// Dafny prelude // Created 9 February 2008 by Rustan Leino. // Converted to Boogie 2 on 28 June 2008. // Copyright (c) 2008, Microsoft. type ref; const null: ref; // --------------------------------------------------------------- // -- Axiomatization of sets ------------------------------------- // --------------------------------------------------------------- type Set T = [T]bool; function Set#Empty() returns (Set T); axiom (forall o: T :: { Set#Empty()[o] } !Set#Empty()[o]); function Set#Singleton(T) returns (Set T); axiom (forall r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); axiom (forall r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); function Set#UnionOne(Set T, T) returns (Set T); axiom (forall a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } Set#UnionOne(a,x)[o] <==> o == x || a[o]); function Set#Union(Set T, Set T) returns (Set T); axiom (forall a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } Set#Union(a,b)[o] <==> a[o] || b[o]); function Set#Intersection(Set T, Set T) returns (Set T); axiom (forall a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } Set#Intersection(a,b)[o] <==> a[o] && b[o]); function Set#Difference(Set T, Set T) returns (Set T); axiom (forall a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } Set#Difference(a,b)[o] <==> a[o] && !b[o]); function Set#Subset(Set T, Set T) returns (bool); axiom(forall a: Set T, b: Set T :: { Set#Subset(a,b) } Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o])); function Set#Equal(Set T, Set T) returns (bool); axiom(forall a: Set T, b: Set T :: { Set#Equal(a,b) } Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o])); axiom(forall a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets Set#Equal(a,b) ==> a == b); function Set#Disjoint(Set T, Set T) returns (bool); axiom (forall a: Set T, b: Set T :: { Set#Disjoint(a,b) } Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o])); // --------------------------------------------------------------- // -- Axiomatization of sequences -------------------------------- // --------------------------------------------------------------- type Seq T; function Seq#Length(Seq T) returns (int); axiom (forall s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); function Seq#Empty() returns (Seq T); axiom (forall :: Seq#Length(Seq#Empty(): Seq T) == 0); axiom (forall s: Seq T :: { Seq#Length(s) } Seq#Length(s) == 0 ==> s == Seq#Empty()); function Seq#Singleton(T) returns (Seq T); axiom (forall t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); function Seq#Build(s: Seq T, index: int, val: T, newLength: int) returns (Seq T); axiom (forall s: Seq T, i: int, v: T, len: int :: { Seq#Length(Seq#Build(s,i,v,len)) } Seq#Length(Seq#Build(s,i,v,len)) == len); function Seq#Append(Seq T, Seq T) returns (Seq T); axiom (forall s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); function Seq#Index(Seq T, int) returns (T); axiom (forall t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); axiom (forall s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); axiom (forall s: Seq T, i: int, v: T, len: int, n: int :: { Seq#Index(Seq#Build(s,i,v,len),n) } (i == n ==> Seq#Index(Seq#Build(s,i,v,len),n) == v) && (i != n ==> Seq#Index(Seq#Build(s,i,v,len),n) == Seq#Index(s,n))); function Seq#Contains(Seq T, T) returns (bool); axiom (forall s: Seq T, x: T :: { Seq#Contains(s,x) } Seq#Contains(s,x) <==> (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); axiom (forall x: ref :: { Seq#Contains(Seq#Empty(), x) } !Seq#Contains(Seq#Empty(), x)); axiom (forall s0: Seq T, s1: Seq T, x: T :: { Seq#Contains(Seq#Append(s0, s1), x) } Seq#Contains(Seq#Append(s0, s1), x) <==> Seq#Contains(s0, x) || Seq#Contains(s1, x)); axiom (forall s: Seq T, i: int, v: T, len: int, x: T :: { Seq#Contains(Seq#Build(s, i, v, len), x) } Seq#Contains(Seq#Build(s, i, v, len), x) <==> x == v || Seq#Contains(s, x)); axiom (forall s: Seq T, n: int, x: T :: { Seq#Contains(Seq#Take(s, n), x) } Seq#Contains(Seq#Take(s, n), x) <==> (exists i: int :: { Seq#Index(s, i) } 0 <= i && i < n && n <= Seq#Length(s) && Seq#Index(s, i) == x)); axiom (forall s: Seq T, n: int, x: T :: { Seq#Contains(Seq#Drop(s, n), x) } Seq#Contains(Seq#Drop(s, n), x) <==> (exists i: int :: { Seq#Index(s, i) } 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); function Seq#Equal(Seq T, Seq T) returns (bool); axiom (forall s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } Seq#Equal(s0,s1) <==> Seq#Length(s0) == Seq#Length(s1) && (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); axiom(forall a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences Seq#Equal(a,b) ==> a == b); function Seq#SameUntil(Seq T, Seq T, int) returns (bool); axiom (forall s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } Seq#SameUntil(s0,s1,n) <==> (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); function Seq#Take(Seq T, howMany: int) returns (Seq T); axiom (forall s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } 0 <= n ==> (n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n) && (Seq#Length(s) < n ==> Seq#Length(Seq#Take(s,n)) == Seq#Length(s))); axiom (forall s: Seq T, n: int, j: int :: { Seq#Index(Seq#Take(s,n), j) } 0 <= j && j < n && j < Seq#Length(s) ==> Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); function Seq#Drop(Seq T, howMany: int) returns (Seq T); axiom (forall s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } 0 <= n ==> (n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n) && (Seq#Length(s) < n ==> Seq#Length(Seq#Drop(s,n)) == 0)); axiom (forall s: Seq T, n: int, j: int :: { Seq#Index(Seq#Drop(s,n), j) } 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); // --------------------------------------------------------------- // -- Boxing and unboxing ---------------------------------------- // --------------------------------------------------------------- function $Box(T) returns (ref); function $Unbox(ref) returns (T); axiom (forall x: T :: { $Box(x) } $Unbox($Box(x)) == x); // --------------------------------------------------------------- type ClassName; const unique class.int: ClassName; const unique class.bool: ClassName; const unique class.object: ClassName; const unique class.set: ClassName; const unique class.seq: ClassName; function dtype(ref) returns (ClassName); function TypeParams(ref, int) returns (ClassName); function TypeTuple(a: ClassName, b: ClassName) returns (ClassName); function TypeTupleCar(ClassName) returns (ClassName); function TypeTupleCdr(ClassName) returns (ClassName); // TypeTuple is injective in both arguments: axiom (forall a: ClassName, b: ClassName :: { TypeTuple(a,b) } TypeTupleCar(TypeTuple(a,b)) == a && TypeTupleCdr(TypeTuple(a,b)) == b); // --------------------------------------------------------------- type Field alpha; type HeapType = [ref,Field alpha]alpha; function $IsGoodHeap(HeapType) returns (bool); var $Heap: HeapType where $IsGoodHeap($Heap); const unique alloc: Field bool; function $HeapSucc(HeapType, HeapType) returns (bool); axiom (forall h: HeapType, k: HeapType :: { $HeapSucc(h,k) } $HeapSucc(h,k) ==> (forall o: ref :: { k[o,alloc] } h[o,alloc] ==> k[o,alloc]));