summaryrefslogtreecommitdiff
path: root/absl/synchronization/internal/graphcycles.cc
blob: 39b18482f3f16f57acaf5edbb45f8e982e0cbe1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// GraphCycles provides incremental cycle detection on a dynamic
// graph using the following algorithm:
//
// A dynamic topological sort algorithm for directed acyclic graphs
// David J. Pearce, Paul H. J. Kelly
// Journal of Experimental Algorithmics (JEA) JEA Homepage archive
// Volume 11, 2006, Article No. 1.7
//
// Brief summary of the algorithm:
//
// (1) Maintain a rank for each node that is consistent
//     with the topological sort of the graph. I.e., path from x to y
//     implies rank[x] < rank[y].
// (2) When a new edge (x->y) is inserted, do nothing if rank[x] < rank[y].
// (3) Otherwise: adjust ranks in the neighborhood of x and y.

#include "absl/base/attributes.h"
// This file is a no-op if the required LowLevelAlloc support is missing.
#include "absl/base/internal/low_level_alloc.h"
#ifndef ABSL_LOW_LEVEL_ALLOC_MISSING

#include "absl/synchronization/internal/graphcycles.h"

#include <algorithm>
#include <array>
#include <cinttypes>
#include <limits>
#include "absl/base/internal/hide_ptr.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"

// Do not use STL.   This module does not use standard memory allocation.

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace synchronization_internal {

namespace {

// Avoid LowLevelAlloc's default arena since it calls malloc hooks in
// which people are doing things like acquiring Mutexes.
ABSL_CONST_INIT static absl::base_internal::SpinLock arena_mu(
    absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
ABSL_CONST_INIT static base_internal::LowLevelAlloc::Arena* arena;

static void InitArenaIfNecessary() {
  arena_mu.Lock();
  if (arena == nullptr) {
    arena = base_internal::LowLevelAlloc::NewArena(0);
  }
  arena_mu.Unlock();
}

// Number of inlined elements in Vec.  Hash table implementation
// relies on this being a power of two.
static const uint32_t kInline = 8;

// A simple LowLevelAlloc based resizable vector with inlined storage
// for a few elements.  T must be a plain type since constructor
// and destructor are not run on elements of type T managed by Vec.
template <typename T>
class Vec {
 public:
  Vec() { Init(); }
  ~Vec() { Discard(); }

  void clear() {
    Discard();
    Init();
  }

  bool empty() const { return size_ == 0; }
  uint32_t size() const { return size_; }
  T* begin() { return ptr_; }
  T* end() { return ptr_ + size_; }
  const T& operator[](uint32_t i) const { return ptr_[i]; }
  T& operator[](uint32_t i) { return ptr_[i]; }
  const T& back() const { return ptr_[size_-1]; }
  void pop_back() { size_--; }

  void push_back(const T& v) {
    if (size_ == capacity_) Grow(size_ + 1);
    ptr_[size_] = v;
    size_++;
  }

  void resize(uint32_t n) {
    if (n > capacity_) Grow(n);
    size_ = n;
  }

  void fill(const T& val) {
    for (uint32_t i = 0; i < size(); i++) {
      ptr_[i] = val;
    }
  }

  // Guarantees src is empty at end.
  // Provided for the hash table resizing code below.
  void MoveFrom(Vec<T>* src) {
    if (src->ptr_ == src->space_) {
      // Need to actually copy
      resize(src->size_);
      std::copy_n(src->ptr_, src->size_, ptr_);
      src->size_ = 0;
    } else {
      Discard();
      ptr_ = src->ptr_;
      size_ = src->size_;
      capacity_ = src->capacity_;
      src->Init();
    }
  }

 private:
  T* ptr_;
  T space_[kInline];
  uint32_t size_;
  uint32_t capacity_;

  void Init() {
    ptr_ = space_;
    size_ = 0;
    capacity_ = kInline;
  }

  void Discard() {
    if (ptr_ != space_) base_internal::LowLevelAlloc::Free(ptr_);
  }

  void Grow(uint32_t n) {
    while (capacity_ < n) {
      capacity_ *= 2;
    }
    size_t request = static_cast<size_t>(capacity_) * sizeof(T);
    T* copy = static_cast<T*>(
        base_internal::LowLevelAlloc::AllocWithArena(request, arena));
    std::copy_n(ptr_, size_, copy);
    Discard();
    ptr_ = copy;
  }

