1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
// Copyright 2016 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if defined(_WIN32) || defined(_WIN64)
#define _CRT_SECURE_NO_WARNINGS 1
#endif
#include "time_zone_libc.h"
#include <chrono>
#include <ctime>
#include <limits>
#include <utility>
#include "absl/base/config.h"
#include "absl/time/internal/cctz/include/cctz/civil_time.h"
#include "absl/time/internal/cctz/include/cctz/time_zone.h"
#if defined(_AIX)
extern "C" {
extern long altzone;
}
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace time_internal {
namespace cctz {
namespace {
#if defined(_WIN32) || defined(_WIN64)
// Uses the globals: '_timezone', '_dstbias' and '_tzname'.
auto tm_gmtoff(const std::tm& tm) -> decltype(_timezone + _dstbias) {
const bool is_dst = tm.tm_isdst > 0;
return _timezone + (is_dst ? _dstbias : 0);
}
auto tm_zone(const std::tm& tm) -> decltype(_tzname[0]) {
const bool is_dst = tm.tm_isdst > 0;
return _tzname[is_dst];
}
#elif defined(__sun) || defined(_AIX)
// Uses the globals: 'timezone', 'altzone' and 'tzname'.
auto tm_gmtoff(const std::tm& tm) -> decltype(timezone) {
const bool is_dst = tm.tm_isdst > 0;
return is_dst ? altzone : timezone;
}
auto tm_zone(const std::tm& tm) -> decltype(tzname[0]) {
const bool is_dst = tm.tm_isdst > 0;
return tzname[is_dst];
}
#elif defined(__native_client__) || defined(__myriad2__) || \
defined(__EMSCRIPTEN__)
// Uses the globals: '_timezone' and 'tzname'.
auto tm_gmtoff(const std::tm& tm) -> decltype(_timezone + 0) {
const bool is_dst = tm.tm_isdst > 0;
return _timezone + (is_dst ? 60 * 60 : 0);
}
auto tm_zone(const std::tm& tm) -> decltype(tzname[0]) {
const bool is_dst = tm.tm_isdst > 0;
return tzname[is_dst];
}
#elif defined(__VXWORKS__)
// Uses the globals: 'timezone' and 'tzname'.
auto tm_gmtoff(const std::tm& tm) -> decltype(timezone + 0) {
const bool is_dst = tm.tm_isdst > 0;
return timezone + (is_dst ? 60 * 60 : 0);
}
auto tm_zone(const std::tm& tm) -> decltype(tzname[0]) {
const bool is_dst = tm.tm_isdst > 0;
return tzname[is_dst];
}
#else
// Adapt to different spellings of the struct std::tm extension fields.
#if defined(tm_gmtoff)
auto tm_gmtoff(const std::tm& tm) -> decltype(tm.tm_gmtoff) {
return tm.tm_gmtoff;
}
#elif defined(__tm_gmtoff)
auto tm_gmtoff(const std::tm& tm) -> decltype(tm.__tm_gmtoff) {
return tm.__tm_gmtoff;
}
#else
template <typename T>
auto tm_gmtoff(const T& tm) -> decltype(tm.tm_gmtoff) {
return tm.tm_gmtoff;
}
template <typename T>
auto tm_gmtoff(const T& tm) -> decltype(tm.__tm_gmtoff) {
return tm.__tm_gmtoff;
}
#endif // tm_gmtoff
#if defined(tm_zone)
auto tm_zone(const std::tm& tm) -> decltype(tm.tm_zone) { return tm.tm_zone; }
#elif defined(__tm_zone)
auto tm_zone(const std::tm& tm) -> decltype(tm.__tm_zone) {
return tm.__tm_zone;
}
#else
template <typename T>
auto tm_zone(const T& tm) -> decltype(tm.tm_zone) {
return tm.tm_zone;
}
template <typename T>
auto tm_zone(const T& tm) -> decltype(tm.__tm_zone) {
return tm.__tm_zone;
}
#endif // tm_zone
#endif
using tm_gmtoff_t = decltype(tm_gmtoff(std::tm{}));
inline std::tm* gm_time(const std::time_t* timep, std::tm* result) {
#if defined(_WIN32) || defined(_WIN64)
return gmtime_s(result, timep) ? nullptr : result;
#else
return gmtime_r(timep, result);
#endif
}
inline std::tm* local_time(const std::time_t* timep, std::tm* result) {
#if defined(_WIN32) || defined(_WIN64)
return localtime_s(result, timep) ? nullptr : result;
#else
return localtime_r(timep, result);
#endif
}
// Converts a civil second and "dst" flag into a time_t and a struct tm.
