summaryrefslogtreecommitdiff
path: root/absl/synchronization/mutex_test.cc
blob: 4f40317684c1a33a2f0592e2df27abd7a7ee8567 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/synchronization/mutex.h"

#ifdef _WIN32
#include <windows.h>
#endif

#include <algorithm>
#include <atomic>
#include <cstdlib>
#include <functional>
#include <memory>
#include <random>
#include <string>
#include <thread>  // NOLINT(build/c++11)
#include <type_traits>
#include <vector>

#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/sysinfo.h"
#include "absl/memory/memory.h"
#include "absl/synchronization/internal/thread_pool.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"

namespace {

// TODO(dmauro): Replace with a commandline flag.
static constexpr bool kExtendedTest = false;

std::unique_ptr<absl::synchronization_internal::ThreadPool> CreatePool(
    int threads) {
  return absl::make_unique<absl::synchronization_internal::ThreadPool>(threads);
}

std::unique_ptr<absl::synchronization_internal::ThreadPool>
CreateDefaultPool() {
  return CreatePool(kExtendedTest ? 32 : 10);
}

// Hack to schedule a function to run on a thread pool thread after a
// duration has elapsed.
static void ScheduleAfter(absl::synchronization_internal::ThreadPool *tp,
                          absl::Duration after,
                          const std::function<void()> &func) {
  tp->Schedule([func, after] {
    absl::SleepFor(after);
    func();
  });
}

struct TestContext {
  int iterations;
  int threads;
  int g0;  // global 0
  int g1;  // global 1
  absl::Mutex mu;
  absl::CondVar cv;
};

// To test whether the invariant check call occurs
static std::atomic<bool> invariant_checked;

static bool GetInvariantChecked() {
  return invariant_checked.load(std::memory_order_relaxed);
}

static void SetInvariantChecked(bool new_value) {
  invariant_checked.store(new_value, std::memory_order_relaxed);
}

static void CheckSumG0G1(void *v) {
  TestContext *cxt = static_cast<TestContext *>(v);
  ABSL_RAW_CHECK(cxt->g0 == -cxt->g1, "Error in CheckSumG0G1");
  SetInvariantChecked(true);
}

static void TestMu(TestContext *cxt, int c) {
  for (int i = 0; i != cxt->iterations; i++) {
    absl::MutexLock l(&cxt->mu);
    int a = cxt->g0 + 1;
    cxt->g0 = a;
    cxt->g1--;
  }
}

static void TestTry(TestContext *cxt, int c) {
  for (int i = 0; i != cxt->iterations; i++) {
    do {
      std::this_thread::yield();
    } while (!cxt->mu.TryLock());
    int a = cxt->g0 + 1;
    cxt->g0 = a;
    cxt->g1--;
    cxt->mu.Unlock();
  }
}

static void TestR20ms(TestContext *cxt, int c) {
  for (int i = 0; i != cxt->iterations; i++) {
    absl::ReaderMutexLock l(&cxt->mu);
    absl::SleepFor(absl::Milliseconds(20));
    cxt->mu.AssertReaderHeld();
  }
}

static void TestRW(TestContext *cxt, int c) {
  if ((c & 1) == 0) {
    for (int i = 0; i != cxt->iterations; i++) {
      absl::WriterMutexLock l(&cxt->mu);
      cxt->g0++;
      cxt->g1--;
      cxt->mu.AssertHeld();
      cxt->mu.AssertReaderHeld();
    }
  } else {
    for (int i = 0; i != cxt->iterations; i++) {
      absl::ReaderMutexLock l(&cxt->mu);
      ABSL_RAW_CHECK(cxt->g0 == -cxt->g1, "Error in TestRW");
      cxt->mu.AssertReaderHeld();
    }
  }
}

struct MyContext {
  int target;
  TestContext *cxt;
  bool MyTurn();
};

bool MyContext::MyTurn() {
  TestContext *cxt = this->cxt;
  return cxt->g0 == this->target || cxt->g0 == cxt->iterations;
}

static void TestAwait(TestContext *cxt, int c) {
  MyContext mc;
  mc.target = c;
  mc.cxt = cxt;
  absl::MutexLock l(&cxt->mu);
  cxt->mu.AssertHeld();
  while (cxt->g0 < cxt->iterations) {
    cxt->mu.Await(absl::Condition(&mc, &MyContext::MyTurn));
    ABSL_RAW_CHECK(mc.MyTurn(), "Error in TestAwait");
    cxt->mu.AssertHeld();
    if (cxt->g0 < cxt->iterations) {
      int a = cxt->g0 + 1;
      cxt->g0 = a;
      mc.target += cxt->threads;
    }
  }
}

static void TestSignalAll(TestContext *cxt, int c) {
  int target = c;
  absl::MutexLock l(&cxt->mu);
  cxt->mu.AssertHeld();
  while (cxt->g0 < cxt->iterations) {
    while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
      cxt->cv.Wait(&cxt->mu);
    }
    if (cxt->g0 < cxt->iterations) {
      int a = cxt->g0 + 1;
      cxt->g0 = a;
      cxt->cv.SignalAll();
      target += cxt->threads;
    }
  }
}

static void TestSignal(TestContext *cxt, int c) {
  ABSL_RAW_CHECK(cxt->threads == 2, "TestSignal should use 2 threads");
  int target = c;
  absl::MutexLock l(&cxt->mu);
  cxt->mu.AssertHeld();
  while (cxt->g0 < cxt->iterations) {
    while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
      cxt->cv.Wait(&cxt->mu);
    }
    if (cxt->g0 < cxt->iterations) {
      int a = cxt->g0 + 1;
      cxt->g0 = a;
      cxt->cv.Signal();
      target += cxt->threads;
    }
  }
}

static void TestCVTimeout(TestContext *cxt, int c) {
  int target = c;
  absl::MutexLock l(&cxt->mu);
  cxt->mu.AssertHeld();
  while (cxt->g0 < cxt->iterations) {
    while (cxt->g0 != target && cxt->g0 != cxt->iterations) {
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100));
    }
    if (cxt->g0 < cxt->iterations) {
      int a = cxt->g0 + 1;
      cxt->g0 = a;
      cxt->cv.SignalAll();
      target += cxt->threads;
    }
  }
}

static bool G0GE2(TestContext *cxt) { return cxt->g0 >= 2; }

static void TestTime(TestContext *cxt, int c, bool use_cv) {
  ABSL_RAW_CHECK(cxt->iterations == 1, "TestTime should only use 1 iteration");
  ABSL_RAW_CHECK(cxt->threads > 2, "TestTime should use more than 2 threads");
  const bool kFalse = false;
  absl::Condition false_cond(&kFalse);
  absl::Condition g0ge2(G0GE2, cxt);
  if (c == 0) {
    absl::MutexLock l(&cxt->mu);

    absl::Time start = absl::Now();
    if (use_cv) {
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
    } else {
      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
                     "TestTime failed");
    }
    absl::Duration elapsed = absl::Now() - start;
    ABSL_RAW_CHECK(
        absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
        "TestTime failed");
    ABSL_RAW_CHECK(cxt->g0 == 1, "TestTime failed");

