1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
// Copyright 2016 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_TIME_INTERNAL_CCTZ_CIVIL_TIME_H_
#define ABSL_TIME_INTERNAL_CCTZ_CIVIL_TIME_H_
#include "absl/time/internal/cctz/include/cctz/civil_time_detail.h"
namespace absl {
namespace time_internal {
namespace cctz {
// The term "civil time" refers to the legally recognized human-scale time
// that is represented by the six fields YYYY-MM-DD hh:mm:ss. Modern-day civil
// time follows the Gregorian Calendar and is a time-zone-independent concept.
// A "date" is perhaps the most common example of a civil time (represented in
// this library as cctz::civil_day). This library provides six classes and a
// handful of functions that help with rounding, iterating, and arithmetic on
// civil times while avoiding complications like daylight-saving time (DST).
//
// The following six classes form the core of this civil-time library:
//
// * civil_second
// * civil_minute
// * civil_hour
// * civil_day
// * civil_month
// * civil_year
//
// Each class is a simple value type with the same interface for construction
// and the same six accessors for each of the civil fields (year, month, day,
// hour, minute, and second, aka YMDHMS). These classes differ only in their
// alignment, which is indicated by the type name and specifies the field on
// which arithmetic operates.
//
// Each class can be constructed by passing up to six optional integer
// arguments representing the YMDHMS fields (in that order) to the
// constructor. Omitted fields are assigned their minimum valid value. Hours,
// minutes, and seconds will be set to 0, month and day will be set to 1, and
// since there is no minimum valid year, it will be set to 1970. So, a
// default-constructed civil-time object will have YMDHMS fields representing
// "1970-01-01 00:00:00". Fields that are out-of-range are normalized (e.g.,
// October 32 -> November 1) so that all civil-time objects represent valid
// values.
//
// Each civil-time class is aligned to the civil-time field indicated in the
// class's name after normalization. Alignment is performed by setting all the
// inferior fields to their minimum valid value (as described above). The
// following are examples of how each of the six types would align the fields
// representing November 22, 2015 at 12:34:56 in the afternoon. (Note: the
// std::string format used here is not important; it's just a shorthand way of
// showing the six YMDHMS fields.)
//
// civil_second 2015-11-22 12:34:56
// civil_minute 2015-11-22 12:34:00
// civil_hour 2015-11-22 12:00:00
// civil_day 2015-11-22 00:00:00
// civil_month 2015-11-01 00:00:00
// civil_year 2015-01-01 00:00:00
//
// Each civil-time type performs arithmetic on the field to which it is
// aligned. This means that adding 1 to a civil_day increments the day field
// (normalizing as necessary), and subtracting 7 from a civil_month operates
// on the month field (normalizing as necessary). All arithmetic produces a
// valid civil time. Difference requires two similarly aligned civil-time
// objects and returns the scalar answer in units of the objects' alignment.
// For example, the difference between two civil_hour objects will give an
// answer in units of civil hours.
//
// In addition to the six civil-time types just described, there are
// a handful of helper functions and algorithms for performing common
// calculations. These are described below.
//
// Note: In C++14 and later, this library is usable in a constexpr context.
//
// CONSTRUCTION:
//
// Each of the civil-time types can be constructed in two ways: by directly
// passing to the constructor up to six (optional) integers representing the
// YMDHMS fields, or by copying the YMDHMS fields from a differently aligned
// civil-time type.
//
// civil_day default_value; // 1970-01-01 00:00:00
//
// civil_day a(2015, 2, 3); // 2015-02-03 00:00:00
// civil_day b(2015, 2, 3, 4, 5, 6); // 2015-02-03 00:00:00
// civil_day c(2015); // 2015-01-01 00:00:00
//
// civil_second ss(2015, 2, 3, 4, 5, 6); // 2015-02-03 04:05:06
// civil_minute mm(ss); // 2015-02-03 04:05:00
// civil_hour hh(mm); // 2015-02-03 04:00:00
// civil_day d(hh); // 2015-02-03 00:00:00
// civil_month m(d); // 2015-02-01 00:00:00
// civil_year y(m); // 2015-01-01 00:00:00
//
// m = civil_month(y); // 2015-01-01 00:00:00
// d = civil_day(m); // 2015-01-01 00:00:00
// hh = civil_hour(d); // 2015-01-01 00:00:00
// mm = civil_minute(hh); // 2015-01-01 00:00:00
// ss = civil_second(mm); // 2015-01-01 00:00:00
//
// ALIGNMENT CONVERSION:
//
// The alignment of a civil-time object cannot change, but the object may be
// used to construct a new object with a different alignment. This is referred
// to as "realigning". When realigning to a type with the same or more
// precision (e.g., civil_day -> civil_second), the conversion may be
// performed implicitly since no information is lost. However, if information
// could be discarded (e.g., civil_second -> civil_day), the conversion must
// be explicit at the call site.