// Returns false if time_t cannot represent the requested civil second.
// Caller must have already checked that cs.year() will fit into a tm_year.
bool make_time(const civil_second& cs, int is_dst, std::time_t* t,
std::tm* tm) {
tm->tm_year = static_cast<int>(cs.year() - year_t{1900});
tm->tm_mon = cs.month() - 1;
tm->tm_mday = cs.day();
tm->tm_hour = cs.hour();
tm->tm_min = cs.minute();
tm->tm_sec = cs.second();
tm->tm_isdst = is_dst;
*t = std::mktime(tm);
if (*t == std::time_t{-1}) {
std::tm tm2;
const std::tm* tmp = local_time(t, &tm2);
if (tmp == nullptr || tmp->tm_year != tm->tm_year ||
tmp->tm_mon != tm->tm_mon || tmp->tm_mday != tm->tm_mday ||
tmp->tm_hour != tm->tm_hour || tmp->tm_min != tm->tm_min ||
tmp->tm_sec != tm->tm_sec) {
// A true error (not just one second before the epoch).
return false;
}
}
return true;
}
// Find the least time_t in [lo:hi] where local time matches offset, given:
// (1) lo doesn't match, (2) hi does, and (3) there is only one transition.
std::time_t find_trans(std::time_t lo, std::time_t hi, tm_gmtoff_t offset) {
std::tm tm;
while (lo + 1 != hi) {
const std::time_t mid = lo + (hi - lo) / 2;
std::tm* tmp = local_time(&mid, &tm);
if (tmp != nullptr) {
if (tm_gmtoff(*tmp) == offset) {
hi = mid;
} else {
lo = mid;
}
} else {
// If std::tm cannot hold some result we resort to a linear search,
// ignoring all failed conversions. Slow, but never really happens.
while (++lo != hi) {
tmp = local_time(&lo, &tm);
if (tmp != nullptr) {
if (tm_gmtoff(*tmp) == offset) break;
}
}
return lo;
}
}
return hi;
}
} // namespace
std::unique_ptr<TimeZoneLibC> TimeZoneLibC::Make(const std::string& name) {
return std::unique_ptr<TimeZoneLibC>(new TimeZoneLibC(name));
}
time_zone::absolute_lookup TimeZoneLibC::BreakTime(
const time_point<seconds>& tp) const {
time_zone::absolute_lookup al;
al.offset = 0;
al.is_dst = false;
al.abbr = "-00";
const std::int_fast64_t s = ToUnixSeconds(tp);
// If std::time_t cannot hold the input we saturate the output.
if (s < std::numeric_limits<std::time_t>::min()) {
al.cs = civil_second::min();
return al;
}
if (s > std::numeric_limits<std::time_t>::max()) {
al.cs = civil_second::max();
return al;
}
const std::time_t t = static_cast<std::time_t>(s);
std::tm tm;
std::tm* tmp = local_ ? local_time(&t, &tm) : gm_time(&t, &tm);
// If std::tm cannot hold the result we saturate the output.
if (tmp == nullptr) {
al.cs = (s < 0) ? civil_second::min() : civil_second::max();
return al;
}
const year_t year = tmp->tm_year + year_t{1900};
al.cs = civil_second(year, tmp->tm_mon + 1, tmp->tm_mday, tmp->tm_hour,
tmp->tm_min, tmp->tm_sec);
al.offset = static_cast<int>(tm_gmtoff(*tmp));
al.abbr = local_ ? tm_zone(*tmp) : "UTC"; // as expected by cctz
al.is_dst = tmp->tm_isdst > 0;
return al;
}
time_zone::civil_lookup TimeZoneLibC::MakeTime(const civil_second& cs) const {
if (!local_) {
// If time_point<seconds> cannot hold the result we saturate.
