1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The implementation of the absl::Duration class, which is declared in
// //absl/time.h. This class behaves like a numeric type; it has no public
// methods and is used only through the operators defined here.
//
// Implementation notes:
//
// An absl::Duration is represented as
//
// rep_hi_ : (int64_t) Whole seconds
// rep_lo_ : (uint32_t) Fractions of a second
//
// The seconds value (rep_hi_) may be positive or negative as appropriate.
// The fractional seconds (rep_lo_) is always a positive offset from rep_hi_.
// The API for Duration guarantees at least nanosecond resolution, which
// means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds.
// However, to utilize more of the available 32 bits of space in rep_lo_,
// we instead store quarters of a nanosecond in rep_lo_ resulting in a max
// value of 4B - 1. This allows us to correctly handle calculations like
// 0.5 nanos + 0.5 nanos = 1 nano. The following example shows the actual
// Duration rep using quarters of a nanosecond.
//
// 2.5 sec = {rep_hi_=2, rep_lo_=2000000000} // lo = 4 * 500000000
// -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000}
//
// Infinite durations are represented as Durations with the rep_lo_ field set
// to all 1s.
//
// +InfiniteDuration:
// rep_hi_ : kint64max
// rep_lo_ : ~0U
//
// -InfiniteDuration:
// rep_hi_ : kint64min
// rep_lo_ : ~0U
//
// Arithmetic overflows/underflows to +/- infinity and saturates.
#if defined(_MSC_VER)
#include <winsock2.h> // for timeval
#endif
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cerrno>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <functional>
#include <limits>
#include <string>
#include "absl/base/casts.h"
#include "absl/numeric/int128.h"
#include "absl/time/time.h"
namespace absl {
inline namespace lts_2019_08_08 {
namespace {
using time_internal::kTicksPerNanosecond;
using time_internal::kTicksPerSecond;
constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
// Can't use std::isinfinite() because it doesn't exist on windows.
inline bool IsFinite(double d) {
if (std::isnan(d)) return false;
return d != std::numeric_limits<double>::infinity() &&
d != -std::numeric_limits<double>::infinity();
}
inline bool IsValidDivisor(double d) {
if (std::isnan(d)) return false;
return d != 0.0;
}
// Can't use std::round() because it is only available in C++11.
// Note that we ignore the possibility of floating-point over/underflow.
template <typename Double>
inline double Round(Double d) {
return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5);
}
// *sec may be positive or negative. *ticks must be in the range
// -kTicksPerSecond < *ticks < kTicksPerSecond. If *ticks is negative it
// will be normalized to a positive value by adjusting *sec accordingly.
inline void NormalizeTicks(int64_t* sec, int64_t* ticks) {
if (*ticks < 0) {
--*sec;
*ticks += kTicksPerSecond;
}
}
// Makes a uint128 from the absolute value of the given scalar.
inline uint128 MakeU128(int64_t a) {
uint128 u128 = 0;
if (a < 0) {
++u128;
++a; // Makes it safe to negate 'a'
a = -a;
}
u128 += static_cast<uint64_t>(a);
return u128;
}
// Makes a uint128 count of ticks out of the absolute value of the Duration.
inline uint128 MakeU128Ticks(Duration d) {
int64_t rep_hi = time_internal::GetRepHi(d);
uint32_t rep_lo = time_internal::GetRepLo(d);
if (rep_hi < 0) {
++rep_hi;
rep_hi = -rep_hi;
rep_lo = kTicksPerSecond - rep_lo;
}
uint128 u128 = static_cast<uint64_t>(rep_hi);
u128 *= static_cast<uint64_t>(kTicksPerSecond);
u128 += rep_lo;
return u128;
}
// Breaks a uint128 of ticks into a Duration.
inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {
int64_t rep_hi;
uint32_t rep_lo;
const uint64_t h64 = Uint128High64(u128);
const uint64_t l64 = Uint128Low64(u128);
if (h64 == 0) { // fastpath
const uint64_t hi = l64 / kTicksPerSecond;
rep_hi = static_cast<int64_t>(hi);
rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond);
} else {
// kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond).