    start = absl::Now();
    if (use_cv) {
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
    } else {
      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
                     "TestTime failed");
    }
    elapsed = absl::Now() - start;
    ABSL_RAW_CHECK(
        absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
        "TestTime failed");
    cxt->g0++;
    if (use_cv) {
      cxt->cv.Signal();
    }

    start = absl::Now();
    if (use_cv) {
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(4));
    } else {
      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(4)),
                     "TestTime failed");
    }
    elapsed = absl::Now() - start;
    ABSL_RAW_CHECK(
        absl::Seconds(3.9) <= elapsed && elapsed <= absl::Seconds(6.0),
        "TestTime failed");
    ABSL_RAW_CHECK(cxt->g0 >= 3, "TestTime failed");

    start = absl::Now();
    if (use_cv) {
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
    } else {
      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
                     "TestTime failed");
    }
    elapsed = absl::Now() - start;
    ABSL_RAW_CHECK(
        absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0),
        "TestTime failed");
    if (use_cv) {
      cxt->cv.SignalAll();
    }

    start = absl::Now();
    if (use_cv) {
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1));
    } else {
      ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)),
                     "TestTime failed");
    }
    elapsed = absl::Now() - start;
    ABSL_RAW_CHECK(absl::Seconds(0.9) <= elapsed &&
                   elapsed <= absl::Seconds(2.0), "TestTime failed");
    ABSL_RAW_CHECK(cxt->g0 == cxt->threads, "TestTime failed");

  } else if (c == 1) {
    absl::MutexLock l(&cxt->mu);
    const absl::Time start = absl::Now();
    if (use_cv) {
      cxt->cv.WaitWithTimeout(&cxt->mu, absl::Milliseconds(500));
    } else {
      ABSL_RAW_CHECK(
          !cxt->mu.AwaitWithTimeout(false_cond, absl::Milliseconds(500)),
          "TestTime failed");
    }
    const absl::Duration elapsed = absl::Now() - start;
    ABSL_RAW_CHECK(
        absl::Seconds(0.4) <= elapsed && elapsed <= absl::Seconds(0.9),
        "TestTime failed");
    cxt->g0++;
  } else if (c == 2) {
    absl::MutexLock l(&cxt->mu);
    if (use_cv) {
      while (cxt->g0 < 2) {
        cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100));
      }
    } else {
      ABSL_RAW_CHECK(cxt->mu.AwaitWithTimeout(g0ge2, absl::Seconds(100)),
                     "TestTime failed");
    }
    cxt->g0++;
  } else {
    absl::MutexLock l(&cxt->mu);
    if (use_cv) {
      while (cxt->g0 < 2) {
        cxt->cv.Wait(&cxt->mu);
      }
    } else {
      cxt->mu.Await(g0ge2);
    }
    cxt->g0++;
  }
}

static void TestMuTime(TestContext *cxt, int c) { TestTime(cxt, c, false); }

static void TestCVTime(TestContext *cxt, int c) { TestTime(cxt, c, true); }

static void EndTest(int *c0, int *c1, absl::Mutex *mu, absl::CondVar *cv,
                    const std::function<void(int)>& cb) {
  mu->Lock();
  int c = (*c0)++;
  mu->Unlock();
  cb(c);
  absl::MutexLock l(mu);
  (*c1)++;
  cv->Signal();
}

// Code common to RunTest() and RunTestWithInvariantDebugging().
static int RunTestCommon(TestContext *cxt, void (*test)(TestContext *cxt, int),
                         int threads, int iterations, int operations) {
  absl::Mutex mu2;
  absl::CondVar cv2;
  int c0 = 0;
  int c1 = 0;
  cxt->g0 = 0;
  cxt->g1 = 0;
  cxt->iterations = iterations;
  cxt->threads = threads;
  absl::synchronization_internal::ThreadPool tp(threads);
  for (int i = 0; i != threads; i++) {
    tp.Schedule(std::bind(&EndTest, &c0, &c1, &mu2, &cv2,
                          std::function<void(int)>(
                              std::bind(test, cxt, std::placeholders::_1))));
  }
  mu2.Lock();
  while (c1 != threads) {
    cv2.Wait(&mu2);
  }
  mu2.Unlock();
  return cxt->g0;
}

// Basis for the parameterized tests configured below.
static int RunTest(void (*test)(TestContext *cxt, int), int threads,
                   int iterations, int operations) {
  TestContext cxt;
  return RunTestCommon(&cxt, test, threads, iterations, operations);
}

// Like RunTest(), but sets an invariant on the tested Mutex and
// verifies that the invariant check happened. The invariant function
// will be passed the TestContext* as its arg and must call
// SetInvariantChecked(true);
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
static int RunTestWithInvariantDebugging(void (*test)(TestContext *cxt, int),
                                         int threads, int iterations,
                                         int operations,
                                         void (*invariant)(void *)) {
  absl::EnableMutexInvariantDebugging(true);
  SetInvariantChecked(false);
  TestContext cxt;
  cxt.mu.EnableInvariantDebugging(invariant, &cxt);
  int ret = RunTestCommon(&cxt, test, threads, iterations, operations);
  ABSL_RAW_CHECK(GetInvariantChecked(), "Invariant not checked");
  absl::EnableMutexInvariantDebugging(false);  // Restore.
  return ret;
}
#endif

// --------------------------------------------------------
// Test for fix of bug in TryRemove()
struct TimeoutBugStruct {
  absl::Mutex mu;
  bool a;
  int a_waiter_count;
};

static void WaitForA(TimeoutBugStruct *x) {
  x->mu.LockWhen(absl::Condition(&x->a));
  x->a_waiter_count--;
  x->mu.Unlock();
}

static bool NoAWaiters(TimeoutBugStruct *x) { return x->a_waiter_count == 0; }

// Test that a CondVar.Wait(&mutex) can un-block a call to mutex.Await() in
// another thread.
TEST(Mutex, CondVarWaitSignalsAwait) {
  // Use a struct so the lock annotations apply.
  struct {
    absl::Mutex barrier_mu;
    bool barrier ABSL_GUARDED_BY(barrier_mu) = false;

    absl::Mutex release_mu;
    bool release ABSL_GUARDED_BY(release_mu) = false;
    absl::CondVar released_cv;
  } state;

  auto pool = CreateDefaultPool();

  // Thread A.  Sets barrier, waits for release using Mutex::Await, then
  // signals released_cv.
  pool->Schedule([&state] {
    state.release_mu.Lock();

    state.barrier_mu.Lock();
    state.barrier = true;
    state.barrier_mu.Unlock();

    state.release_mu.Await(absl::Condition(&state.release));
    state.released_cv.Signal();
    state.release_mu.Unlock();
  });

  state.barrier_mu.LockWhen(absl::Condition(&state.barrier));
  state.barrier_mu.Unlock();
  state.release_mu.Lock();
  // Thread A is now blocked on release by way of Mutex::Await().