  Vec(const Vec&) = delete;
  Vec& operator=(const Vec&) = delete;
};

// A hash set of non-negative int32_t that uses Vec for its underlying storage.
class NodeSet {
 public:
  NodeSet() { Init(); }

  void clear() { Init(); }
  bool contains(int32_t v) const { return table_[FindIndex(v)] == v; }

  bool insert(int32_t v) {
    uint32_t i = FindIndex(v);
    if (table_[i] == v) {
      return false;
    }
    if (table_[i] == kEmpty) {
      // Only inserting over an empty cell increases the number of occupied
      // slots.
      occupied_++;
    }
    table_[i] = v;
    // Double when 75% full.
    if (occupied_ >= table_.size() - table_.size()/4) Grow();
    return true;
  }

  void erase(int32_t v) {
    uint32_t i = FindIndex(v);
    if (table_[i] == v) {
      table_[i] = kDel;
    }
  }

  // Iteration: is done via HASH_FOR_EACH
  // Example:
  //    HASH_FOR_EACH(elem, node->out) { ... }
#define HASH_FOR_EACH(elem, eset) \
  for (int32_t elem, _cursor = 0; (eset).Next(&_cursor, &elem); )
  bool Next(int32_t* cursor, int32_t* elem) {
    while (static_cast<uint32_t>(*cursor) < table_.size()) {
      int32_t v = table_[static_cast<uint32_t>(*cursor)];
      (*cursor)++;
      if (v >= 0) {
        *elem = v;
        return true;
      }
    }
    return false;
  }

 private:
  enum : int32_t { kEmpty = -1, kDel = -2 };
  Vec<int32_t> table_;
  uint32_t occupied_;     // Count of non-empty slots (includes deleted slots)

  static uint32_t Hash(int32_t a) { return static_cast<uint32_t>(a * 41); }

  // Return index for storing v.  May return an empty index or deleted index
  uint32_t FindIndex(int32_t v) const {
    // Search starting at hash index.
    const uint32_t mask = table_.size() - 1;
    uint32_t i = Hash(v) & mask;
    uint32_t deleted_index = 0;  // index of first deleted element we see
    bool seen_deleted_element = false;
    while (true) {
      int32_t e = table_[i];
      if (v == e) {
        return i;
      } else if (e == kEmpty) {
        // Return any previously encountered deleted slot.
        return seen_deleted_element ? deleted_index : i;
      } else if (e == kDel && !seen_deleted_element) {
        // Keep searching since v might be present later.
        deleted_index = i;
        seen_deleted_element = true;
      }
      i = (i + 1) & mask;  // Linear probing; quadratic is slightly slower.
    }
  }

  void Init() {
    table_.clear();
    table_.resize(kInline);
    table_.fill(kEmpty);
    occupied_ = 0;
  }

  void Grow() {
    Vec<int32_t> copy;
    copy.MoveFrom(&table_);
    occupied_ = 0;
    table_.resize(copy.size() * 2);
    table_.fill(kEmpty);

    for (const auto& e : copy) {
      if (e >= 0) insert(e);
    }
  }

  NodeSet(const NodeSet&) = delete;
  NodeSet& operator=(const NodeSet&) = delete;
};

// We encode a node index and a node version in GraphId.  The version
// number is incremented when the GraphId is freed which automatically
// invalidates all copies of the GraphId.

