// Dafny prelude // Created 9 February 2008 by Rustan Leino. // Converted to Boogie 2 on 28 June 2008. // Edited sequence axioms 20 October 2009 by Alex Summers. // Copyright (c) 2008-2010, Microsoft. const $$Language$Dafny: bool; // To be recognizable to the ModelViewer as axiom $$Language$Dafny; // coming from a Dafny program. // --------------------------------------------------------------- // -- References ------------------------------------------------- // --------------------------------------------------------------- type ref; const null: ref; // --------------------------------------------------------------- // -- Axiomatization of sets ------------------------------------- // --------------------------------------------------------------- type Set T = [T]bool; function Set#Empty(): Set T; axiom (forall o: T :: { Set#Empty()[o] } !Set#Empty()[o]); function Set#Singleton(T): Set T; axiom (forall r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); axiom (forall r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); function Set#UnionOne(Set T, T): Set T; axiom (forall a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } Set#UnionOne(a,x)[o] <==> o == x || a[o]); axiom (forall a: Set T, x: T :: { Set#UnionOne(a, x) } Set#UnionOne(a, x)[x]); axiom (forall a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } a[y] ==> Set#UnionOne(a, x)[y]); function Set#Union(Set T, Set T): Set T; axiom (forall a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } Set#Union(a,b)[o] <==> a[o] || b[o]); axiom (forall a, b: Set T, y: T :: { Set#Union(a, b), a[y] } a[y] ==> Set#Union(a, b)[y]); axiom (forall a, b: Set T, y: T :: { Set#Union(a, b), b[y] } b[y] ==> Set#Union(a, b)[y]); axiom (forall a, b: Set T :: { Set#Union(a, b) } Set#Disjoint(a, b) ==> Set#Difference(Set#Union(a, b), a) == b && Set#Difference(Set#Union(a, b), b) == a); function Set#Intersection(Set T, Set T): Set T; axiom (forall a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } Set#Intersection(a,b)[o] <==> a[o] && b[o]); axiom (forall a, b: Set T :: { Set#Union(Set#Union(a, b), b) } Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); axiom (forall a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); axiom (forall a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); axiom (forall a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); function Set#Difference(Set T, Set T): Set T; axiom (forall a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } Set#Difference(a,b)[o] <==> a[o] && !b[o]); axiom (forall a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } b[y] ==> !Set#Difference(a, b)[y] ); function Set#Subset(Set T, Set T): bool; axiom(forall a: Set T, b: Set T :: { Set#Subset(a,b) } Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o])); function Set#Equal(Set T, Set T): bool; axiom(forall a: Set T, b: Set T :: { Set#Equal(a,b) } Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o])); axiom(forall a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets Set#Equal(a,b) ==> a == b); function Set#Disjoint(Set T, Set T): bool; axiom (forall a: Set T, b: Set T :: { Set#Disjoint(a,b) } Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o])); function Set#Choose(Set T, TickType): T; axiom (forall a: Set T, tick: TickType :: { Set#Choose(a, tick) } a != Set#Empty() ==> a[Set#Choose(a, tick)]); // --------------------------------------------------------------- // -- Axiomatization of multisets -------------------------------- // --------------------------------------------------------------- function Math#min(a: int, b: int): int; axiom (forall a: int, b: int :: { Math#min(a, b) } a <= b <==> Math#min(a, b) == a); axiom (forall a: int, b: int :: { Math#min(a, b) } b <= a <==> Math#min(a, b) == b); axiom (forall a: int, b: int :: { Math#min(a, b) } Math#min(a, b) == a || Math#min(a, b) == b); function Math#clip(a: int): int; axiom (forall a: int :: { Math#clip(a) } 0 <= a ==> Math#clip(a) == a); axiom (forall a: int :: { Math#clip(a) } a < 0 ==> Math#clip(a) == 0); type MultiSet T = [T]int; function $IsGoodMultiSet(ms: MultiSet T): bool; // ints are non-negative, used after havocing, and for conversion from sequences to multisets. axiom (forall ms: MultiSet T :: { $IsGoodMultiSet(ms) } $IsGoodMultiSet(ms) <==> (forall o: T :: { ms[o] } 0 <= ms[o])); function MultiSet#Empty(): MultiSet T; axiom (forall o: T :: { MultiSet#Empty()[o] } MultiSet#Empty()[o] == 0); function MultiSet#Singleton(T): MultiSet T; axiom (forall r: T, o: T :: { MultiSet#Singleton(r)[o] } (MultiSet#Singleton(r)[o] == 1 <==> r == o) && (MultiSet#Singleton(r)[o] == 0 <==> r != o)); axiom (forall r: T :: { MultiSet#Singleton(r) } MultiSet#Singleton(r) == MultiSet#UnionOne(MultiSet#Empty(), r)); function MultiSet#UnionOne(MultiSet T, T): MultiSet T; // pure containment axiom (in the original multiset or is the added element) axiom (forall a: MultiSet T, x: T, o: T :: { MultiSet#UnionOne(a,x)[o] } 0 < MultiSet#UnionOne(a,x)[o] <==> o == x || 0 < a[o]); // union-ing increases count by one axiom (forall a: MultiSet T, x: T :: { MultiSet#UnionOne(a, x) } MultiSet#UnionOne(a, x)[x] == a[x] + 1); // non-decreasing axiom (forall a: MultiSet T, x: T, y: T :: { MultiSet#UnionOne(a, x), a[y] } 0 < a[y] ==> 0 < MultiSet#UnionOne(a, x)[y]); // other elements unchanged axiom (forall a: MultiSet T, x: T, y: T :: { MultiSet#UnionOne(a, x), a[y] } x != y ==> a[y] == MultiSet#UnionOne(a, x)[y]); function MultiSet#Union(MultiSet T, MultiSet T): MultiSet T; // union-ing is the sum of the contents axiom (forall a: MultiSet T, b: MultiSet T, o: T :: { MultiSet#Union(a,b)[o] } MultiSet#Union(a,b)[o] == a[o] + b[o]); // two containment axioms axiom (forall a, b: MultiSet T, y: T :: { MultiSet#Union(a, b), a[y] } 0 < a[y] ==> 0 < MultiSet#Union(a, b)[y]); axiom (forall a, b: MultiSet T, y: T :: { MultiSet#Union(a, b), b[y] } 0 < b[y] ==> 0 < MultiSet#Union(a, b)[y]); // symmetry axiom axiom (forall a, b: MultiSet T :: { MultiSet#Union(a, b) } MultiSet#Difference(MultiSet#Union(a, b), a) == b && MultiSet#Difference(MultiSet#Union(a, b), b) == a); function MultiSet#Intersection(MultiSet T, MultiSet T): MultiSet T; axiom (forall a: MultiSet T, b: MultiSet T, o: T :: { MultiSet#Intersection(a,b)[o] } MultiSet#Intersection(a,b)[o] == Math#min(a[o], b[o])); // left and right pseudo-idempotence axiom (forall a, b: MultiSet T :: { MultiSet#Intersection(MultiSet#Intersection(a, b), b) } MultiSet#Intersection(MultiSet#Intersection(a, b), b) == MultiSet#Intersection(a, b)); axiom (forall a, b: MultiSet T :: { MultiSet#Intersection(a, MultiSet#Intersection(a, b)) } MultiSet#Intersection(a, MultiSet#Intersection(a, b)) == MultiSet#Intersection(a, b)); // multiset difference, a - b. clip() makes it positive. function MultiSet#Difference(MultiSet T, MultiSet T): MultiSet T; axiom (forall a: MultiSet T, b: MultiSet T, o: T :: { MultiSet#Difference(a,b)[o] } MultiSet#Difference(a,b)[o] == Math#clip(a[o] - b[o])); axiom (forall a, b: MultiSet T, y: T :: { MultiSet#Difference(a, b), b[y], a[y] } a[y] <= b[y] ==> MultiSet#Difference(a, b)[y] == 0 ); // multiset subset means a must have at most as many of each element as b function MultiSet#Subset(MultiSet T, MultiSet T): bool; axiom(forall a: MultiSet T, b: MultiSet T :: { MultiSet#Subset(a,b) } MultiSet#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <= b[o])); function MultiSet#Equal(MultiSet T, MultiSet T): bool; axiom(forall a: MultiSet T, b: MultiSet T :: { MultiSet#Equal(a,b) } MultiSet#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] == b[o])); // extensionality axiom for multisets axiom(forall a: MultiSet T, b: MultiSet T :: { MultiSet#Equal(a,b) } MultiSet#Equal(a,b) ==> a == b); function MultiSet#Disjoint(MultiSet T, MultiSet T): bool; axiom (forall a: MultiSet T, b: MultiSet T :: { MultiSet#Disjoint(a,b) } MultiSet#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] == 0 || b[o] == 