1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Implementation of a small subset of Mutex and CondVar functionality
// for platforms where the production implementation hasn't been fully
// ported yet.
#include "absl/synchronization/mutex.h"
#if defined(_WIN32)
#include <chrono> // NOLINT(build/c++11)
#else
#include <sys/time.h>
#include <time.h>
#endif
#include <algorithm>
#include "absl/base/internal/raw_logging.h"
#include "absl/time/time.h"
namespace absl {
inline namespace lts_2019_08_08 {
namespace synchronization_internal {
namespace {
// Return the current time plus the timeout.
absl::Time DeadlineFromTimeout(absl::Duration timeout) {
return absl::Now() + timeout;
}
// Limit the deadline to a positive, 32-bit time_t value to accommodate
// implementation restrictions. This also deals with InfinitePast and
// InfiniteFuture.
absl::Time LimitedDeadline(absl::Time deadline) {
deadline = std::max(absl::FromTimeT(0), deadline);
deadline = std::min(deadline, absl::FromTimeT(0x7fffffff));
return deadline;
}
} // namespace
#if defined(_WIN32)
MutexImpl::MutexImpl() {}
MutexImpl::~MutexImpl() {
if (locked_) {
std_mutex_.unlock();
}
}
void MutexImpl::Lock() {
std_mutex_.lock();
locked_ = true;
}
bool MutexImpl::TryLock() {
bool locked = std_mutex_.try_lock();
if (locked) locked_ = true;
return locked;
}
void MutexImpl::Unlock() {
locked_ = false;
released_.SignalAll();
std_mutex_.unlock();
}
CondVarImpl::CondVarImpl() {}
CondVarImpl::~CondVarImpl() {}
void CondVarImpl::Signal() { std_cv_.notify_one(); }
void CondVarImpl::SignalAll() { std_cv_.notify_all(); }
void CondVarImpl::Wait(MutexImpl* mu) {
mu->released_.SignalAll();
std_cv_.wait(mu->std_mutex_);
}
bool CondVarImpl::WaitWithDeadline(MutexImpl* mu, absl::Time deadline) {
mu->released_.SignalAll();
time_t when = ToTimeT(deadline);
int64_t nanos = ToInt64Nanoseconds(deadline - absl::FromTimeT(when));
std::chrono::system_clock::time_point deadline_tp =
std::chrono::system_clock::from_time_t(when) +
std::chrono::duration_cast<std::chrono::system_clock::duration>(
std::chrono::nanoseconds(nanos));
auto deadline_since_epoch =
std::chrono::duration_cast<std::chrono::duration<double>>(
deadline_tp - std::chrono::system_clock::from_time_t(0));
return std_cv_.wait_until(mu->std_mutex_, deadline_tp) ==
std::cv_status::timeout;
}
#else // ! _WIN32
MutexImpl::MutexImpl() {
ABSL_RAW_CHECK(pthread_mutex_init(&pthread_mutex_, nullptr) == 0,
"pthread error");
}
MutexImpl::~MutexImpl() {
if (locked_) {
ABSL_RAW_CHECK(pthread_mutex_unlock(&pthread_mutex_) == 0, "pthread error");
}
ABSL_RAW_CHECK(pthread_mutex_destroy(&pthread_mutex_) == 0, "pthread error");
}
void MutexImpl::Lock() {
ABSL_RAW_CHECK(pthread_mutex_lock(&pthread_mutex_) == 0, "pthread error");
locked_ = true;
}
bool MutexImpl::TryLock() {
bool locked = (0 == pthread_mutex_trylock(&pthread_mutex_));
if (locked) locked_ = true;
return locked;
}
void MutexImpl::Unlock() {
locked_ = false;
released_.SignalAll();
ABSL_RAW_CHECK(pthread_mutex_unlock(&pthread_mutex_) == 0, "pthread error");
}
CondVarImpl::CondVarImpl() {
ABSL_RAW_CHECK(pthread_cond_init(&pthread_cv_, nullptr) == 0,
"pthread error");
}
CondVarImpl::~CondVarImpl() {
ABSL_RAW_CHECK(pthread_cond_destroy(&pthread_cv_) == 0, "pthread error");
}
void CondVarImpl::Signal() {
ABSL_RAW_CHECK(pthread_cond_signal(&pthread_cv_) == 0, "pthread error");
}
void CondVarImpl::SignalAll() {
ABSL_RAW_CHECK(pthread_cond_broadcast(&pthread_cv_) == 0, "pthread error");
}
void CondVarImpl::Wait(MutexImpl* mu) {
mu->released_.SignalAll();
ABSL_RAW_CHECK(pthread_cond_wait(&pthread_cv_, &mu->pthread_mutex_) == 0,
"pthread error");
}
bool CondVarImpl::WaitWithDeadline(MutexImpl* mu, absl::Time deadline) {
mu->released_.SignalAll();
struct timespec ts = ToTimespec(deadline);
int rc = pthread_cond_timedwait(&pthread_cv_, &mu->pthread_mutex_, &ts);
if (rc == ETIMEDOUT) return true;
ABSL_RAW_CHECK(rc == 0, "pthread error");