inline GraphId MakeId(int32_t index, uint32_t version) {
  GraphId g;
  g.handle =
      (static_cast<uint64_t>(version) << 32) | static_cast<uint32_t>(index);
  return g;
}

inline int32_t NodeIndex(GraphId id) {
  return static_cast<int32_t>(id.handle);
}

inline uint32_t NodeVersion(GraphId id) {
  return static_cast<uint32_t>(id.handle >> 32);
}

struct Node {
  int32_t rank;               // rank number assigned by Pearce-Kelly algorithm
  uint32_t version;           // Current version number
  int32_t next_hash;          // Next entry in hash table
  bool visited;               // Temporary marker used by depth-first-search
  uintptr_t masked_ptr;       // User-supplied pointer
  NodeSet in;                 // List of immediate predecessor nodes in graph
  NodeSet out;                // List of immediate successor nodes in graph
  int priority;               // Priority of recorded stack trace.
  int nstack;                 // Depth of recorded stack trace.
  void* stack[40];            // stack[0,nstack-1] holds stack trace for node.
};

// Hash table for pointer to node index lookups.
class PointerMap {
 public:
  explicit PointerMap(const Vec<Node*>* nodes) : nodes_(nodes) {
    table_.fill(-1);
  }

  int32_t Find(void* ptr) {
    auto masked = base_internal::HidePtr(ptr);
    for (int32_t i = table_[Hash(ptr)]; i != -1;) {
      Node* n = (*nodes_)[static_cast<uint32_t>(i)];
      if (n->masked_ptr == masked) return i;
      i = n->next_hash;
    }
    return -1;
  }

  void Add(void* ptr, int32_t i) {
    int32_t* head = &table_[Hash(ptr)];
    (*nodes_)[static_cast<uint32_t>(i)]->next_hash = *head;
    *head = i;
  }

  int32_t Remove(void* ptr) {
    // Advance through linked list while keeping track of the
    // predecessor slot that points to the current entry.
    auto masked = base_internal::HidePtr(ptr);
    for (int32_t* slot = &table_[Hash(ptr)]; *slot != -1; ) {
      int32_t index = *slot;
      Node* n = (*nodes_)[static_cast<uint32_t>(index)];
      if (n->masked_ptr == masked) {
        *slot = n->next_hash;  // Remove n from linked list
        n->next_hash = -1;
        return index;
      }
      slot = &n->next_hash;
    }
    return -1;
  }

 private:
  // Number of buckets in hash table for pointer lookups.
  static constexpr uint32_t kHashTableSize = 8171;  // should be prime

  const Vec<Node*>* nodes_;
  std::array<int32_t, kHashTableSize> table_;

  static uint32_t Hash(void* ptr) {
    return reinterpret_cast<uintptr_t>(ptr) % kHashTableSize;
  }
};

}  // namespace

struct GraphCycles::Rep {
  Vec<Node*> nodes_;
  Vec<int32_t> free_nodes_;  // Indices for unused entries in nodes_
  PointerMap ptrmap_;

  // Temporary state.
  Vec<int32_t> deltaf_;  // Results of forward DFS
  Vec<int32_t> deltab_;  // Results of backward DFS
  Vec<int32_t> list_;    // All nodes to reprocess
  Vec<int32_t> merged_;  // Rank values to assign to list_ entries
  Vec<int32_t> stack_;   // Emulates recursion stack for depth-first searches

  Rep() : ptrmap_(&nodes_) {}
};

static Node* FindNode(GraphCycles::Rep* rep, GraphId id) {
  Node* n = rep->nodes_[static_cast<uint32_t>(NodeIndex(id))];
  return (n->version == NodeVersion(id)) ? n : nullptr;
}

GraphCycles::GraphCycles() {
  InitArenaIfNecessary();
  rep_ = new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Rep), arena))
      Rep;
}