0)); // conversion to a multiset. each element in the original set has duplicity 1. function MultiSet#FromSet(Set T): MultiSet T; axiom (forall s: Set T, a: T :: { MultiSet#FromSet(s)[a] } (MultiSet#FromSet(s)[a] == 0 <==> !s[a]) && (MultiSet#FromSet(s)[a] == 1 <==> s[a])); // conversion to a multiset, from a sequence. function MultiSet#FromSeq(Seq T): MultiSet T; // conversion produces a good map. axiom (forall s: Seq T :: { MultiSet#FromSeq(s) } $IsGoodMultiSet(MultiSet#FromSeq(s)) ); // building axiom axiom (forall s: Seq T, v: T :: { MultiSet#FromSeq(Seq#Build(s, v)) } MultiSet#FromSeq(Seq#Build(s, v)) == MultiSet#UnionOne(MultiSet#FromSeq(s), v) ); axiom (forall :: MultiSet#FromSeq(Seq#Empty(): Seq T) == MultiSet#Empty(): MultiSet T); // concatenation axiom axiom (forall a: Seq T, b: Seq T :: { MultiSet#FromSeq(Seq#Append(a, b)) } MultiSet#FromSeq(Seq#Append(a, b)) == MultiSet#Union(MultiSet#FromSeq(a), MultiSet#FromSeq(b)) ); // update axiom axiom (forall s: Seq T, i: int, v: T, x: T :: { MultiSet#FromSeq(Seq#Update(s, i, v))[x] } 0 <= i && i < Seq#Length(s) ==> MultiSet#FromSeq(Seq#Update(s, i, v))[x] == MultiSet#Union(MultiSet#Difference(MultiSet#FromSeq(s), MultiSet#Singleton(Seq#Index(s,i))), MultiSet#Singleton(v))[x] ); // i.e. MS(Update(s, i, v)) == MS(s) - {{s[i]}} + {{v}} axiom (forall s: Seq T, x: T :: { MultiSet#FromSeq(s)[x] } (exists i : int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && x == Seq#Index(s,i)) <==> 0 < MultiSet#FromSeq(s)[x] ); // --------------------------------------------------------------- // -- Axiomatization of sequences -------------------------------- // --------------------------------------------------------------- type Seq T; function Seq#Length(Seq T): int; axiom (forall s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); function Seq#Empty(): Seq T; axiom (forall :: Seq#Length(Seq#Empty(): Seq T) == 0); axiom (forall s: Seq T :: { Seq#Length(s) } Seq#Length(s) == 0 ==> s == Seq#Empty()); function Seq#Singleton(T): Seq T; axiom (forall t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); function Seq#Build(s: Seq T, val: T): Seq T; axiom (forall s: Seq T, v: T :: { Seq#Length(Seq#Build(s,v)) } Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); axiom (forall s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); function Seq#Append(Seq T, Seq T): Seq T; axiom (forall s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); function Seq#Index(Seq T, int): T; axiom (forall t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); axiom (forall s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); function Seq#Update(Seq T, int, T): Seq T; axiom (forall s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); axiom (forall s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } 0 <= n && n < Seq#Length(s) ==> (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); function Seq#Contains(Seq T, T): bool; axiom (forall s: Seq T, x: T :: { Seq#Contains(s,x) } Seq#Contains(s,x) <==> (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); axiom (forall x: ref :: { Seq#Contains(Seq#Empty(), x) } !Seq#Contains(Seq#Empty(), x)); axiom (forall s0: Seq T, s1: Seq T, x: T :: { Seq#Contains(Seq#Append(s0, s1), x) } Seq#Contains(Seq#Append(s0, s1), x) <==> Seq#Contains(s0, x) || Seq#Contains(s1, x)); axiom (forall s: Seq T, v: T, x: T :: { Seq#Contains(Seq#Build(s, v), x) } Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); axiom (forall s: Seq T, n: int, x: T :: { Seq#Contains(Seq#Take(s, n), x) } Seq#Contains(Seq#Take(s, n), x) <==> (exists i: int :: { Seq#Index(s, i) } 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); axiom (forall s: Seq T, n: int, x: T :: { Seq#Contains(Seq#Drop(s, n), x) } Seq#Contains(Seq#Drop(s, n), x) <==> (exists i: int :: { Seq#Index(s, i) } 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); function Seq#Equal(Seq T, Seq T): bool; axiom (forall