// Any positive tick count whose high 64 bits are >= kMaxRepHi64
// is not representable as a Duration. A negative tick count can
// have its high 64 bits == kMaxRepHi64 but only when the low 64
// bits are all zero, otherwise it is not representable either.
const uint64_t kMaxRepHi64 = 0x77359400UL;
if (h64 >= kMaxRepHi64) {
if (is_neg && h64 == kMaxRepHi64 && l64 == 0) {
// Avoid trying to represent -kint64min below.
return time_internal::MakeDuration(kint64min);
}
return is_neg ? -InfiniteDuration() : InfiniteDuration();
}
const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond);
const uint128 hi = u128 / kTicksPerSecond128;
rep_hi = static_cast<int64_t>(Uint128Low64(hi));
rep_lo =
static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128));
}
if (is_neg) {
rep_hi = -rep_hi;
if (rep_lo != 0) {
--rep_hi;
rep_lo = kTicksPerSecond - rep_lo;
}
}
return time_internal::MakeDuration(rep_hi, rep_lo);
}
// Convert between int64_t and uint64_t, preserving representation. This
// allows us to do arithmetic in the unsigned domain, where overflow has
// well-defined behavior. See operator+=() and operator-=().
//
// C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef
// name intN_t designates a signed integer type with width N, no padding
// bits, and a two's complement representation." So, we can convert to
// and from the corresponding uint64_t value using a bit cast.
inline uint64_t EncodeTwosComp(int64_t v) {
return absl::bit_cast<uint64_t>(v);
}
inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); }
// Note: The overflow detection in this function is done using greater/less *or
// equal* because kint64max/min is too large to be represented exactly in a
// double (which only has 53 bits of precision). In order to avoid assigning to
// rep->hi a double value that is too large for an int64_t (and therefore is
// undefined), we must consider computations that equal kint64max/min as a
// double as overflow cases.
inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) {
double c = a_hi + b_hi;
if (c >= kint64max) {
*d = InfiniteDuration();
return false;
}
if (c <= kint64min) {
*d = -InfiniteDuration();
return false;
}
*d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d));
return true;
}
// A functor that's similar to std::multiplies<T>, except this returns the max
// T value instead of overflowing. This is only defined for uint128.
template <typename Ignored>
struct SafeMultiply {
uint128 operator()(uint128 a, uint128 b) const {
// b hi is always zero because it originated as an int64_t.
assert(Uint128High64(b) == 0);
// Fastpath to avoid the expensive overflow check with division.
if (Uint128High64(a) == 0) {
return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0)
? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b))
: a * b;
}
return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b;
}
};
// Scales (i.e., multiplies or divides, depending on the Operation template)
// the Duration d by the int64_t r.
template <template <typename> class Operation>
inline Duration ScaleFixed(Duration d, int64_t r) {
const uint128 a = MakeU128Ticks(d);
const uint128 b = MakeU128(r);
const uint128 q = Operation<uint128>()(a, b);
const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0);
return MakeDurationFromU128(q, is_neg);
}
// Scales (i.e., multiplies or divides, depending on the Operation template)
// the Duration d by the double r.
template <template <typename> class Operation>
inline Duration ScaleDouble(Duration d, double r) {
Operation<double> op;
double hi_doub = op(time_internal::GetRepHi(d), r);
double lo_doub = op(time_internal::GetRepLo(d), r);
double hi_int = 0;
double hi_frac = std::modf(hi_doub, &hi_int);
// Moves hi's fractional bits to lo.
lo_doub /= kTicksPerSecond;
lo_doub += hi_frac;
double lo_int = 0;
double lo_frac = std::modf(lo_doub, &lo_int);
// Rolls lo into hi if necessary.