GraphCycles::~GraphCycles() {
  for (auto* node : rep_->nodes_) {
    node->Node::~Node();
    base_internal::LowLevelAlloc::Free(node);
  }
  rep_->Rep::~Rep();
  base_internal::LowLevelAlloc::Free(rep_);
}

bool GraphCycles::CheckInvariants() const {
  Rep* r = rep_;
  NodeSet ranks;  // Set of ranks seen so far.
  for (uint32_t x = 0; x < r->nodes_.size(); x++) {
    Node* nx = r->nodes_[x];
    void* ptr = base_internal::UnhidePtr<void>(nx->masked_ptr);
    if (ptr != nullptr && static_cast<uint32_t>(r->ptrmap_.Find(ptr)) != x) {
      ABSL_RAW_LOG(FATAL, "Did not find live node in hash table %" PRIu32 " %p",
                   x, ptr);
    }
    if (nx->visited) {
      ABSL_RAW_LOG(FATAL, "Did not clear visited marker on node %" PRIu32, x);
    }
    if (!ranks.insert(nx->rank)) {
      ABSL_RAW_LOG(FATAL, "Duplicate occurrence of rank %" PRId32, nx->rank);
    }
    HASH_FOR_EACH(y, nx->out) {
      Node* ny = r->nodes_[static_cast<uint32_t>(y)];
      if (nx->rank >= ny->rank) {
        ABSL_RAW_LOG(FATAL,
                     "Edge %" PRIu32 " ->%" PRId32
                     " has bad rank assignment %" PRId32 "->%" PRId32,
                     x, y, nx->rank, ny->rank);
      }
    }
  }
  return true;
}

GraphId GraphCycles::GetId(void* ptr) {
  int32_t i = rep_->ptrmap_.Find(ptr);
  if (i != -1) {
    return MakeId(i, rep_->nodes_[static_cast<uint32_t>(i)]->version);
  } else if (rep_->free_nodes_.empty()) {
    Node* n =
        new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Node), arena))
            Node;
    n->version = 1;  // Avoid 0 since it is used by InvalidGraphId()
    n->visited = false;
    n->rank = static_cast<int32_t>(rep_->nodes_.size());
    n->masked_ptr = base_internal::HidePtr(ptr);
    n->nstack = 0;
    n->priority = 0;
    rep_->nodes_.push_back(n);
    rep_->ptrmap_.Add(ptr, n->rank);
    return MakeId(n->rank, n->version);
  } else {
    // Preserve preceding rank since the set of ranks in use must be
    // a permutation of [0,rep_->nodes_.size()-1].
    int32_t r = rep_->free_nodes_.back();
    rep_->free_nodes_.pop_back();
    Node* n = rep_->nodes_[static_cast<uint32_t>(r)];
    n->masked_ptr = base_internal::HidePtr(ptr);
    n->nstack = 0;
    n->priority = 0;
    rep_->ptrmap_.Add(ptr, r);
    return MakeId(r, n->version);
  }
}

void GraphCycles::RemoveNode(void* ptr) {
  int32_t i = rep_->ptrmap_.Remove(ptr);
  if (i == -1) {
    return;
  }
  Node* x = rep_->nodes_[static_cast<uint32_t>(i)];
  HASH_FOR_EACH(y, x->out) {
    rep_->nodes_[static_cast<uint32_t>(y)]->in.erase(i);
  }
  HASH_FOR_EACH(y, x->in) {
    rep_->nodes_[static_cast<uint32_t>(y)]->out.erase(i);
  }
  x->in.clear();
  x->out.clear();
  x->masked_ptr = base_internal::HidePtr<void>(nullptr);
  if (x->version == std::numeric_limits<uint32_t>::max()) {
    // Cannot use x any more
  } else {
    x->version++;  // Invalidates all copies of node.
    rep_->free_nodes_.push_back(i);
  }
}

void* GraphCycles::Ptr(GraphId id) {
  Node* n = FindNode(rep_, id);
  return n == nullptr ? nullptr
                      : base_internal::UnhidePtr<void>(n->masked_ptr);
}

