// Schorr-Waite algorithm in Chalice // (see Test/dafny1/SchorrWaite.dfy) class Node { var children: seq; var marked: bool; ghost var path: seq; var parent: Node; } class DSW0 { var stack: seq; var S: seq; var root: Node; function Reachable(to: Node, p:seq, from: Node): bool requires acc(p[*].children); { |p| == 0 ? to == from : (p[0] != null && to in p[0].children && Reachable(p[0], p[1..], from)) } method IterativeMark() requires acc(this.*) && acc(S[*].children) && acc(S[*].marked) && acc(S[*].path); requires root in S; requires forall n in S :: n != null && (forall ch in n.children :: ch != null && ch in S); requires forall n in S :: ! n.marked; ensures acc(this.*) && acc(S[*].children) && acc(S[*].marked) && acc(S[*].path); // graph structure is the same ensures S == old(S) && root == old(root); ensures forall n in S :: n.children == old(n.children); // all nodes reachable from root are marked ensures root.marked; ensures forall n in S :: n.marked ==> (forall ch in n.children :: ch.marked); // all marked nodes are reachable from root ensures forall n in S :: n.marked ==> (forall m in n.path :: m in S) && Reachable(n, n.path, root); { var t:Node := root; t.marked := true; stack := nil; t.path := stack; // no termination check var stop := false; while(!stop) invariant acc(this.*) && acc(S[*].children) && acc(S[*].marked) && acc(S[*].path); invariant root == old(root); invariant S == old(S); invariant root.marked; invariant t in S && t.marked && t !in stack; // stack well-formed invariant forall i in [0..|stack|] :: forall j in [i+1..|stack|] :: stack[i] != stack[j]; invariant forall n in stack :: n in S && n.marked; invariant forall i in [1..|stack|] :: stack[i-1] in stack[i].children; invariant 0 < |stack| ==> t in stack[0].children; // goal invariant forall n in S :: n.marked && n !in stack && n != t ==> (forall ch in n.children :: ch in S && ch.marked); invariant forall n in S :: n.marked ==> (forall m in n.path :: m in S) && Reachable(n, n.path, root); // preservation invariant forall n in S :: n.children == old(n.children); // termination invariant stop ==> |stack| == 0 && (forall ch in t.children :: ch.marked); { call n := PickUnmarked(t.children); if (n != null) { // push stack := [t] ++ stack; n.path := [t] ++ t.path; t := n; t.marked := true; assert Reachable(t.path[0], t.path[1..], root); // needed for limited function } else { // pop if (|stack| == 0) { stop := true; } else { t := stack[0]; stack := stack[1..]; } } } } method PickUnmarked(p: seq) returns (x: Node) requires rd(p[*].marked); requires forall n in p :: n != null; ensures rd(p[*].marked); ensures x != null ==> x in p && ! x.marked; ensures x == null ==> (forall n in p :: n.marked); { var x [(exists n in p :: !n.marked) ? (x in p && !x.marked) : (x == null)] } } class DSW1 refines DSW0 { replaces stack by acc(S[*].parent); transforms IterativeMark() { * } transforms PickUnmarked(p: seq) returns (x: Node) { replaces x by { if (|p| == 0) { x := null; } else if (! p[0].marked) { x := p[0]; } else { call x := PickUnmarked(p[1..]); } } } }