int64_t lo64 = Round(lo_frac * kTicksPerSecond);
Duration ans;
if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans;
int64_t hi64 = time_internal::GetRepHi(ans);
if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans;
hi64 = time_internal::GetRepHi(ans);
lo64 %= kTicksPerSecond;
NormalizeTicks(&hi64, &lo64);
return time_internal::MakeDuration(hi64, lo64);
}
// Tries to divide num by den as fast as possible by looking for common, easy
// cases. If the division was done, the quotient is in *q and the remainder is
// in *rem and true will be returned.
inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q,
Duration* rem) {
// Bail if num or den is an infinity.
if (time_internal::IsInfiniteDuration(num) ||
time_internal::IsInfiniteDuration(den))
return false;
int64_t num_hi = time_internal::GetRepHi(num);
uint32_t num_lo = time_internal::GetRepLo(num);
int64_t den_hi = time_internal::GetRepHi(den);
uint32_t den_lo = time_internal::GetRepLo(den);
if (den_hi == 0 && den_lo == kTicksPerNanosecond) {
// Dividing by 1ns
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) {
*q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond;
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
return true;
}
} else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) {
// Dividing by 100ns (common when converting to Universal time)
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) {
*q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond);
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
return true;
}
} else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) {
// Dividing by 1us
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) {
*q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond);
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
return true;
}
} else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) {
// Dividing by 1ms
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) {
*q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond);
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
return true;
}
} else if (den_hi > 0 && den_lo == 0) {
// Dividing by positive multiple of 1s
if (num_hi >= 0) {
if (den_hi == 1) {
*q = num_hi;
*rem = time_internal::MakeDuration(0, num_lo);
return true;
}
*q = num_hi / den_hi;
*rem = time_internal::MakeDuration(num_hi % den_hi, num_lo);
return true;
}
if (num_lo != 0) {
num_hi += 1;
}
int64_t quotient = num_hi / den_hi;
int64_t rem_sec = num_hi % den_hi;
if (rem_sec > 0) {
rem_sec -= den_hi;
quotient += 1;
}
if (num_lo != 0) {
rem_sec -= 1;
}
*q = quotient;
*rem = time_internal::MakeDuration(rem_sec, num_lo);
return true;
}
return false;
}
} // namespace
namespace time_internal {
// The 'satq' argument indicates whether the quotient should saturate at the
// bounds of int64_t. If it does saturate, the difference will spill over to
// the remainder. If it does not saturate, the remainder remain accurate,
// but the returned quotient will over/underflow int64_t and should not be used.
int64_t IDivDuration(bool satq, const Duration num, const Duration den,
Duration* rem) {
int64_t q = 0;
if (IDivFastPath(num, den, &q, rem)) {
return q;
}
const bool num_neg = num < ZeroDuration();
const bool den_neg = den < ZeroDuration();
const bool quotient_neg = num_neg != den_neg;
if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
*rem = num_neg ? -InfiniteDuration() : InfiniteDuration();
return quotient_neg ? kint64min : kint64max;
}
if (time_internal::IsInfiniteDuration(den)) {
*rem = num;
return 0;
}
const uint128 a = MakeU128Ticks(num);
const uint128 b = MakeU128Ticks(den);
uint128 quotient128 = a / b;
if (satq) {
// Limits the quotient to the range of int64_t.
if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) {
quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min))
: uint128(static_cast<uint64_t>(kint64max));
}
}
const uint128 remainder128 = a - quotient128 * b;
*rem = MakeDurationFromU128(remainder128, num_neg);
if (!quotient_neg || quotient128 == 0) {
return Uint128Low64(quotient128) & kint64max;
}
// The quotient needs to be negated, but we need to carefully handle
// quotient128s with the top bit on.
return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1;
}
} // namespace time_internal
//
// Additive operators.