  // Set release.  Calling released_cv.Wait() should un-block thread A,
  // which will signal released_cv.  If not, the test will hang.
  state.release = true;
  state.released_cv.Wait(&state.release_mu);
  state.release_mu.Unlock();
}

// Test that a CondVar.WaitWithTimeout(&mutex) can un-block a call to
// mutex.Await() in another thread.
TEST(Mutex, CondVarWaitWithTimeoutSignalsAwait) {
  // Use a struct so the lock annotations apply.
  struct {
    absl::Mutex barrier_mu;
    bool barrier ABSL_GUARDED_BY(barrier_mu) = false;

    absl::Mutex release_mu;
    bool release ABSL_GUARDED_BY(release_mu) = false;
    absl::CondVar released_cv;
  } state;

  auto pool = CreateDefaultPool();

  // Thread A.  Sets barrier, waits for release using Mutex::Await, then
  // signals released_cv.
  pool->Schedule([&state] {
    state.release_mu.Lock();

    state.barrier_mu.Lock();
    state.barrier = true;
    state.barrier_mu.Unlock();

    state.release_mu.Await(absl::Condition(&state.release));
    state.released_cv.Signal();
    state.release_mu.Unlock();
  });

  state.barrier_mu.LockWhen(absl::Condition(&state.barrier));
  state.barrier_mu.Unlock();
  state.release_mu.Lock();
  // Thread A is now blocked on release by way of Mutex::Await().

  // Set release.  Calling released_cv.Wait() should un-block thread A,
  // which will signal released_cv.  If not, the test will hang.
  state.release = true;
  EXPECT_TRUE(
      !state.released_cv.WaitWithTimeout(&state.release_mu, absl::Seconds(10)))
      << "; Unrecoverable test failure: CondVar::WaitWithTimeout did not "
         "unblock the absl::Mutex::Await call in another thread.";

  state.release_mu.Unlock();
}

// Test for regression of a bug in loop of TryRemove()
TEST(Mutex, MutexTimeoutBug) {
  auto tp = CreateDefaultPool();

  TimeoutBugStruct x;
  x.a = false;
  x.a_waiter_count = 2;
  tp->Schedule(std::bind(&WaitForA, &x));
  tp->Schedule(std::bind(&WaitForA, &x));
  absl::SleepFor(absl::Seconds(1));  // Allow first two threads to hang.
  // The skip field of the second will point to the first because there are
  // only two.

  // Now cause a thread waiting on an always-false to time out
  // This would deadlock when the bug was present.
  bool always_false = false;
  x.mu.LockWhenWithTimeout(absl::Condition(&always_false),
                           absl::Milliseconds(500));

  // if we get here, the bug is not present.   Cleanup the state.

  x.a = true;                                    // wakeup the two waiters on A
  x.mu.Await(absl::Condition(&NoAWaiters, &x));  // wait for them to exit
  x.mu.Unlock();
}

struct CondVarWaitDeadlock : testing::TestWithParam<int> {
  absl::Mutex mu;
  absl::CondVar cv;
  bool cond1 = false;
  bool cond2 = false;
  bool read_lock1;
  bool read_lock2;
  bool signal_unlocked;

  CondVarWaitDeadlock() {
    read_lock1 = GetParam() & (1 << 0);
    read_lock2 = GetParam() & (1 << 1);
    signal_unlocked = GetParam() & (1 << 2);
  }

  void Waiter1() {
    if (read_lock1) {
      mu.ReaderLock();
      while (!cond1) {
        cv.Wait(&mu);
      }
      mu.ReaderUnlock();
    } else {
      mu.Lock();
      while (!cond1) {
        cv.Wait(&mu);
      }
      mu.Unlock();
    }
  }

  void Waiter2() {
    if (read_lock2) {
      mu.ReaderLockWhen(absl::Condition(&cond2));
      mu.ReaderUnlock();
    } else {
      mu.LockWhen(absl::Condition(&cond2));
      mu.Unlock();
    }
  }
};

// Test for a deadlock bug in Mutex::Fer().
// The sequence of events that lead to the deadlock is:
// 1. waiter1 blocks on cv in read mode (mu bits = 0).
// 2. waiter2 blocks on mu in either mode (mu bits = kMuWait).
// 3. main thread locks mu, sets cond1, unlocks mu (mu bits = kMuWait).
// 4. main thread signals on cv and this eventually calls Mutex::Fer().
// Currently Fer wakes waiter1 since mu bits = kMuWait (mutex is unlocked).
// Before the bug fix Fer neither woke waiter1 nor queued it on mutex,
// which resulted in deadlock.
TEST_P(CondVarWaitDeadlock, Test) {
  auto waiter1 = CreatePool(1);
  auto waiter2 = CreatePool(1);
  waiter1->Schedule([this] { this->Waiter1(); });
  waiter2->Schedule([this] { this->Waiter2(); });

  // Wait while threads block (best-effort is fine).
  absl::SleepFor(absl::Milliseconds(100));

  // Wake condwaiter.
  mu.Lock();
  cond1 = true;
  if (signal_unlocked) {
    mu.Unlock();
    cv.Signal();
  } else {
    cv.Signal();
    mu.Unlock();
  }
  waiter1.reset();  // "join" waiter1

  // Wake waiter.
  mu.Lock();
  cond2 = true;
  mu.Unlock();
  waiter2.reset();  // "join" waiter2
}

INSTANTIATE_TEST_SUITE_P(CondVarWaitDeadlockTest, CondVarWaitDeadlock,
                         ::testing::Range(0, 8),
                         ::testing::PrintToStringParamName());

// --------------------------------------------------------
// Test for fix of bug in DequeueAllWakeable()
// Bug was that if there was more than one waiting reader
// and all should be woken, the most recently blocked one
// would not be.

struct DequeueAllWakeableBugStruct {
  absl::Mutex mu;
  absl::Mutex mu2;       // protects all fields below
  int unfinished_count;  // count of unfinished readers; under mu2
  bool done1;            // unfinished_count == 0; under mu2
  int finished_count;    // count of finished readers, under mu2
  bool done2;            // finished_count == 0; under mu2
};

// Test for regression of a bug in loop of DequeueAllWakeable()
static void AcquireAsReader(DequeueAllWakeableBugStruct *x) {
  x->mu.ReaderLock();
  x->mu2.Lock();
  x->unfinished_count--;
  x->done1 = (x->unfinished_count == 0);
  x->mu2.Unlock();
  // make sure that both readers acquired mu before we release it.
  absl::SleepFor(absl::Seconds(2));
  x->mu.ReaderUnlock();

  x->mu2.Lock();
  x->finished_count--;
  x->done2 = (x->finished_count == 0);
  x->mu2.Unlock();
}

// Test for regression of a bug in loop of DequeueAllWakeable()
TEST(Mutex, MutexReaderWakeupBug) {
  auto tp = CreateDefaultPool();

  DequeueAllWakeableBugStruct x;
  x.unfinished_count = 2;
  x.done1 = false;
  x.finished_count = 2;
  x.done2 = false;
  x.mu.Lock();  // acquire mu exclusively
  // queue two thread that will block on reader locks on x.mu
  tp->Schedule(std::bind(&AcquireAsReader, &x));
  tp->Schedule(std::bind(&AcquireAsReader, &x));
  absl::SleepFor(absl::Seconds(1));  // give time for reader threads to block
  x.mu.Unlock();                     // wake them up