return false;
}
#endif // ! _WIN32
void MutexImpl::Await(const Condition& cond) {
if (cond.Eval()) return;
released_.SignalAll();
do {
released_.Wait(this);
} while (!cond.Eval());
}
bool MutexImpl::AwaitWithDeadline(const Condition& cond, absl::Time deadline) {
if (cond.Eval()) return true;
released_.SignalAll();
while (true) {
if (released_.WaitWithDeadline(this, deadline)) return false;
if (cond.Eval()) return true;
}
}
} // namespace synchronization_internal
Mutex::Mutex() {}
Mutex::~Mutex() {}
void Mutex::Lock() { impl()->Lock(); }
void Mutex::Unlock() { impl()->Unlock(); }
bool Mutex::TryLock() { return impl()->TryLock(); }
void Mutex::ReaderLock() { Lock(); }
void Mutex::ReaderUnlock() { Unlock(); }
void Mutex::Await(const Condition& cond) { impl()->Await(cond); }
void Mutex::LockWhen(const Condition& cond) {
Lock();
Await(cond);
}
bool Mutex::AwaitWithDeadline(const Condition& cond, absl::Time deadline) {
return impl()->AwaitWithDeadline(
cond, synchronization_internal::LimitedDeadline(deadline));
}
bool Mutex::AwaitWithTimeout(const Condition& cond, absl::Duration timeout) {
return AwaitWithDeadline(
cond, synchronization_internal::DeadlineFromTimeout(timeout));
}
bool Mutex::LockWhenWithDeadline(const Condition& cond, absl::Time deadline) {
Lock();
return AwaitWithDeadline(cond, deadline);
}
bool Mutex::LockWhenWithTimeout(const Condition& cond, absl::Duration timeout) {
return LockWhenWithDeadline(
cond, synchronization_internal::DeadlineFromTimeout(timeout));
}
void Mutex::ReaderLockWhen(const Condition& cond) {
ReaderLock();
Await(cond);
}
bool Mutex::ReaderLockWhenWithTimeout(const Condition& cond,
absl::Duration timeout) {
return LockWhenWithTimeout(cond, timeout);
}
bool Mutex::ReaderLockWhenWithDeadline(const Condition& cond,
absl::Time deadline) {
return LockWhenWithDeadline(cond, deadline);
}
void Mutex::EnableDebugLog(const char*) {}
void Mutex::EnableInvariantDebugging(void (*)(void*), void*) {}
void Mutex::ForgetDeadlockInfo() {}
void Mutex::AssertHeld() const {}
void Mutex::AssertReaderHeld() const {}
void Mutex::AssertNotHeld() const {}
CondVar::CondVar() {}
CondVar::~CondVar() {}
void CondVar::Signal() { impl()->Signal(); }
void CondVar::SignalAll() { impl()->SignalAll(); }
void CondVar::Wait(Mutex* mu) { return impl()->Wait(mu->impl()); }
bool CondVar::WaitWithDeadline(Mutex* mu, absl::Time deadline) {
return impl()->WaitWithDeadline(
mu->impl(), synchronization_internal::LimitedDeadline(deadline));
}
bool CondVar::WaitWithTimeout(Mutex* mu, absl::Duration timeout) {
return WaitWithDeadline(mu, absl::Now() + timeout);
}
void CondVar::EnableDebugLog(const char*) {}
#ifdef THREAD_SANITIZER
extern "C" void __tsan_read1(void *addr);
#else
#define __tsan_read1(addr) // do nothing if TSan not enabled
#endif
// A function that just returns its argument, dereferenced
static bool Dereference(void *arg) {
// ThreadSanitizer does not instrument this file for memory accesses.
// This function dereferences a user variable that can participate
// in a data race, so we need to manually tell TSan about this memory access.
__tsan_read1(arg);
return *(static_cast<bool *>(arg));
}
Condition::Condition() {} // null constructor, used for kTrue only
const Condition Condition::kTrue;
Condition::Condition(bool (*func)(void *), void *arg)
: eval_(&CallVoidPtrFunction),
function_(func),
method_(nullptr),
arg_(arg) {}
bool Condition::CallVoidPtrFunction(const Condition *c) {
return (*c->function_)(c->arg_);
}
Condition::Condition(const bool *cond)
: eval_(CallVoidPtrFunction),
function_(Dereference),
method_(nullptr),
// const_cast is safe since Dereference does not modify arg
arg_(const_cast<bool *>(cond)) {}
bool Condition::Eval() const {
// eval_ == null for kTrue
return (this->eval_ == nullptr) || (*this->eval_)(this);
}
void RegisterSymbolizer(bool (*)(const void*, char*, int)) {}
} // inline namespace lts_2019_08_08
} // namespace absl
|