bool GraphCycles::HasNode(GraphId node) {
  return FindNode(rep_, node) != nullptr;
}

bool GraphCycles::HasEdge(GraphId x, GraphId y) const {
  Node* xn = FindNode(rep_, x);
  return xn && FindNode(rep_, y) && xn->out.contains(NodeIndex(y));
}

void GraphCycles::RemoveEdge(GraphId x, GraphId y) {
  Node* xn = FindNode(rep_, x);
  Node* yn = FindNode(rep_, y);
  if (xn && yn) {
    xn->out.erase(NodeIndex(y));
    yn->in.erase(NodeIndex(x));
    // No need to update the rank assignment since a previous valid
    // rank assignment remains valid after an edge deletion.
  }
}

static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound);
static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound);
static void Reorder(GraphCycles::Rep* r);
static void Sort(const Vec<Node*>&, Vec<int32_t>* delta);
static void MoveToList(
    GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst);

bool GraphCycles::InsertEdge(GraphId idx, GraphId idy) {
  Rep* r = rep_;
  const int32_t x = NodeIndex(idx);
  const int32_t y = NodeIndex(idy);
  Node* nx = FindNode(r, idx);
  Node* ny = FindNode(r, idy);
  if (nx == nullptr || ny == nullptr) return true;  // Expired ids

  if (nx == ny) return false;  // Self edge
  if (!nx->out.insert(y)) {
    // Edge already exists.
    return true;
  }

  ny->in.insert(x);

  if (nx->rank <= ny->rank) {
    // New edge is consistent with existing rank assignment.
    return true;
  }

  // Current rank assignments are incompatible with the new edge.  Recompute.
  // We only need to consider nodes that fall in the range [ny->rank,nx->rank].
  if (!ForwardDFS(r, y, nx->rank)) {
    // Found a cycle.  Undo the insertion and tell caller.
    nx->out.erase(y);
    ny->in.erase(x);
    // Since we do not call Reorder() on this path, clear any visited
    // markers left by ForwardDFS.
    for (const auto& d : r->deltaf_) {
      r->nodes_[static_cast<uint32_t>(d)]->visited = false;
    }
    return false;
  }
  BackwardDFS(r, x, ny->rank);
  Reorder(r);
  return true;
}

static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound) {
  // Avoid recursion since stack space might be limited.
  // We instead keep a stack of nodes to visit.
  r->deltaf_.clear();
  r->stack_.clear();
  r->stack_.push_back(n);
  while (!r->stack_.empty()) {
    n = r->stack_.back();
    r->stack_.pop_back();
    Node* nn = r->nodes_[static_cast<uint32_t>(n)];
    if (nn->visited) continue;

    nn->visited = true;
    r->deltaf_.push_back(n);

    HASH_FOR_EACH(w, nn->out) {
      Node* nw = r->nodes_[static_cast<uint32_t>(w)];
      if (nw->rank == upper_bound) {
        return false;  // Cycle
      }
      if (!nw->visited && nw->rank < upper_bound) {
        r->stack_.push_back(w);
      }
    }
  }
  return true;
}

static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound) {
  r->deltab_.clear();
  r->stack_.clear();
  r->stack_.push_back(n);
  while (!r->stack_.empty()) {
    n = r->stack_.back();
    r->stack_.pop_back();
    Node* nn = r->nodes_[static_cast<uint32_t>(n)];
    if (nn->visited) continue;

    nn->visited = true;
    r->deltab_.push_back(n);

    HASH_FOR_EACH(w, nn->in) {
      Node* nw = r->nodes_[static_cast<uint32_t>(w)];
      if (!nw->visited && lower_bound < nw->rank) {
        r->stack_.push_back(w);
      }
    }
  }
}

static void Reorder(GraphCycles::Rep* r) {
  Sort(r->nodes_, &r->deltab_);
  Sort(r->nodes_, &r->deltaf_);