  // both readers should finish promptly
  EXPECT_TRUE(
      x.mu2.LockWhenWithTimeout(absl::Condition(&x.done1), absl::Seconds(10)));
  x.mu2.Unlock();

  EXPECT_TRUE(
      x.mu2.LockWhenWithTimeout(absl::Condition(&x.done2), absl::Seconds(10)));
  x.mu2.Unlock();
}

struct LockWhenTestStruct {
  absl::Mutex mu1;
  bool cond = false;

  absl::Mutex mu2;
  bool waiting = false;
};

static bool LockWhenTestIsCond(LockWhenTestStruct* s) {
  s->mu2.Lock();
  s->waiting = true;
  s->mu2.Unlock();
  return s->cond;
}

static void LockWhenTestWaitForIsCond(LockWhenTestStruct* s) {
  s->mu1.LockWhen(absl::Condition(&LockWhenTestIsCond, s));
  s->mu1.Unlock();
}

TEST(Mutex, LockWhen) {
  LockWhenTestStruct s;

  std::thread t(LockWhenTestWaitForIsCond, &s);
  s.mu2.LockWhen(absl::Condition(&s.waiting));
  s.mu2.Unlock();

  s.mu1.Lock();
  s.cond = true;
  s.mu1.Unlock();

  t.join();
}

TEST(Mutex, LockWhenGuard) {
  absl::Mutex mu;
  int n = 30;
  bool done = false;

  // We don't inline the lambda because the conversion is ambiguous in MSVC.
  bool (*cond_eq_10)(int *) = [](int *p) { return *p == 10; };
  bool (*cond_lt_10)(int *) = [](int *p) { return *p < 10; };

  std::thread t1([&mu, &n, &done, cond_eq_10]() {
    absl::ReaderMutexLock lock(&mu, absl::Condition(cond_eq_10, &n));
    done = true;
  });

  std::thread t2[10];
  for (std::thread &t : t2) {
    t = std::thread([&mu, &n, cond_lt_10]() {
      absl::WriterMutexLock lock(&mu, absl::Condition(cond_lt_10, &n));
      ++n;
    });
  }

  {
    absl::MutexLock lock(&mu);
    n = 0;
  }

  for (std::thread &t : t2) t.join();
  t1.join();

  EXPECT_TRUE(done);
  EXPECT_EQ(n, 10);
}

// --------------------------------------------------------
// The following test requires Mutex::ReaderLock to be a real shared
// lock, which is not the case in all builds.
#if !defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE)

// Test for fix of bug in UnlockSlow() that incorrectly decremented the reader
// count when putting a thread to sleep waiting for a false condition when the
// lock was not held.

// For this bug to strike, we make a thread wait on a free mutex with no
// waiters by causing its wakeup condition to be false.   Then the
// next two acquirers must be readers.   The bug causes the lock
// to be released when one reader unlocks, rather than both.

struct ReaderDecrementBugStruct {
  bool cond;  // to delay first thread (under mu)
  int done;   // reference count (under mu)
  absl::Mutex mu;

  bool waiting_on_cond;   // under mu2
  bool have_reader_lock;  // under mu2
  bool complete;          // under mu2
  absl::Mutex mu2;        // > mu
};

// L >= mu, L < mu_waiting_on_cond
static bool IsCond(void *v) {
  ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v);
  x->mu2.Lock();
  x->waiting_on_cond = true;
  x->mu2.Unlock();
  return x->cond;
}

// L >= mu
static bool AllDone(void *v) {
  ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v);
  return x->done == 0;
}

// L={}
static void WaitForCond(ReaderDecrementBugStruct *x) {
  absl::Mutex dummy;
  absl::MutexLock l(&dummy);
  x->mu.LockWhen(absl::Condition(&IsCond, x));
  x->done--;
  x->mu.Unlock();
}

// L={}
static void GetReadLock(ReaderDecrementBugStruct *x) {
  x->mu.ReaderLock();
  x->mu2.Lock();
  x->have_reader_lock = true;
  x->mu2.Await(absl::Condition(&x->complete));
  x->mu2.Unlock();
  x->mu.ReaderUnlock();
  x->mu.Lock();
  x->done--;
  x->mu.Unlock();
}

// Test for reader counter being decremented incorrectly by waiter
// with false condition.
TEST(Mutex, MutexReaderDecrementBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
  ReaderDecrementBugStruct x;
  x.cond = false;
  x.waiting_on_cond = false;
  x.have_reader_lock = false;
  x.complete = false;
  x.done = 2;  // initial ref count

  // Run WaitForCond() and wait for it to sleep
  std::thread thread1(WaitForCond, &x);
  x.mu2.LockWhen(absl::Condition(&x.waiting_on_cond));
  x.mu2.Unlock();

  // Run GetReadLock(), and wait for it to get the read lock
  std::thread thread2(GetReadLock, &x);
  x.mu2.LockWhen(absl::Condition(&x.have_reader_lock));
  x.mu2.Unlock();

  // Get the reader lock ourselves, and release it.
  x.mu.ReaderLock();
  x.mu.ReaderUnlock();

  // The lock should be held in read mode by GetReadLock().
  // If we have the bug, the lock will be free.
  x.mu.AssertReaderHeld();

  // Wake up all the threads.
  x.mu2.Lock();
  x.complete = true;
  x.mu2.Unlock();

  // TODO(delesley): turn on analysis once lock upgrading is supported.
  // (This call upgrades the lock from shared to exclusive.)
  x.mu.Lock();
  x.cond = true;
  x.mu.Await(absl::Condition(&AllDone, &x));
  x.mu.Unlock();

  thread1.join();
  thread2.join();
}
#endif  // !ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE

// Test that we correctly handle the situation when a lock is
// held and then destroyed (w/o unlocking).
#ifdef ABSL_HAVE_THREAD_SANITIZER
// TSAN reports errors when locked Mutexes are destroyed.
TEST(Mutex, DISABLED_LockedMutexDestructionBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
#else
TEST(Mutex, LockedMutexDestructionBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
#endif
  for (int i = 0; i != 10; i++) {
    // Create, lock and destroy 10 locks.
    const int kNumLocks = 10;
    auto mu = absl::make_unique<absl::Mutex[]>(kNumLocks);
    for (int j = 0; j != kNumLocks; j++) {
      if ((j % 2) == 0) {
        mu[j].WriterLock();
      } else {
        mu[j].ReaderLock();
      }
    }
  }
}

struct True {
  template <class... Args>
  bool operator()(Args...) const {
    return true;
  }
};

struct DerivedTrue : True {};

TEST(Mutex, FunctorCondition) {
  {  // Variadic
    True f;
    EXPECT_TRUE(absl::Condition(&f).Eval());
  }

  {  // Inherited
    DerivedTrue g;
    EXPECT_TRUE(absl::Condition(&g).Eval());
  }

  {  // lambda
    int value = 3;
    auto is_zero = [&value] { return value == 0; };
    absl::Condition c(&is_zero);
    EXPECT_FALSE(c.Eval());
    value = 0;
    EXPECT_TRUE(c.Eval());
  }