//
Duration& Duration::operator+=(Duration rhs) {
if (time_internal::IsInfiniteDuration(*this)) return *this;
if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs;
const int64_t orig_rep_hi = rep_hi_;
rep_hi_ =
DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_));
if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) {
rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1);
rep_lo_ -= kTicksPerSecond;
}
rep_lo_ += rhs.rep_lo_;
if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) {
return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration();
}
return *this;
}
Duration& Duration::operator-=(Duration rhs) {
if (time_internal::IsInfiniteDuration(*this)) return *this;
if (time_internal::IsInfiniteDuration(rhs)) {
return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
}
const int64_t orig_rep_hi = rep_hi_;
rep_hi_ =
DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_));
if (rep_lo_ < rhs.rep_lo_) {
rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1);
rep_lo_ += kTicksPerSecond;
}
rep_lo_ -= rhs.rep_lo_;
if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) {
return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
}
return *this;
}
//
// Multiplicative operators.
//
Duration& Duration::operator*=(int64_t r) {
if (time_internal::IsInfiniteDuration(*this)) {
const bool is_neg = (r < 0) != (rep_hi_ < 0);
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
}
return *this = ScaleFixed<SafeMultiply>(*this, r);
}
Duration& Duration::operator*=(double r) {
if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) {
const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
}
return *this = ScaleDouble<std::multiplies>(*this, r);
}
Duration& Duration::operator/=(int64_t r) {
if (time_internal::IsInfiniteDuration(*this) || r == 0) {
const bool is_neg = (r < 0) != (rep_hi_ < 0);
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
}
return *this = ScaleFixed<std::divides>(*this, r);
}
Duration& Duration::operator/=(double r) {
if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) {
const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
}
return *this = ScaleDouble<std::divides>(*this, r);
}
Duration& Duration::operator%=(Duration rhs) {
time_internal::IDivDuration(false, *this, rhs, this);
return *this;
}
double FDivDuration(Duration num, Duration den) {
// Arithmetic with infinity is sticky.
if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
return (num < ZeroDuration()) == (den < ZeroDuration())
? std::numeric_limits<double>::infinity()
: -std::numeric_limits<double>::infinity();
}
if (time_internal::IsInfiniteDuration(den)) return 0.0;
double a =
static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond +
time_internal::GetRepLo(num);
double b =
static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond +
time_internal::GetRepLo(den);
return a / b;
}
//
// Trunc/Floor/Ceil.
//
Duration Trunc(Duration d, Duration unit) {
return d - (d % unit);
}
Duration Floor(const Duration d, const Duration unit) {
const absl::Duration td = Trunc(d, unit);
return td <= d ? td : td - AbsDuration(unit);
}
Duration Ceil(const Duration d, const Duration unit) {
const absl::Duration td = Trunc(d, unit);
return td >= d ? td : td + AbsDuration(unit);
}
//
// Factory functions.
//
Duration DurationFromTimespec(timespec ts) {
if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) {
int64_t ticks = ts.tv_nsec * kTicksPerNanosecond;
return time_internal::MakeDuration(ts.tv_sec, ticks);
}
return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec);
}
Duration DurationFromTimeval(timeval tv) {
if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) {
int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond;
return time_internal::MakeDuration(tv.tv_sec, ticks);
}
return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec);
}
//
// Conversion to other duration types.