  // Adds contents of delta lists to list_ (backwards deltas first).
  r->list_.clear();
  MoveToList(r, &r->deltab_, &r->list_);
  MoveToList(r, &r->deltaf_, &r->list_);

  // Produce sorted list of all ranks that will be reassigned.
  r->merged_.resize(r->deltab_.size() + r->deltaf_.size());
  std::merge(r->deltab_.begin(), r->deltab_.end(),
             r->deltaf_.begin(), r->deltaf_.end(),
             r->merged_.begin());

  // Assign the ranks in order to the collected list.
  for (uint32_t i = 0; i < r->list_.size(); i++) {
    r->nodes_[static_cast<uint32_t>(r->list_[i])]->rank = r->merged_[i];
  }
}

static void Sort(const Vec<Node*>& nodes, Vec<int32_t>* delta) {
  struct ByRank {
    const Vec<Node*>* nodes;
    bool operator()(int32_t a, int32_t b) const {
      return (*nodes)[static_cast<uint32_t>(a)]->rank <
             (*nodes)[static_cast<uint32_t>(b)]->rank;
    }
  };
  ByRank cmp;
  cmp.nodes = &nodes;
  std::sort(delta->begin(), delta->end(), cmp);
}

static void MoveToList(
    GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst) {
  for (auto& v : *src) {
    int32_t w = v;
    // Replace v entry with its rank
    v = r->nodes_[static_cast<uint32_t>(w)]->rank;
    // Prepare for future DFS calls
    r->nodes_[static_cast<uint32_t>(w)]->visited = false;
    dst->push_back(w);
  }
}

int GraphCycles::FindPath(GraphId idx, GraphId idy, int max_path_len,
                          GraphId path[]) const {
  Rep* r = rep_;
  if (FindNode(r, idx) == nullptr || FindNode(r, idy) == nullptr) return 0;
  const int32_t x = NodeIndex(idx);
  const int32_t y = NodeIndex(idy);

  // Forward depth first search starting at x until we hit y.
  // As we descend into a node, we push it onto the path.
  // As we leave a node, we remove it from the path.
  int path_len = 0;

  NodeSet seen;
  r->stack_.clear();
  r->stack_.push_back(x);
  while (!r->stack_.empty()) {
    int32_t n = r->stack_.back();
    r->stack_.pop_back();
    if (n < 0) {
      // Marker to indicate that we are leaving a node
      path_len--;
      continue;
    }

    if (path_len < max_path_len) {
      path[path_len] =
          MakeId(n, rep_->nodes_[static_cast<uint32_t>(n)]->version);
    }
    path_len++;
    r->stack_.push_back(-1);  // Will remove tentative path entry

    if (n == y) {
      return path_len;
    }

    HASH_FOR_EACH(w, r->nodes_[static_cast<uint32_t>(n)]->out) {
      if (seen.insert(w)) {
        r->stack_.push_back(w);
      }
    }
  }

  return 0;
}

bool GraphCycles::IsReachable(GraphId x, GraphId y) const {
  return FindPath(x, y, 0, nullptr) > 0;
}

void GraphCycles::UpdateStackTrace(GraphId id, int priority,
                                   int (*get_stack_trace)(void** stack, int)) {
  Node* n = FindNode(rep_, id);
  if (n == nullptr || n->priority >= priority) {
    return;
  }
  n->nstack = (*get_stack_trace)(n->stack, ABSL_ARRAYSIZE(n->stack));
  n->priority = priority;
}

int GraphCycles::GetStackTrace(GraphId id, void*** ptr) {
  Node* n = FindNode(rep_, id);
  if (n == nullptr) {
    *ptr = nullptr;
    return 0;
  } else {
    *ptr = n->stack;
    return n->nstack;
  }
}

}  // namespace synchronization_internal
ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_LOW_LEVEL_ALLOC_MISSING