  {  // bind
    int value = 0;
    auto is_positive = std::bind(std::less<int>(), 0, std::cref(value));
    absl::Condition c(&is_positive);
    EXPECT_FALSE(c.Eval());
    value = 1;
    EXPECT_TRUE(c.Eval());
  }

  {  // std::function
    int value = 3;
    std::function<bool()> is_zero = [&value] { return value == 0; };
    absl::Condition c(&is_zero);
    EXPECT_FALSE(c.Eval());
    value = 0;
    EXPECT_TRUE(c.Eval());
  }
}

// --------------------------------------------------------
// Test for bug with pattern of readers using a condvar.  The bug was that if a
// reader went to sleep on a condition variable while one or more other readers
// held the lock, but there were no waiters, the reader count (held in the
// mutex word) would be lost.  (This is because Enqueue() had at one time
// always placed the thread on the Mutex queue.  Later (CL 4075610), to
// tolerate re-entry into Mutex from a Condition predicate, Enqueue() was
// changed so that it could also place a thread on a condition-variable.  This
// introduced the case where Enqueue() returned with an empty queue, and this
// case was handled incorrectly in one place.)

static void ReaderForReaderOnCondVar(absl::Mutex *mu, absl::CondVar *cv,
                                     int *running) {
  std::random_device dev;
  std::mt19937 gen(dev());
  std::uniform_int_distribution<int> random_millis(0, 15);
  mu->ReaderLock();
  while (*running == 3) {
    absl::SleepFor(absl::Milliseconds(random_millis(gen)));
    cv->WaitWithTimeout(mu, absl::Milliseconds(random_millis(gen)));
  }
  mu->ReaderUnlock();
  mu->Lock();
  (*running)--;
  mu->Unlock();
}

static bool IntIsZero(int *x) { return *x == 0; }

// Test for reader waiting condition variable when there are other readers
// but no waiters.
TEST(Mutex, TestReaderOnCondVar) {
  auto tp = CreateDefaultPool();
  absl::Mutex mu;
  absl::CondVar cv;
  int running = 3;
  tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running));
  tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running));
  absl::SleepFor(absl::Seconds(2));
  mu.Lock();
  running--;
  mu.Await(absl::Condition(&IntIsZero, &running));
  mu.Unlock();
}

// --------------------------------------------------------
struct AcquireFromConditionStruct {
  absl::Mutex mu0;   // protects value, done
  int value;         // times condition function is called; under mu0,
  bool done;         // done with test?  under mu0
  absl::Mutex mu1;   // used to attempt to mess up state of mu0
  absl::CondVar cv;  // so the condition function can be invoked from
                     // CondVar::Wait().
};

static bool ConditionWithAcquire(AcquireFromConditionStruct *x) {
  x->value++;  // count times this function is called

  if (x->value == 2 || x->value == 3) {
    // On the second and third invocation of this function, sleep for 100ms,
    // but with the side-effect of altering the state of a Mutex other than
    // than one for which this is a condition.  The spec now explicitly allows
    // this side effect; previously it did not.  it was illegal.
    bool always_false = false;
    x->mu1.LockWhenWithTimeout(absl::Condition(&always_false),
                               absl::Milliseconds(100));
    x->mu1.Unlock();
  }
  ABSL_RAW_CHECK(x->value < 4, "should not be invoked a fourth time");

  // We arrange for the condition to return true on only the 2nd and 3rd calls.
  return x->value == 2 || x->value == 3;
}

static void WaitForCond2(AcquireFromConditionStruct *x) {
  // wait for cond0 to become true
  x->mu0.LockWhen(absl::Condition(&ConditionWithAcquire, x));
  x->done = true;
  x->mu0.Unlock();
}

// Test for Condition whose function acquires other Mutexes
TEST(Mutex, AcquireFromCondition) {
  auto tp = CreateDefaultPool();

  AcquireFromConditionStruct x;
  x.value = 0;
  x.done = false;
  tp->Schedule(
      std::bind(&WaitForCond2, &x));  // run WaitForCond2() in a thread T
  // T will hang because the first invocation of ConditionWithAcquire() will
  // return false.
  absl::SleepFor(absl::Milliseconds(500));  // allow T time to hang

  x.mu0.Lock();
  x.cv.WaitWithTimeout(&x.mu0, absl::Milliseconds(500));  // wake T
  // T will be woken because the Wait() will call ConditionWithAcquire()
  // for the second time, and it will return true.

  x.mu0.Unlock();

  // T will then acquire the lock and recheck its own condition.
  // It will find the condition true, as this is the third invocation,
  // but the use of another Mutex by the calling function will
  // cause the old mutex implementation to think that the outer
  // LockWhen() has timed out because the inner LockWhenWithTimeout() did.
  // T will then check the condition a fourth time because it finds a
  // timeout occurred.  This should not happen in the new
  // implementation that allows the Condition function to use Mutexes.

  // It should also succeed, even though the Condition function
  // is being invoked from CondVar::Wait, and thus this thread
  // is conceptually waiting both on the condition variable, and on mu2.

  x.mu0.LockWhen(absl::Condition(&x.done));
  x.mu0.Unlock();
}

TEST(Mutex, DeadlockDetector) {
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);

  // check that we can call ForgetDeadlockInfo() on a lock with the lock held
  absl::Mutex m1;
  absl::Mutex m2;
  absl::Mutex m3;
  absl::Mutex m4;

  m1.Lock();  // m1 gets ID1
  m2.Lock();  // m2 gets ID2
  m3.Lock();  // m3 gets ID3
  m3.Unlock();
  m2.Unlock();
  // m1 still held
  m1.ForgetDeadlockInfo();  // m1 loses ID
  m2.Lock();                // m2 gets ID2
  m3.Lock();                // m3 gets ID3
  m4.Lock();                // m4 gets ID4
  m3.Unlock();
  m2.Unlock();
  m4.Unlock();
  m1.Unlock();
}

// Bazel has a test "warning" file that programs can write to if the
// test should pass with a warning.  This class disables the warning
// file until it goes out of scope.
class ScopedDisableBazelTestWarnings {
 public:
  ScopedDisableBazelTestWarnings() {
#ifdef _WIN32
    char file[MAX_PATH];
    if (GetEnvironmentVariableA(kVarName, file, sizeof(file)) < sizeof(file)) {
      warnings_output_file_ = file;
      SetEnvironmentVariableA(kVarName, nullptr);
    }
#else
    const char *file = getenv(kVarName);
    if (file != nullptr) {
      warnings_output_file_ = file;
      unsetenv(kVarName);
    }
#endif
  }

  ~ScopedDisableBazelTestWarnings() {
    if (!warnings_output_file_.empty()) {
#ifdef _WIN32
      SetEnvironmentVariableA(kVarName, warnings_output_file_.c_str());
#else
      setenv(kVarName, warnings_output_file_.c_str(), 0);
#endif
    }
  }

 private:
  static const char kVarName[];
  std::string warnings_output_file_;
};
const char ScopedDisableBazelTestWarnings::kVarName[] =
    "TEST_WARNINGS_OUTPUT_FILE";