s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } Seq#Equal(s0,s1) <==> Seq#Length(s0) == Seq#Length(s1) && (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); axiom (forall a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences Seq#Equal(a,b) ==> a == b); function Seq#SameUntil(Seq T, Seq T, int): bool; axiom (forall s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } Seq#SameUntil(s0,s1,n) <==> (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); function Seq#Take(s: Seq T, howMany: int): Seq T; axiom (forall s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } 0 <= n ==> (n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n) && (Seq#Length(s) < n ==> Seq#Length(Seq#Take(s,n)) == Seq#Length(s))); axiom (forall s: Seq T, n: int, j: int :: { Seq#Index(Seq#Take(s,n), j) } {:weight 25} 0 <= j && j < n && j < Seq#Length(s) ==> Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); function Seq#Drop(s: Seq T, howMany: int): Seq T; axiom (forall s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } 0 <= n ==> (n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n) && (Seq#Length(s) < n ==> Seq#Length(Seq#Drop(s,n)) == 0)); axiom (forall s: Seq T, n: int, j: int :: { Seq#Index(Seq#Drop(s,n), j) } {:weight 25} 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); axiom (forall s, t: Seq T :: { Seq#Append(s, t) } Seq#Take(Seq#Append(s, t), Seq#Length(s)) == s && Seq#Drop(Seq#Append(s, t), Seq#Length(s)) == t); function Seq#FromArray(h: HeapType, a: ref): Seq BoxType; axiom (forall h: HeapType, a: ref :: { Seq#Length(Seq#FromArray(h,a)) } Seq#Length(Seq#FromArray(h, a)) == _System.array.Length(a)); axiom (forall h: HeapType, a: ref :: { Seq#FromArray(h,a): Seq BoxType } (forall i: int :: 0 <= i && i < Seq#Length(Seq#FromArray(h, a)) ==> Seq#Index(Seq#FromArray(h, a), i) == read(h, a, IndexField(i)))); axiom (forall h: HeapType, o: ref, f: Field alpha, v: alpha, a: ref :: { Seq#FromArray(update(h, o, f, v), a) } o != a ==> Seq#FromArray(update(h, o, f, v), a) == Seq#FromArray(h, a) ); axiom (forall h: HeapType, i: int, v: BoxType, a: ref :: { Seq#FromArray(update(h, a, IndexField(i), v), a) } 0 <= i && i < _System.array.Length(a) ==> Seq#FromArray(update(h, a, IndexField(i), v), a) == Seq#Update(Seq#FromArray(h, a), i, v) ); /**** Someday: axiom (forall h: HeapType, a: ref :: { Seq#FromArray(h, a) } $IsGoodHeap(h) && a != null && read(h, a, alloc) && dtype(a) == class._System.array && TypeParams(a, 0) == class._System.bool ==> (forall i: int :: { Seq#Index(Seq#FromArray(h, a), i) } 0 <= i && i < Seq#Length(Seq#FromArray(h, a)) ==> $IsCanonicalBoolBox(Seq#Index(Seq#FromArray(h, a), i)))); ****/ // Commutability of Take and Drop with Update. axiom (forall s: Seq T, i: int, v: T, n: int :: { Seq#Take(Seq#Update(s, i, v), n) } 0 <= i && i < n && n <= Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); axiom (forall s: Seq T, i: int, v: T, n: int :: { Seq#Take(Seq#Update(s, i, v), n) } n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); axiom (forall s: Seq T, i: int, v: T, n: int :: { Seq#Drop(Seq#Update(s, i, v), n) } 0 <= n && n <= i && i < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); axiom (forall s: Seq T, i: int, v: T, n: int :: { Seq#Drop(Seq#Update(s, i, v), n) } 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); // Extension axiom, triggers only on Takes from arrays. axiom (forall h: HeapType, a: ref, n0, n1: int :: { Seq#Take(Seq#FromArray(h, a), n0), Seq#Take(Seq#FromArray(h, a), n1) } n0 + 1 == n1 && 0 <= n0 && n1 <= _System.array.Length(a) ==> Seq#Take(Seq#FromArray(h, a), n1) == Seq#Build(Seq#Take(Seq#FromArray(h, a), n0), read(h, a, IndexField(n0): Field BoxType)) ); // drop commutes with build. axiom (forall s: Seq T, v: T, n: int :: { Seq#Drop(Seq#Build(s, v), n) } 0 <= n && n <= Seq#Length(s) ==> Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) ); // --------------------------------------------------------------- // -- Boxing and unboxing ---------------------------------------- // --------------------------------------------------------------- type BoxType; function $Box(T): BoxType; function $Unbox(BoxType): T; axiom (forall x: T :: { $Box(x) } $Unbox($Box(x)) == x); axiom (forall b: BoxType :: { $Unbox(b): int } $Box($Unbox(b): int) == b); axiom (forall b: BoxType :: { $Unbox(b): ref } $Box($Unbox(b): ref) == b); axiom (forall b: BoxType :: { $Unbox(b): Set BoxType } $Box($Unbox(b): Set BoxType) == b); axiom (forall b: BoxType :: { $Unbox(b): Seq BoxType } $Box($Unbox(b): Seq BoxType) == b); axiom (forall b: BoxType :: { $Unbox(b): DatatypeType } $Box($Unbox(b): DatatypeType) == b); // Note: an axiom like this for bool would not be sound; instead, we do: function $IsCanonicalBoolBox(BoxType): bool; axiom $IsCanonicalBoolBox($Box(false)) && $IsCanonicalBoolBox($Box(true)); axiom (forall b: BoxType :: { $Unbox(b): bool } $IsCanonicalBoolBox(b) ==> $Box($Unbox(b): bool) == b); // --------------------------------------------------------------- // -- Encoding of type names ------------------------------------- // --------------------------------------------------------------- type ClassName; const unique class._System.int: ClassName; const unique class._System.bool: ClassName; const unique class._System.set: ClassName; const unique class._System.seq: ClassName; const unique class._System.multiset: ClassName; const unique class._System.array: ClassName; function /*{:never_pattern true}*/ dtype(ref): ClassName; function /*{:never_pattern true}*/ TypeParams(ref, int): ClassName; function TypeTuple(a: ClassName, b: ClassName): ClassName; function TypeTupleCar(ClassName): ClassName; function TypeTupleCdr(ClassName): ClassName; // TypeTuple is injective in both arguments: axiom (forall a: ClassName, b: ClassName :: { TypeTuple(a,b) } TypeTupleCar(TypeTuple(a,b)) == a && TypeTupleCdr(TypeTuple(a,b)) == b); // --------------------------------------------------------------- // -- Datatypes -------------------------------------------------- // --------------------------------------------------------------- type DatatypeType; function /*{:never_pattern true}*/ DtType(DatatypeType): ClassName; // the analog of dtype for datatype values function /*{:never_pattern true}*/ DtTypeParams(DatatypeType, int): ClassName; // the analog of TypeParams type DtCtorId; function DatatypeCtorId(DatatypeType): DtCtorId; function DtRank(DatatypeType): int; // --------------------------------------------------------------- // -- Axiom contexts --------------------------------------------- // --------------------------------------------------------------- // used to make sure function axioms are not used while their consistency is being checked const $ModuleContextHeight: int; const $FunctionContextHeight: int; const $InMethodContext: bool; // --------------------------------------------------------------- // -- Fields ----------------------------------------------------- // --------------------------------------------------------------- type Field alpha; function FDim(Field T): int; function IndexField(int): Field BoxType; axiom (forall i: int :: { IndexField(i) } FDim(IndexField(i)) == 1); function IndexField_Inverse(Field T): int; axiom (forall i: int :: { IndexField(i) } IndexField_Inverse(IndexField(i)) == i); function MultiIndexField(Field BoxType, int): Field BoxType; axiom (forall f: Field BoxType, i: int :: { MultiIndexField(f,i) } FDim(MultiIndexField(f,i)) == FDim(f) + 1); function MultiIndexField_Inverse0(Field T): Field T; function MultiIndexField_Inverse1(Field T): int; axiom (forall f: Field BoxType, i: int :: { MultiIndexField(f,i) } MultiIndexField_Inverse0(MultiIndexField(f,i)) == f && MultiIndexField_Inverse1(MultiIndexField(f,i)) == i); function DeclType(Field T): ClassName; // --------------------------------------------------------------- // -- Allocatedness ---------------------------------------------- // --------------------------------------------------------------- const