//
int64_t ToInt64Nanoseconds(Duration d) {
if (time_internal::GetRepHi(d) >= 0 &&
time_internal::GetRepHi(d) >> 33 == 0) {
return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) +
(time_internal::GetRepLo(d) / kTicksPerNanosecond);
}
return d / Nanoseconds(1);
}
int64_t ToInt64Microseconds(Duration d) {
if (time_internal::GetRepHi(d) >= 0 &&
time_internal::GetRepHi(d) >> 43 == 0) {
return (time_internal::GetRepHi(d) * 1000 * 1000) +
(time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000));
}
return d / Microseconds(1);
}
int64_t ToInt64Milliseconds(Duration d) {
if (time_internal::GetRepHi(d) >= 0 &&
time_internal::GetRepHi(d) >> 53 == 0) {
return (time_internal::GetRepHi(d) * 1000) +
(time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000));
}
return d / Milliseconds(1);
}
int64_t ToInt64Seconds(Duration d) {
int64_t hi = time_internal::GetRepHi(d);
if (time_internal::IsInfiniteDuration(d)) return hi;
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
return hi;
}
int64_t ToInt64Minutes(Duration d) {
int64_t hi = time_internal::GetRepHi(d);
if (time_internal::IsInfiniteDuration(d)) return hi;
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
return hi / 60;
}
int64_t ToInt64Hours(Duration d) {
int64_t hi = time_internal::GetRepHi(d);
if (time_internal::IsInfiniteDuration(d)) return hi;
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
return hi / (60 * 60);
}
double ToDoubleNanoseconds(Duration d) {
return FDivDuration(d, Nanoseconds(1));
}
double ToDoubleMicroseconds(Duration d) {
return FDivDuration(d, Microseconds(1));
}
double ToDoubleMilliseconds(Duration d) {
return FDivDuration(d, Milliseconds(1));
}
double ToDoubleSeconds(Duration d) {
return FDivDuration(d, Seconds(1));
}
double ToDoubleMinutes(Duration d) {
return FDivDuration(d, Minutes(1));
}
double ToDoubleHours(Duration d) {
return FDivDuration(d, Hours(1));
}
timespec ToTimespec(Duration d) {
timespec ts;
if (!time_internal::IsInfiniteDuration(d)) {
int64_t rep_hi = time_internal::GetRepHi(d);
uint32_t rep_lo = time_internal::GetRepLo(d);
if (rep_hi < 0) {
// Tweak the fields so that unsigned division of rep_lo
// maps to truncation (towards zero) for the timespec.
rep_lo += kTicksPerNanosecond - 1;
if (rep_lo >= kTicksPerSecond) {
rep_hi += 1;
rep_lo -= kTicksPerSecond;
}
}
ts.tv_sec = rep_hi;
if (ts.tv_sec == rep_hi) { // no time_t narrowing
ts.tv_nsec = rep_lo / kTicksPerNanosecond;
return ts;
}
}
if (d >= ZeroDuration()) {
ts.tv_sec = std::numeric_limits<time_t>::max();
ts.tv_nsec = 1000 * 1000 * 1000 - 1;
} else {
ts.tv_sec = std::numeric_limits<time_t>::min();
ts.tv_nsec = 0;
}
return ts;
}
timeval ToTimeval(Duration d) {
timeval tv;
timespec ts = ToTimespec(d);
if (ts.tv_sec < 0) {
// Tweak the fields so that positive division of tv_nsec
// maps to truncation (towards zero) for the timeval.
ts.tv_nsec += 1000 - 1;
if (ts.tv_nsec >= 1000 * 1000 * 1000) {
ts.tv_sec += 1;
ts.tv_nsec -= 1000 * 1000 * 1000;
}
}
tv.tv_sec = ts.tv_sec;
if (tv.tv_sec != ts.tv_sec) { // narrowing
if (ts.tv_sec < 0) {
tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();
tv.tv_usec = 0;
} else {
tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();
tv.tv_usec = 1000 * 1000 - 1;
}
return tv;
}
tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t
return tv;
}
std::chrono::nanoseconds ToChronoNanoseconds(Duration d) {
return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d);
}
std::chrono::microseconds ToChronoMicroseconds(Duration d) {
return time_internal::ToChronoDuration<std::chrono::microseconds>(d);
}
std::chrono::milliseconds ToChronoMilliseconds(Duration d) {
return time_internal::ToChronoDuration<std::chrono::milliseconds>(d);
}
std::chrono::seconds ToChronoSeconds(Duration d) {
return time_internal::ToChronoDuration<std::chrono::seconds>(d);
}
std::chrono::minutes ToChronoMinutes(Duration d) {
return time_internal::ToChronoDuration<std::chrono::minutes>(d);
}
std::chrono::hours ToChronoHours(Duration d) {
return time_internal::ToChronoDuration<std::chrono::hours>(d);
}
//
// To/From string formatting.