#ifdef ABSL_HAVE_THREAD_SANITIZER
// This test intentionally creates deadlocks to test the deadlock detector.
TEST(Mutex, DISABLED_DeadlockDetectorBazelWarning) {
#else
TEST(Mutex, DeadlockDetectorBazelWarning) {
#endif
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kReport);

  // Cause deadlock detection to detect something, if it's
  // compiled in and enabled.  But turn off the bazel warning.
  ScopedDisableBazelTestWarnings disable_bazel_test_warnings;

  absl::Mutex mu0;
  absl::Mutex mu1;
  bool got_mu0 = mu0.TryLock();
  mu1.Lock();  // acquire mu1 while holding mu0
  if (got_mu0) {
    mu0.Unlock();
  }
  if (mu0.TryLock()) {  // try lock shouldn't cause deadlock detector to fire
    mu0.Unlock();
  }
  mu0.Lock();  // acquire mu0 while holding mu1; should get one deadlock
               // report here
  mu0.Unlock();
  mu1.Unlock();

  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
}

// This test is tagged with NO_THREAD_SAFETY_ANALYSIS because the
// annotation-based static thread-safety analysis is not currently
// predicate-aware and cannot tell if the two for-loops that acquire and
// release the locks have the same predicates.
TEST(Mutex, DeadlockDetectorStressTest) ABSL_NO_THREAD_SAFETY_ANALYSIS {
  // Stress test: Here we create a large number of locks and use all of them.
  // If a deadlock detector keeps a full graph of lock acquisition order,
  // it will likely be too slow for this test to pass.
  const int n_locks = 1 << 17;
  auto array_of_locks = absl::make_unique<absl::Mutex[]>(n_locks);
  for (int i = 0; i < n_locks; i++) {
    int end = std::min(n_locks, i + 5);
    // acquire and then release locks i, i+1, ..., i+4
    for (int j = i; j < end; j++) {
      array_of_locks[j].Lock();
    }
    for (int j = i; j < end; j++) {
      array_of_locks[j].Unlock();
    }
  }
}

#ifdef ABSL_HAVE_THREAD_SANITIZER
// TSAN reports errors when locked Mutexes are destroyed.
TEST(Mutex, DISABLED_DeadlockIdBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
#else
TEST(Mutex, DeadlockIdBug) ABSL_NO_THREAD_SAFETY_ANALYSIS {
#endif
  // Test a scenario where a cached deadlock graph node id in the
  // list of held locks is not invalidated when the corresponding
  // mutex is deleted.
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);
  // Mutex that will be destroyed while being held
  absl::Mutex *a = new absl::Mutex;
  // Other mutexes needed by test
  absl::Mutex b, c;

  // Hold mutex.
  a->Lock();

  // Force deadlock id assignment by acquiring another lock.
  b.Lock();
  b.Unlock();

  // Delete the mutex. The Mutex destructor tries to remove held locks,
  // but the attempt isn't foolproof.  It can fail if:
  //   (a) Deadlock detection is currently disabled.
  //   (b) The destruction is from another thread.
  // We exploit (a) by temporarily disabling deadlock detection.
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kIgnore);
  delete a;
  absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort);

  // Now acquire another lock which will force a deadlock id assignment.
  // We should end up getting assigned the same deadlock id that was
  // freed up when "a" was deleted, which will cause a spurious deadlock
  // report if the held lock entry for "a" was not invalidated.
  c.Lock();
  c.Unlock();
}

// --------------------------------------------------------
// Test for timeouts/deadlines on condition waits that are specified using
// absl::Duration and absl::Time.  For each waiting function we test with
// a timeout/deadline that has already expired/passed, one that is infinite
// and so never expires/passes, and one that will expire/pass in the near
// future.

static absl::Duration TimeoutTestAllowedSchedulingDelay() {
  // Note: we use a function here because Microsoft Visual Studio fails to
  // properly initialize constexpr static absl::Duration variables.
  return absl::Milliseconds(150);
}

// Returns true if `actual_delay` is close enough to `expected_delay` to pass
// the timeouts/deadlines test.  Otherwise, logs warnings and returns false.
ABSL_MUST_USE_RESULT
static bool DelayIsWithinBounds(absl::Duration expected_delay,
                                absl::Duration actual_delay) {
  bool pass = true;
  // Do not allow the observed delay to be less than expected.  This may occur
  // in practice due to clock skew or when the synchronization primitives use a
  // different clock than absl::Now(), but these cases should be handled by the
  // the retry mechanism in each TimeoutTest.
  if (actual_delay < expected_delay) {
    ABSL_RAW_LOG(WARNING,
                 "Actual delay %s was too short, expected %s (difference %s)",
                 absl::FormatDuration(actual_delay).c_str(),
                 absl::FormatDuration(expected_delay).c_str(),
                 absl::FormatDuration(actual_delay - expected_delay).c_str());
    pass = false;
  }
  // If the expected delay is <= zero then allow a small error tolerance, since
  // we do not expect context switches to occur during test execution.
  // Otherwise, thread scheduling delays may be substantial in rare cases, so
  // tolerate up to kTimeoutTestAllowedSchedulingDelay of error.
  absl::Duration tolerance = expected_delay <= absl::ZeroDuration()
                                 ? absl::Milliseconds(10)
                                 : TimeoutTestAllowedSchedulingDelay();
  if (actual_delay > expected_delay + tolerance) {
    ABSL_RAW_LOG(WARNING,
                 "Actual delay %s was too long, expected %s (difference %s)",
                 absl::FormatDuration(actual_delay).c_str(),
                 absl::FormatDuration(expected_delay).c_str(),
                 absl::FormatDuration(actual_delay - expected_delay).c_str());
    pass = false;
  }
  return pass;
}

// Parameters for TimeoutTest, below.
struct TimeoutTestParam {
  // The file and line number (used for logging purposes only).
  const char *from_file;
  int from_line;

  // Should the absolute deadline API based on absl::Time be tested?  If false,
  // the relative deadline API based on absl::Duration is tested.
  bool use_absolute_deadline;

  // The deadline/timeout used when calling the API being tested
  // (e.g. Mutex::LockWhenWithDeadline).
  absl::Duration wait_timeout;

  // The delay before the condition will be set true by the test code.  If zero
  // or negative, the condition is set true immediately (before calling the API
  // being tested).  Otherwise, if infinite, the condition is never set true.
  // Otherwise a closure is scheduled for the future that sets the condition
  // true.
  absl::Duration satisfy_condition_delay;

  // The expected result of the condition after the call to the API being
  // tested. Generally `true` means the condition was true when the API returns,
  // `false` indicates an expected timeout.
  bool expected_result;

  // The expected delay before the API under test returns.  This is inherently
  // flaky, so some slop is allowed (see `DelayIsWithinBounds` above), and the
  // test keeps trying indefinitely until this constraint passes.
  absl::Duration expected_delay;
};