unique alloc: Field bool; axiom FDim(alloc) == 0; function DtAlloc(DatatypeType, HeapType): bool; axiom (forall h, k: HeapType, d: DatatypeType :: { $HeapSucc(h, k), DtAlloc(d, h) } { $HeapSucc(h, k), DtAlloc(d, k) } $HeapSucc(h, k) ==> DtAlloc(d, h) ==> DtAlloc(d, k)); function GenericAlloc(BoxType, HeapType): bool; axiom (forall h: HeapType, k: HeapType, d: BoxType :: { $HeapSucc(h, k), GenericAlloc(d, h) } { $HeapSucc(h, k), GenericAlloc(d, k) } $HeapSucc(h, k) ==> GenericAlloc(d, h) ==> GenericAlloc(d, k)); // GenericAlloc ==> axiom (forall b: BoxType, h: HeapType :: { GenericAlloc(b, h), h[$Unbox(b): ref, alloc] } GenericAlloc(b, h) ==> $Unbox(b): ref == null || h[$Unbox(b): ref, alloc]); axiom (forall b: BoxType, h: HeapType, i: int :: { GenericAlloc(b, h), Seq#Index($Unbox(b): Seq BoxType, i) } GenericAlloc(b, h) && 0 <= i && i < Seq#Length($Unbox(b): Seq BoxType) ==> GenericAlloc( Seq#Index($Unbox(b): Seq BoxType, i), h ) ); axiom (forall b: BoxType, h: HeapType, t: BoxType :: { GenericAlloc(b, h), ($Unbox(b): Set BoxType)[t] } GenericAlloc(b, h) && ($Unbox(b): Set BoxType)[t] ==> GenericAlloc(t, h)); axiom (forall b: BoxType, h: HeapType :: { GenericAlloc(b, h), DtType($Unbox(b): DatatypeType) } GenericAlloc(b, h) ==> DtAlloc($Unbox(b): DatatypeType, h)); // ==> GenericAlloc axiom (forall b: bool, h: HeapType :: $IsGoodHeap(h) ==> GenericAlloc($Box(b), h)); axiom (forall x: int, h: HeapType :: $IsGoodHeap(h) ==> GenericAlloc($Box(x), h)); axiom (forall r: ref, h: HeapType :: { GenericAlloc($Box(r), h) } $IsGoodHeap(h) && (r == null || h[r,alloc]) ==> GenericAlloc($Box(r), h)); // --------------------------------------------------------------- // -- Arrays ----------------------------------------------------- // --------------------------------------------------------------- function _System.array.Length(a: ref): int; axiom (forall o: ref :: 0 <= _System.array.Length(o)); // --------------------------------------------------------------- // -- The heap --------------------------------------------------- // --------------------------------------------------------------- type HeapType = [ref,Field alpha]alpha; function {:inline true} read(H:HeapType, r:ref, f:Field alpha): alpha { H[r, f] } function {:inline true} update(H:HeapType, r:ref, f:Field alpha, v:alpha): HeapType { H[r,f := v] } function $IsGoodHeap(HeapType): bool; var $Heap: HeapType where $IsGoodHeap($Heap); function $HeapSucc(HeapType, HeapType): bool; axiom (forall h: HeapType, r: ref, f: Field alpha, x: alpha :: { update(h, r, f, x) } $IsGoodHeap(update(h, r, f, x)) ==> $HeapSucc(h, update(h, r, f, x))); axiom (forall a,b,c: HeapType :: { $HeapSucc(a,b), $HeapSucc(b,c) } $HeapSucc(a,b) && $HeapSucc(b,c) ==> $HeapSucc(a,c)); axiom (forall h: HeapType, k: HeapType :: { $HeapSucc(h,k) } $HeapSucc(h,k) ==> (forall o: ref :: { read(k, o, alloc) } read(h, o, alloc) ==> read(k, o, alloc))); // --------------------------------------------------------------- // -- Non-determinism -------------------------------------------- // --------------------------------------------------------------- type TickType; var $Tick: TickType; // --------------------------------------------------------------- // -- Arithmetic ------------------------------------------------- // --------------------------------------------------------------- // the connection between % and / axiom (forall x:int, y:int :: {x % y} {x / y} x % y == x - x / y * y); // remainder is always Euclidean Modulus. axiom (forall x:int, y:int :: {x % y} 0 < y ==> 0 <= x % y && x % y < y); axiom (forall x:int, y:int :: {x % y} y < 0 ==> 0 <= x % y && x % y < -y); // the following axiom has some unfortunate matching, but it does state a property about % that // is sometimes useful axiom (forall a: int, b: int, d: int :: { a % d, b % d } 2 <= d && a % d == b % d && a < b ==> a + d <= b); // ---------------------------------------------------------------