//
namespace {
// Formats a positive 64-bit integer in the given field width. Note that
// it is up to the caller of Format64() to ensure that there is sufficient
// space before ep to hold the conversion.
char* Format64(char* ep, int width, int64_t v) {
do {
--width;
*--ep = '0' + (v % 10); // contiguous digits
} while (v /= 10);
while (--width >= 0) *--ep = '0'; // zero pad
return ep;
}
// Helpers for FormatDuration() that format 'n' and append it to 'out'
// followed by the given 'unit'. If 'n' formats to "0", nothing is
// appended (not even the unit).
// A type that encapsulates how to display a value of a particular unit. For
// values that are displayed with fractional parts, the precision indicates
// where to round the value. The precision varies with the display unit because
// a Duration can hold only quarters of a nanosecond, so displaying information
// beyond that is just noise.
//
// For example, a microsecond value of 42.00025xxxxx should not display beyond 5
// fractional digits, because it is in the noise of what a Duration can
// represent.
struct DisplayUnit {
const char* abbr;
int prec;
double pow10;
};
const DisplayUnit kDisplayNano = {"ns", 2, 1e2};
const DisplayUnit kDisplayMicro = {"us", 5, 1e5};
const DisplayUnit kDisplayMilli = {"ms", 8, 1e8};
const DisplayUnit kDisplaySec = {"s", 11, 1e11};
const DisplayUnit kDisplayMin = {"m", -1, 0.0}; // prec ignored
const DisplayUnit kDisplayHour = {"h", -1, 0.0}; // prec ignored
void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) {
char buf[sizeof("2562047788015216")]; // hours in max duration
char* const ep = buf + sizeof(buf);
char* bp = Format64(ep, 0, n);
if (*bp != '0' || bp + 1 != ep) {
out->append(bp, ep - bp);
out->append(unit.abbr);
}
}
// Note: unit.prec is limited to double's digits10 value (typically 15) so it
// always fits in buf[].
void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) {
const int buf_size = std::numeric_limits<double>::digits10;
const int prec = std::min(buf_size, unit.prec);
char buf[buf_size]; // also large enough to hold integer part
char* ep = buf + sizeof(buf);
double d = 0;
int64_t frac_part = Round(std::modf(n, &d) * unit.pow10);
int64_t int_part = d;
if (int_part != 0 || frac_part != 0) {
char* bp = Format64(ep, 0, int_part); // always < 1000
out->append(bp, ep - bp);
if (frac_part != 0) {
out->push_back('.');
bp = Format64(ep, prec, frac_part);
while (ep[-1] == '0') --ep;
out->append(bp, ep - bp);
}
out->append(unit.abbr);
}
}
} // namespace
// From Go's doc at https://golang.org/pkg/time/#Duration.String
// [FormatDuration] returns a string representing the duration in the
// form "72h3m0.5s". Leading zero units are omitted. As a special
// case, durations less than one second format use a smaller unit
// (milli-, micro-, or nanoseconds) to ensure that the leading digit
// is non-zero. The zero duration formats as 0, with no unit.
std::string FormatDuration(Duration d) {
const Duration min_duration = Seconds(kint64min);
if (d == min_duration) {
// Avoid needing to negate kint64min by directly returning what the
// following code should produce in that case.
return "-2562047788015215h30m8s";
}
std::string s;
if (d < ZeroDuration()) {
s.append("-");
d = -d;
}
if (d == InfiniteDuration()) {
s.append("inf");
} else if (d < Seconds(1)) {
// Special case for durations with a magnitude < 1 second. The duration
// is printed as a fraction of a single unit, e.g., "1.2ms".