// Print a `TimeoutTestParam` to a debug log.
std::ostream &operator<<(std::ostream &os, const TimeoutTestParam &param) {
  return os << "from: " << param.from_file << ":" << param.from_line
            << " use_absolute_deadline: "
            << (param.use_absolute_deadline ? "true" : "false")
            << " wait_timeout: " << param.wait_timeout
            << " satisfy_condition_delay: " << param.satisfy_condition_delay
            << " expected_result: "
            << (param.expected_result ? "true" : "false")
            << " expected_delay: " << param.expected_delay;
}

std::string FormatString(const TimeoutTestParam &param) {
  std::ostringstream os;
  os << param;
  return os.str();
}

// Like `thread::Executor::ScheduleAt` except:
// a) Delays zero or negative are executed immediately in the current thread.
// b) Infinite delays are never scheduled.
// c) Calls this test's `ScheduleAt` helper instead of using `pool` directly.
static void RunAfterDelay(absl::Duration delay,
                          absl::synchronization_internal::ThreadPool *pool,
                          const std::function<void()> &callback) {
  if (delay <= absl::ZeroDuration()) {
    callback();  // immediate
  } else if (delay != absl::InfiniteDuration()) {
    ScheduleAfter(pool, delay, callback);
  }
}

class TimeoutTest : public ::testing::Test,
                    public ::testing::WithParamInterface<TimeoutTestParam> {};

std::vector<TimeoutTestParam> MakeTimeoutTestParamValues() {
  // The `finite` delay is a finite, relatively short, delay.  We make it larger
  // than our allowed scheduling delay (slop factor) to avoid confusion when
  // diagnosing test failures.  The other constants here have clear meanings.
  const absl::Duration finite = 3 * TimeoutTestAllowedSchedulingDelay();
  const absl::Duration never = absl::InfiniteDuration();
  const absl::Duration negative = -absl::InfiniteDuration();
  const absl::Duration immediate = absl::ZeroDuration();

  // Every test case is run twice; once using the absolute deadline API and once
  // using the relative timeout API.
  std::vector<TimeoutTestParam> values;
  for (bool use_absolute_deadline : {false, true}) {
    // Tests with a negative timeout (deadline in the past), which should
    // immediately return current state of the condition.

    // The condition is already true:
    values.push_back(TimeoutTestParam{
        __FILE__, __LINE__, use_absolute_deadline,
        negative,   // wait_timeout
        immediate,  // satisfy_condition_delay
        true,       // expected_result
        immediate,  // expected_delay
    });

    // The condition becomes true, but the timeout has already expired:
    values.push_back(TimeoutTestParam{
        __FILE__, __LINE__, use_absolute_deadline,
        negative,  // wait_timeout
        finite,    // satisfy_condition_delay
        false,     // expected_result
        immediate  // expected_delay
    });

    // The condition never becomes true:
    values.push_back(TimeoutTestParam{
        __FILE__, __LINE__, use_absolute_deadline,
        negative,  // wait_timeout
        never,     // satisfy_condition_delay
        false,     // expected_result
        immediate  // expected_delay
    });

    // Tests with an infinite timeout (deadline in the infinite future), which
    // should only return when the condition becomes true.

    // The condition is already true:
    values.push_back(TimeoutTestParam{
        __FILE__, __LINE__, use_absolute_deadline,
        never,      // wait_timeout
        immediate,  // satisfy_condition_delay
        true,       // expected_result
        immediate   // expected_delay
    });

    // The condition becomes true before the (infinite) expiry:
    values.push_back(TimeoutTestParam{
        __FILE__, __LINE__, use_absolute_deadline,
        never,   // wait_timeout
        finite,  // satisfy_condition_delay
        true,    // expected_result
        finite,  // expected_delay
    });

    // Tests with a (small) finite timeout (deadline soon), with the condition
    // becoming true both before and after its expiry.

    // The condition is already true:
    values.push_back(TimeoutTestParam{
        __FILE__, __LINE__, use_absolute_deadline,
        never,      // wait_timeout
        immediate,  // satisfy_condition_delay
        true,       // expected_result
        immediate   // expected_delay
    });

    // The condition becomes true before the expiry:
    values.push_back(TimeoutTestParam{
        __FILE__, __LINE__, use_absolute_deadline,
        finite * 2,  // wait_timeout
        finite,      // satisfy_condition_delay
        true,        // expected_result
        finite       // expected_delay
    });

    // The condition becomes true, but the timeout has already expired:
    values.push_back(TimeoutTestParam{
        __FILE__, __LINE__, use_absolute_deadline,
        finite,      // wait_timeout
        finite * 2,  // satisfy_condition_delay
        false,       // expected_result
        finite       // expected_delay
    });

    // The condition never becomes true:
    values.push_back(TimeoutTestParam{
        __FILE__, __LINE__, use_absolute_deadline,
        finite,  // wait_timeout
        never,   // satisfy_condition_delay
        false,   // expected_result
        finite   // expected_delay
    });
  }
  return values;
}

// Instantiate `TimeoutTest` with `MakeTimeoutTestParamValues()`.
INSTANTIATE_TEST_SUITE_P(All, TimeoutTest,
                         testing::ValuesIn(MakeTimeoutTestParamValues()));

TEST_P(TimeoutTest, Await) {
  const TimeoutTestParam params = GetParam();
  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());

  // Because this test asserts bounds on scheduling delays it is flaky.  To
  // compensate it loops forever until it passes.  Failures express as test
  // timeouts, in which case the test log can be used to diagnose the issue.
  for (int attempt = 1;; ++attempt) {
    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);

    absl::Mutex mu;
    bool value = false;  // condition value (under mu)

    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
        CreateDefaultPool();
    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
      absl::MutexLock l(&mu);
      value = true;
    });

    absl::MutexLock lock(&mu);
    absl::Time start_time = absl::Now();
    absl::Condition cond(&value);
    bool result =
        params.use_absolute_deadline
            ? mu.AwaitWithDeadline(cond, start_time + params.wait_timeout)
            : mu.AwaitWithTimeout(cond, params.wait_timeout);
    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
      EXPECT_EQ(params.expected_result, result);
      break;
    }
  }
}

TEST_P(TimeoutTest, LockWhen) {
  const TimeoutTestParam params = GetParam();
  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());

  // Because this test asserts bounds on scheduling delays it is flaky.  To
  // compensate it loops forever until it passes.  Failures express as test
  // timeouts, in which case the test log can be used to diagnose the issue.
  for (int attempt = 1;; ++attempt) {
    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);

    absl::Mutex mu;
    bool value = false;  // condition value (under mu)

    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
        CreateDefaultPool();
    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
      absl::MutexLock l(&mu);
      value = true;
    });

    absl::Time start_time = absl::Now();
    absl::Condition cond(&value);
    bool result =
        params.use_absolute_deadline
            ? mu.LockWhenWithDeadline(cond, start_time + params.wait_timeout)
            : mu.LockWhenWithTimeout(cond, params.wait_timeout);
    mu.Unlock();

    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
      EXPECT_EQ(params.expected_result, result);
      break;
    }
  }
}

TEST_P(TimeoutTest, ReaderLockWhen) {
  const TimeoutTestParam params = GetParam();
  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());

