = new Implementation(Token.NoToken, "dummyImplementation", dummyVarSeq, dummySeq, dummySeq, dummySeq, blockSequence); ComputeBlockInvariants(dummyImplementation, entryPoint, initialState); } } // class /// /// Defines a class for building the abstract domain according to the parameters switch /// public class AbstractDomainBuilder { private AbstractDomainBuilder() { /* do nothing */ } /// /// Return a fresh instance of the abstract domain of intervals /// static public AbstractAlgebra! BuildIntervalsAbstractDomain() { AI.IQuantPropExprFactory propfactory = new BoogiePropFactory(); AI.ILinearExprFactory linearfactory = new BoogieLinearFactory(); AI.IValueExprFactory valuefactory = new BoogieValueFactory(); IComparer variableComparer = new VariableComparer(); AbstractAlgebra! retAlgebra; AI.Lattice! intervals = new AI.VariableMapLattice(propfactory, valuefactory, new AI.IntervalLattice(linearfactory), variableComparer); retAlgebra = new AbstractAlgebra(intervals, propfactory, linearfactory, null, valuefactory, null, variableComparer); return retAlgebra; } /// /// Return a fresh abstract domain, according to the parameters specified by the command line /// static public AbstractAlgebra! BuildAbstractDomain() { AbstractAlgebra! retAlgebra; AI.Lattice! returnLattice; AI.IQuantPropExprFactory propfactory = new BoogiePropFactory(); AI.ILinearExprFactory linearfactory = new BoogieLinearFactory(); AI.IIntExprFactory intfactory = new BoogieIntFactory(); AI.IValueExprFactory valuefactory = new BoogieValueFactory(); AI.INullnessFactory nullfactory = new BoogieNullnessFactory(); IComparer variableComparer = new VariableComparer(); AI.MultiLattice multilattice = new AI.MultiLattice(propfactory, valuefactory); if (CommandLineOptions.Clo.Ai.Intervals) // Intervals { multilattice.AddLattice(new AI.VariableMapLattice(propfactory, valuefactory, new AI.IntervalLattice(linearfactory), variableComparer)); } if (CommandLineOptions.Clo.Ai.Constant) // Constant propagation { multilattice.AddLattice(new AI.VariableMapLattice(propfactory, valuefactory, new AI.ConstantLattice(intfactory), variableComparer)); } if (CommandLineOptions.Clo.Ai.DynamicType) // Class types { BoogieTypeFactory typeFactory = new BoogieTypeFactory(); multilattice.AddLattice(new AI.VariableMapLattice(propfactory, valuefactory, new AI.DynamicTypeLattice(typeFactory, propfactory), variableComparer)); } if (CommandLineOptions.Clo.Ai.Nullness) // Nullness { multilattice.AddLattice(new AI.VariableMapLattice(propfactory, valuefactory, new AI.NullnessLattice(nullfactory), variableComparer)); } if (CommandLineOptions.Clo.Ai.Polyhedra) // Polyhedra { multilattice.AddLattice(new AI.PolyhedraLattice(linearfactory, propfactory)); } returnLattice = multilattice; if (CommandLineOptions.Clo.Ai.DebugStatistics) { returnLattice = new AI.StatisticsLattice(returnLattice); } returnLattice.Validate(); retAlgebra = new AbstractAlgebra(returnLattice, propfactory, linearfactory, intfactory, valuefactory, nullfactory, variableComparer); return retAlgebra; } } /// /// An Abstract Algebra is a tuple made of a Lattice and several factories /// public class AbstractAlgebra { [Peer] private AI.Lattice! lattice; [Peer] private AI.IQuantPropExprFactory propFactory; [Peer] private AI.ILinearExprFactory linearFactory; [Peer] private AI.IIntExprFactory intFactory; [Peer] private AI.IValueExprFactory valueFactory; [Peer] private AI.INullnessFactory nullFactory; [Peer] private IComparer variableComparer; public AI.Lattice! Lattice { get { return lattice; } } public AI.IQuantPropExprFactory PropositionFactory { get { return this.propFactory; } } public AI.ILinearExprFactory LinearExprFactory { get { return this.linearFactory; } } public AI.IIntExprFactory IntExprFactory { get { return this.intFactory; } } public AI.IValueExprFactory ValueFactory { get { return this.valueFactory; } } public AI.INullnessFactory NullFactory { get { return this.nullFactory; } } public IComparer VariableComparer { get { return this.variableComparer; } } [Captured] public AbstractAlgebra(AI.Lattice! lattice, AI.IQuantPropExprFactory propFactory, AI.ILinearExprFactory linearFactory, AI.IIntExprFactory intFactory, AI.IValueExprFactory valueFactory, AI.INullnessFactory nullFactory, IComparer variableComparer) requires propFactory != null ==> Owner.Same(lattice, propFactory); requires linearFactory != null ==> Owner.Same(lattice, linearFactory); requires intFactory != null ==> Owner.Same(lattice, intFactory); requires valueFactory != null ==> Owner.Same(lattice, valueFactory); requires nullFactory != null ==> Owner.Same(lattice, nullFactory); requires variableComparer != null ==> Owner.Same(lattice, variableComparer); // ensures Owner.Same(this, lattice); // KRML: { this.lattice = lattice; this.propFactory = propFactory; this.linearFactory = linearFactory; this.intFactory = intFactory; this.valueFactory = valueFactory; this.nullFactory = nullFactory; this.variableComparer = variableComparer; } } public class AbstractInterpretation { /// /// Run the abstract interpretation. /// It has two entry points. One is the RunBoogie method. The other is the CCI PlugIn /// public static void RunAbstractInterpretation(Program! program) { Helpers.ExtraTraceInformation("Starting abstract interpretation"); if(CommandLineOptions.Clo.UseAbstractInterpretation) { DateTime start = new DateTime(); // to please compiler's definite assignment rules if (CommandLineOptions.Clo.Trace) { Console.WriteLine(); Console.WriteLine("Running abstract interpretation..."); start = DateTime.Now; } WidenPoints.Compute(program); if (CommandLineOptions.Clo.Ai.AnySet) // if there is some user defined domain we override the default (= intervals) { AI.Lattice! lattice; lattice = AbstractDomainBuilder.BuildAbstractDomain().Lattice; ApplyAbstractInterpretation(program, lattice); if (CommandLineOptions.Clo.Ai.DebugStatistics) { Console.Error.WriteLine(lattice); } if (!CommandLineOptions.Clo.IntraproceduralInfer) { Procedure.ShowSummaries = true; } } else // Otherwise the default is the use of the abstract domain of intervals (useful for simple for loops) { AI.Lattice! lattice = AbstractDomainBuilder.BuildIntervalsAbstractDomain().Lattice; ApplyAbstractInterpretation(program, lattice); } program.InstrumentWithInvariants(); if (CommandLineOptions.Clo.Trace) { DateTime end = DateTime.Now; TimeSpan elapsed = end - start; Console.WriteLine(" [{0} s]", elapsed.TotalSeconds); Console.Out.Flush(); } } } static void ApplyAbstractInterpretation (Program! program, AI.Lattice! lattice) { AbstractionEngine engine = new AbstractionEngine(lattice); engine.ComputeProgramInvariants(program); callGraph = engine.CallGraph; } private static Cci.IGraphNavigator callGraph; public static Cci.IGraphNavigator CallGraph { get { return callGraph; } } } } // namespace