if (d < Microseconds(1)) {
AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano);
} else if (d < Milliseconds(1)) {
AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro);
} else {
AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli);
}
} else {
AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour);
AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin);
AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec);
}
if (s.empty() || s == "-") {
s = "0";
}
return s;
}
namespace {
// A helper for ParseDuration() that parses a leading number from the given
// string and stores the result in *int_part/*frac_part/*frac_scale. The
// given string pointer is modified to point to the first unconsumed char.
bool ConsumeDurationNumber(const char** dpp, int64_t* int_part,
int64_t* frac_part, int64_t* frac_scale) {
*int_part = 0;
*frac_part = 0;
*frac_scale = 1; // invariant: *frac_part < *frac_scale
const char* start = *dpp;
for (; std::isdigit(**dpp); *dpp += 1) {
const int d = **dpp - '0'; // contiguous digits
if (*int_part > kint64max / 10) return false;
*int_part *= 10;
if (*int_part > kint64max - d) return false;
*int_part += d;
}
const bool int_part_empty = (*dpp == start);
if (**dpp != '.') return !int_part_empty;
for (*dpp += 1; std::isdigit(**dpp); *dpp += 1) {
const int d = **dpp - '0'; // contiguous digits
if (*frac_scale <= kint64max / 10) {
*frac_part *= 10;
*frac_part += d;
*frac_scale *= 10;
}
}
return !int_part_empty || *frac_scale != 1;
}
// A helper for ParseDuration() that parses a leading unit designator (e.g.,
// ns, us, ms, s, m, h) from the given string and stores the resulting unit
// in "*unit". The given string pointer is modified to point to the first
// unconsumed char.
bool ConsumeDurationUnit(const char** start, Duration* unit) {
const char *s = *start;
bool ok = true;
if (strncmp(s, "ns", 2) == 0) {
s += 2;
*unit = Nanoseconds(1);
} else if (strncmp(s, "us", 2) == 0) {
s += 2;
*unit = Microseconds(1);
} else if (strncmp(s, "ms", 2) == 0) {
s += 2;
*unit = Milliseconds(1);
} else if (strncmp(s, "s", 1) == 0) {
s += 1;
*unit = Seconds(1);
} else if (strncmp(s, "m", 1) == 0) {
s += 1;
*unit = Minutes(1);
} else if (strncmp(s, "h", 1) == 0) {
s += 1;
*unit = Hours(1);
} else {
ok = false;
}
*start = s;
return ok;
}
} // namespace
// From Go's doc at https://golang.org/pkg/time/#ParseDuration
// [ParseDuration] parses a duration string. A duration string is
// a possibly signed sequence of decimal numbers, each with optional
// fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m".
// Valid time units are "ns", "us" "ms", "s", "m", "h".
bool ParseDuration(const std::string& dur_string, Duration* d) {
const char* start = dur_string.c_str();
int sign = 1;
if (*start == '-' || *start == '+') {
sign = *start == '-' ? -1 : 1;
++start;
}
// Can't parse a duration from an empty std::string.
if (*start == '\0') {
return false;
}
// Special case for a std::string of "0".
if (*start == '0' && *(start + 1) == '\0') {
*d = ZeroDuration();
return true;
}
if (strcmp(start, "inf") == 0) {
*d = sign * InfiniteDuration();
return true;
}
Duration dur;
while (*start != '\0') {
int64_t int_part;
int64_t frac_part;
int64_t frac_scale;
Duration unit;
if (!ConsumeDurationNumber(&start, &int_part, &frac_part, &frac_scale) ||
!ConsumeDurationUnit(&start, &unit)) {
return false;
}
if (int_part != 0) dur += sign * int_part * unit;
if (frac_part != 0) dur += sign * frac_part * unit / frac_scale;
}
*d = dur;
return true;
}
bool ParseFlag(const std::string& text, Duration* dst, std::string* ) {
return ParseDuration(text, dst);
}
std::string UnparseFlag(Duration d) { return FormatDuration(d); }
} // inline namespace lts_2019_08_08
} // namespace absl
|