  // Because this test asserts bounds on scheduling delays it is flaky.  To
  // compensate it loops forever until it passes.  Failures express as test
  // timeouts, in which case the test log can be used to diagnose the issue.
  for (int attempt = 0;; ++attempt) {
    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);

    absl::Mutex mu;
    bool value = false;  // condition value (under mu)

    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
        CreateDefaultPool();
    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
      absl::MutexLock l(&mu);
      value = true;
    });

    absl::Time start_time = absl::Now();
    bool result =
        params.use_absolute_deadline
            ? mu.ReaderLockWhenWithDeadline(absl::Condition(&value),
                                            start_time + params.wait_timeout)
            : mu.ReaderLockWhenWithTimeout(absl::Condition(&value),
                                           params.wait_timeout);
    mu.ReaderUnlock();

    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
      EXPECT_EQ(params.expected_result, result);
      break;
    }
  }
}

TEST_P(TimeoutTest, Wait) {
  const TimeoutTestParam params = GetParam();
  ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str());

  // Because this test asserts bounds on scheduling delays it is flaky.  To
  // compensate it loops forever until it passes.  Failures express as test
  // timeouts, in which case the test log can be used to diagnose the issue.
  for (int attempt = 0;; ++attempt) {
    ABSL_RAW_LOG(INFO, "Attempt %d", attempt);

    absl::Mutex mu;
    bool value = false;  // condition value (under mu)
    absl::CondVar cv;    // signals a change of `value`

    std::unique_ptr<absl::synchronization_internal::ThreadPool> pool =
        CreateDefaultPool();
    RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] {
      absl::MutexLock l(&mu);
      value = true;
      cv.Signal();
    });

    absl::MutexLock lock(&mu);
    absl::Time start_time = absl::Now();
    absl::Duration timeout = params.wait_timeout;
    absl::Time deadline = start_time + timeout;
    while (!value) {
      if (params.use_absolute_deadline ? cv.WaitWithDeadline(&mu, deadline)
                                       : cv.WaitWithTimeout(&mu, timeout)) {
        break;  // deadline/timeout exceeded
      }
      timeout = deadline - absl::Now();  // recompute
    }
    bool result = value;  // note: `mu` is still held

    if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) {
      EXPECT_EQ(params.expected_result, result);
      break;
    }
  }
}

TEST(Mutex, Logging) {
  // Allow user to look at logging output
  absl::Mutex logged_mutex;
  logged_mutex.EnableDebugLog("fido_mutex");
  absl::CondVar logged_cv;
  logged_cv.EnableDebugLog("rover_cv");
  logged_mutex.Lock();
  logged_cv.WaitWithTimeout(&logged_mutex, absl::Milliseconds(20));
  logged_mutex.Unlock();
  logged_mutex.ReaderLock();
  logged_mutex.ReaderUnlock();
  logged_mutex.Lock();
  logged_mutex.Unlock();
  logged_cv.Signal();
  logged_cv.SignalAll();
}

// --------------------------------------------------------

// Generate the vector of thread counts for tests parameterized on thread count.
static std::vector<int> AllThreadCountValues() {
  if (kExtendedTest) {
    return {2, 4, 8, 10, 16, 20, 24, 30, 32};
  }
  return {2, 4, 10};
}

// A test fixture parameterized by thread count.
class MutexVariableThreadCountTest : public ::testing::TestWithParam<int> {};

// Instantiate the above with AllThreadCountOptions().
INSTANTIATE_TEST_SUITE_P(ThreadCounts, MutexVariableThreadCountTest,
                         ::testing::ValuesIn(AllThreadCountValues()),
                         ::testing::PrintToStringParamName());

// Reduces iterations by some factor for slow platforms
// (determined empirically).
static int ScaleIterations(int x) {
  // ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE is set in the implementation
  // of Mutex that uses either std::mutex or pthread_mutex_t. Use
  // these as keys to determine the slow implementation.
#if defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE)
  return x / 10;
#else
  return x;
#endif
}

TEST_P(MutexVariableThreadCountTest, Mutex) {
  int threads = GetParam();
  int iterations = ScaleIterations(10000000) / threads;
  int operations = threads * iterations;
  EXPECT_EQ(RunTest(&TestMu, threads, iterations, operations), operations);
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
  iterations = std::min(iterations, 10);
  operations = threads * iterations;
  EXPECT_EQ(RunTestWithInvariantDebugging(&TestMu, threads, iterations,
                                          operations, CheckSumG0G1),
            operations);
#endif
}

TEST_P(MutexVariableThreadCountTest, Try) {
  int threads = GetParam();
  int iterations = 1000000 / threads;
  int operations = iterations * threads;
  EXPECT_EQ(RunTest(&TestTry, threads, iterations, operations), operations);
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
  iterations = std::min(iterations, 10);
  operations = threads * iterations;
  EXPECT_EQ(RunTestWithInvariantDebugging(&TestTry, threads, iterations,
                                          operations, CheckSumG0G1),
            operations);
#endif
}

TEST_P(MutexVariableThreadCountTest, R20ms) {
  int threads = GetParam();
  int iterations = 100;
  int operations = iterations * threads;
  EXPECT_EQ(RunTest(&TestR20ms, threads, iterations, operations), 0);
}

TEST_P(MutexVariableThreadCountTest, RW) {
  int threads = GetParam();
  int iterations = ScaleIterations(20000000) / threads;
  int operations = iterations * threads;
  EXPECT_EQ(RunTest(&TestRW, threads, iterations, operations), operations / 2);
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED)
  iterations = std::min(iterations, 10);
  operations = threads * iterations;
  EXPECT_EQ(RunTestWithInvariantDebugging(&TestRW, threads, iterations,
                                          operations, CheckSumG0G1),
            operations / 2);
#endif
}

TEST_P(MutexVariableThreadCountTest, Await) {
  int threads = GetParam();
  int iterations = ScaleIterations(500000);
  int operations = iterations;
  EXPECT_EQ(RunTest(&TestAwait, threads, iterations, operations), operations);
}

TEST_P(MutexVariableThreadCountTest, SignalAll) {
  int threads = GetParam();
  int iterations = 200000 / threads;
  int operations = iterations;
  EXPECT_EQ(RunTest(&TestSignalAll, threads, iterations, operations),
            operations);
}

TEST(Mutex, Signal) {
  int threads = 2;  // TestSignal must use two threads
  int iterations = 200000;
  int operations = iterations;
  EXPECT_EQ(RunTest(&TestSignal, threads, iterations, operations), operations);
}

TEST(Mutex, Timed) {
  int threads = 10;  // Use a fixed thread count of 10
  int iterations = 1000;
  int operations = iterations;
  EXPECT_EQ(RunTest(&TestCVTimeout, threads, iterations, operations),
            operations);
}

TEST(Mutex, CVTime) {
  int threads = 10;  // Use a fixed thread count of 10
  int iterations = 1;
  EXPECT_EQ(RunTest(&TestCVTime, threads, iterations, 1),
            threads * iterations);
}

TEST(Mutex, MuTime) {
  int threads = 10;  // Use a fixed thread count of 10
  int iterations = 1;
  EXPECT_EQ(RunTest(&TestMuTime, threads, iterations, 1), threads * iterations);
}

}  // namespace