static const civil_second min_tp_cs =
civil_second() + ToUnixSeconds(time_point<seconds>::min());
static const civil_second max_tp_cs =
civil_second() + ToUnixSeconds(time_point<seconds>::max());
const time_point<seconds> tp = (cs < min_tp_cs) ? time_point<seconds>::min()
: (cs > max_tp_cs)
? time_point<seconds>::max()
: FromUnixSeconds(cs - civil_second());
return {time_zone::civil_lookup::UNIQUE, tp, tp, tp};
}
// If tm_year cannot hold the requested year we saturate the result.
if (cs.year() < 0) {
if (cs.year() < std::numeric_limits<int>::min() + year_t{1900}) {
const time_point<seconds> tp = time_point<seconds>::min();
return {time_zone::civil_lookup::UNIQUE, tp, tp, tp};
}
} else {
if (cs.year() - year_t{1900} > std::numeric_limits<int>::max()) {
const time_point<seconds> tp = time_point<seconds>::max();
return {time_zone::civil_lookup::UNIQUE, tp, tp, tp};
}
}
// We probe with "is_dst" values of 0 and 1 to try to distinguish unique
// civil seconds from skipped or repeated ones. This is not always possible
// however, as the "dst" flag does not change over some offset transitions.
// We are also subject to the vagaries of mktime() implementations. For
// example, some implementations treat "tm_isdst" as a demand (useless),
// and some as a disambiguator (useful).
std::time_t t0, t1;
std::tm tm0, tm1;
if (make_time(cs, 0, &t0, &tm0) && make_time(cs, 1, &t1, &tm1)) {
if (tm0.tm_isdst == tm1.tm_isdst) {
// The civil time was singular (pre == trans == post).
const time_point<seconds> tp = FromUnixSeconds(tm0.tm_isdst ? t1 : t0);
return {time_zone::civil_lookup::UNIQUE, tp, tp, tp};
}
tm_gmtoff_t offset = tm_gmtoff(tm0);
if (t0 < t1) { // negative DST
std::swap(t0, t1);
offset = tm_gmtoff(tm1);
}
const std::time_t tt = find_trans(t1, t0, offset);
const time_point<seconds> trans = FromUnixSeconds(tt);
if (tm0.tm_isdst) {
// The civil time did not exist (pre >= trans > post).
const time_point<seconds> pre = FromUnixSeconds(t0);
const time_point<seconds> post = FromUnixSeconds(t1);
return {time_zone::civil_lookup::SKIPPED, pre, trans, post};
}
// The civil time was ambiguous (pre < trans <= post).
const time_point<seconds> pre = FromUnixSeconds(t1);
const time_point<seconds> post = FromUnixSeconds(t0);
return {time_zone::civil_lookup::REPEATED, pre, trans, post};
}
// make_time() failed somehow so we saturate the result.
const time_point<seconds> tp = (cs < civil_second())
? time_point<seconds>::min()
: time_point<seconds>::max();
return {time_zone::civil_lookup::UNIQUE, tp, tp, tp};
}
bool TimeZoneLibC::NextTransition(const time_point<seconds>&,
time_zone::civil_transition*) const {
return false;
}
bool TimeZoneLibC::PrevTransition(const time_point<seconds>&,
time_zone::civil_transition*) const {
return false;
}
std::string TimeZoneLibC::Version() const {
return std::string(); // unknown
}
std::string TimeZoneLibC::Description() const {
return local_ ? "localtime" : "UTC";
}
TimeZoneLibC::TimeZoneLibC(const std::string& name)
: local_(name == "localtime") {}
} // namespace cctz
} // namespace time_internal
ABSL_NAMESPACE_END
} // namespace absl
|