//
// void fun(const civil_day& day);
//
// civil_second cs;
// fun(cs); // Won't compile because data may be discarded
// fun(civil_day(cs)); // OK: explicit conversion
//
// civil_day cd;
// fun(cd); // OK: no conversion needed
//
// civil_month cm;
// fun(cm); // OK: implicit conversion to civil_day
//
// NORMALIZATION:
//
// Integer arguments passed to the constructor may be out-of-range, in which
// case they are normalized to produce a valid civil-time object. This enables
// natural arithmetic on constructor arguments without worrying about the
// field's range. Normalization guarantees that there are no invalid
// civil-time objects.
//
// civil_day d(2016, 10, 32); // Out-of-range day; normalized to 2016-11-01
//
// Note: If normalization is undesired, you can signal an error by comparing
// the constructor arguments to the normalized values returned by the YMDHMS
// properties.
//
// PROPERTIES:
//
// All civil-time types have accessors for all six of the civil-time fields:
// year, month, day, hour, minute, and second. Recall that fields inferior to
// the type's aligment will be set to their minimum valid value.
//
// civil_day d(2015, 6, 28);
// // d.year() == 2015
// // d.month() == 6
// // d.day() == 28
// // d.hour() == 0
// // d.minute() == 0
// // d.second() == 0
//
// COMPARISON:
//
// Comparison always considers all six YMDHMS fields, regardless of the type's
// alignment. Comparison between differently aligned civil-time types is
// allowed.
//
// civil_day feb_3(2015, 2, 3); // 2015-02-03 00:00:00
// civil_day mar_4(2015, 3, 4); // 2015-03-04 00:00:00
// // feb_3 < mar_4
// // civil_year(feb_3) == civil_year(mar_4)
//
// civil_second feb_3_noon(2015, 2, 3, 12, 0, 0); // 2015-02-03 12:00:00
// // feb_3 < feb_3_noon
// // feb_3 == civil_day(feb_3_noon)
//
// // Iterates all the days of February 2015.
// for (civil_day d(2015, 2, 1); d < civil_month(2015, 3); ++d) {
// // ...
// }
//
// STREAMING:
//
// Each civil-time type may be sent to an output stream using operator<<().
// The output format follows the pattern "YYYY-MM-DDThh:mm:ss" where fields
// inferior to the type's alignment are omitted.
//
// civil_second cs(2015, 2, 3, 4, 5, 6);
// std::cout << cs << "\n"; // Outputs: 2015-02-03T04:05:06
//
// civil_day cd(cs);
// std::cout << cd << "\n"; // Outputs: 2015-02-03
//
// civil_year cy(cs);
// std::cout << cy << "\n"; // Outputs: 2015
//
// ARITHMETIC:
//
// Civil-time types support natural arithmetic operators such as addition,
// subtraction, and difference. Arithmetic operates on the civil-time field
// indicated in the type's name. Difference requires arguments with the same
// alignment and returns the answer in units of the alignment.
//
// civil_day a(2015, 2, 3);
// ++a; // 2015-02-04 00:00:00
// --a; // 2015-02-03 00:00:00
// civil_day b = a + 1; // 2015-02-04 00:00:00
// civil_day c = 1 + b; // 2015-02-05 00:00:00
// int n = c - a; // n = 2 (civil days)
// int m = c - civil_month(c); // Won't compile: different types.
//
// EXAMPLE: Adding a month to January 31.
//
// One of the classic questions that arises when considering a civil-time
// library (or a date library or a date/time library) is this: "What happens
// when you add a month to January 31?" This is an interesting question
// because there could be a number of possible answers:
//
// 1. March 3 (or 2 if a leap year). This may make sense if the operation
// wants the equivalent of February 31.
// 2. February 28 (or 29 if a leap year). This may make sense if the operation
// wants the last day of January to go to the last day of February.
// 3. Error. The caller may get some error, an exception, an invalid date
// object, or maybe false is returned. This may make sense because there is
// no single unambiguously correct answer to the question.
//
// Practically speaking, any answer that is not what the programmer intended
// is the wrong answer.
//
// This civil-time library avoids the problem by making it impossible to ask
// ambiguous questions. All civil-time objects are aligned to a particular
// civil-field boundary (such as aligned to a year, month, day, hour, minute,
// or second), and arithmetic operates on the field to which the object is
// aligned. This means that in order to "add a month" the object must first be
// aligned to a month boundary, which is equivalent to the first day of that
// month.
//
// Of course, there are ways to compute an answer the question at hand using
// this civil-time library, but they require the programmer to be explicit
// about the answer they expect. To illustrate, let's see how to compute all
// three of the above possible answers to the question of "Jan 31 plus 1
// month":
//
// const civil_day d(2015, 1, 31);
//
// // Answer 1:
// // Add 1 to the month field in the constructor, and rely on normalization.
// const auto ans_normalized = civil_day(d.year(), d.month() + 1, d.day());
// // ans_normalized == 2015-03-03 (aka Feb 31)
//
// // Answer 2:
// // Add 1 to month field, capping to the end of next month.
// const auto next_month = civil_month(d) + 1;
// const auto last_day_of_next_month = civil_day(next_month + 1) - 1;
// const auto ans_capped = std::min(ans_normalized, last_day_of_next_month);
// // ans_capped == 2015-02-28
//
// // Answer 3:
// // Signal an error if the normalized answer is not in next month.
// if (civil_month(ans_normalized) != next_month) {
// // error, month overflow
// }
//
using civil_year = detail::civil_year;
using civil_month = detail::civil_month;
using civil_day = detail::civil_day;
using civil_hour = detail::civil_hour;
using civil_minute = detail::civil_minute;
using civil_second = detail::civil_second;
// An enum class with members monday, tuesday, wednesday, thursday, friday,
// saturday, and sunday. These enum values may be sent to an output stream
// using operator<<(). The result is the full weekday name in English with a
// leading capital letter.
//
// weekday wd = weekday::thursday;
// std::cout << wd << "\n"; // Outputs: Thursday
//
using detail::weekday;
// Returns the weekday for the given civil_day.
//
// civil_day a(2015, 8, 13);
// weekday wd = get_weekday(a); // wd == weekday::thursday
//
using detail::get_weekday;
// Returns the civil_day that strictly follows or precedes the given
// civil_day, and that falls on the given weekday.
//
// For example, given:
//
// August 2015
// Su Mo Tu We Th Fr Sa
// 1
// 2 3 4 5 6 7 8
// 9 10 11 12 13 14 15
// 16 17 18 19 20 21 22
// 23 24 25 26 27 28 29
// 30 31
//
// civil_day a(2015, 8, 13); // get_weekday(a) == weekday::thursday
// civil_day b = next_weekday(a, weekday::thursday); // b = 2015-08-20
// civil_day c = prev_weekday(a, weekday::thursday); // c = 2015-08-06
//
// civil_day d = ...
// // Gets the following Thursday if d is not already Thursday
// civil_day thurs1 = prev_weekday(d, weekday::thursday) + 7;
// // Gets the previous Thursday if d is not already Thursday
// civil_day thurs2 = next_weekday(d, weekday::thursday) - 7;
//
using detail::next_weekday;
using detail::prev_weekday;
// Returns the day-of-year for the given civil_day.
//
// civil_day a(2015, 1, 1);
// int yd_jan_1 = get_yearday(a); // yd_jan_1 = 1
// civil_day b(2015, 12, 31);
// int yd_dec_31 = get_yearday(b); // yd_dec_31 = 365
//
using detail::get_yearday;
} // namespace cctz
} // namespace time_internal
} // namespace absl
#endif // ABSL_TIME_INTERNAL_CCTZ_CIVIL_TIME_H_
|