summaryrefslogtreecommitdiff
path: root/absl/strings/numbers_test.cc
blob: 5bb39ca9b5a9e6e6214aa7201c650a8123f7bef1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// This file tests std::string processing functions related to numeric values.

#include "absl/strings/numbers.h"

#include <sys/types.h>
#include <cfenv>  // NOLINT(build/c++11)
#include <cinttypes>
#include <climits>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <numeric>
#include <random>
#include <set>
#include <string>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/strings/str_cat.h"

#include "absl/strings/internal/numbers_test_common.inc"

namespace {

using absl::numbers_internal::kSixDigitsToBufferSize;
using absl::numbers_internal::safe_strto32_base;
using absl::numbers_internal::safe_strto64_base;
using absl::numbers_internal::safe_strtou32_base;
using absl::numbers_internal::safe_strtou64_base;
using absl::numbers_internal::SixDigitsToBuffer;
using absl::SimpleAtoi;
using testing::Eq;
using testing::MatchesRegex;

// Number of floats to test with.
// 10,000,000 is a reasonable default for a test that only takes a few seconds.
// 1,000,000,000+ triggers checking for all possible mantissa values for
// double-precision tests. 2,000,000,000+ triggers checking for every possible
// single-precision float.
#ifdef _MSC_VER
// Use a smaller number on MSVC to avoid test time out (1 min)
const int kFloatNumCases = 5000000;
#else
const int kFloatNumCases = 10000000;
#endif

// This is a slow, brute-force routine to compute the exact base-10
// representation of a double-precision floating-point number.  It
// is useful for debugging only.
std::string PerfectDtoa(double d) {
  if (d == 0) return "0";
  if (d < 0) return "-" + PerfectDtoa(-d);

  // Basic theory: decompose d into mantissa and exp, where
  // d = mantissa * 2^exp, and exp is as close to zero as possible.
  int64_t mantissa, exp = 0;
  while (d >= 1ULL << 63) ++exp, d *= 0.5;
  while ((mantissa = d) != d) --exp, d *= 2.0;

  // Then convert mantissa to ASCII, and either double it (if
  // exp > 0) or halve it (if exp < 0) repeatedly.  "halve it"
  // in this case means multiplying it by five and dividing by 10.
  constexpr int maxlen = 1100;  // worst case is actually 1030 or so.
  char buf[maxlen + 5];
  for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) {
    buf[pos] = '0' + (num % 10);
    num /= 10;
  }
  char* begin = &buf[0];
  char* end = buf + maxlen;
  for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) {
    int carry = 0;
    for (char* p = end; --p != begin;) {
      int dig = *p - '0';
      dig = dig * (exp > 0 ? 2 : 5) + carry;
      carry = dig / 10;
      dig %= 10;
      *p = '0' + dig;
    }
  }
  if (exp < 0) {
    // "dividing by 10" above means we have to add the decimal point.
    memmove(end + 1 + exp, end + exp, 1 - exp);
    end[exp] = '.';
    ++end;
  }
  while (*begin == '0' && begin[1] != '.') ++begin;
  return {begin, end};
}

TEST(ToString, PerfectDtoa) {
  EXPECT_THAT(PerfectDtoa(1), Eq("1"));
  EXPECT_THAT(PerfectDtoa(0.1),
              Eq("0.1000000000000000055511151231257827021181583404541015625"));
  EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784"));
  EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625"));
  for (int i = 0; i < 100; ++i) {
    for (double multiplier :
         {1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) {
      double d = multiplier * i;
      std::string s = PerfectDtoa(d);
      EXPECT_EQ(d, strtod(s.c_str(), nullptr));
    }
  }
}

template <typename integer>
struct MyInteger {
  integer i;
  explicit constexpr MyInteger(integer i) : i(i) {}
  constexpr operator integer() const { return i; }

  constexpr MyInteger operator+(MyInteger other) const { return i + other.i; }
  constexpr MyInteger operator-(MyInteger other) const { return i - other.i; }
  constexpr MyInteger operator*(MyInteger other) const { return i * other.i; }
  constexpr MyInteger operator/(MyInteger other) const { return i / other.i; }

  constexpr bool operator<(MyInteger other) const { return i < other.i; }
  constexpr bool operator<=(MyInteger other) const { return i <= other.i; }
  constexpr bool operator==(MyInteger other) const { return i == other.i; }
  constexpr bool operator>=(MyInteger other) const { return i >= other.i; }
  constexpr bool operator>(MyInteger other) const { return i > other.i; }
  constexpr bool operator!=(MyInteger other) const { return i != other.i; }

  integer as_integer() const { return i; }
};

typedef MyInteger<int64_t> MyInt64;
typedef MyInteger<uint64_t> MyUInt64;

void CheckInt32(int32_t x) {
  char buffer[absl::numbers_internal::kFastToBufferSize];
  char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
  std::string expected = std::to_string(x);
  EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;

  char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
  EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
}

void CheckInt64(int64_t x) {
  char buffer[absl::numbers_internal::kFastToBufferSize + 3];
  buffer[0] = '*';
  buffer[23] = '*';
  buffer[24] = '*';
  char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
  std::string expected = std::to_string(x);
  EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
  EXPECT_EQ(buffer[0], '*');
  EXPECT_EQ(buffer[23], '*');
  EXPECT_EQ(buffer[24], '*');

  char* my_actual =
      absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]);
  EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
}

void CheckUInt32(uint32_t x) {
  char buffer[absl::numbers_internal::kFastToBufferSize];
  char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
  std::string expected = std::to_string(x);
  EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;

  char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
  EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
}

void CheckUInt64(uint64_t x) {
  char buffer[absl::numbers_internal::kFastToBufferSize + 1];
  char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
  std::string expected = std::to_string(x);
  EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;

  char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
  EXPECT_EQ(expected, std::string(&buffer[1], generic_actual)) << " Input " << x;

  char* my_actual =
      absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]);
  EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
}

void CheckHex64(uint64_t v) {
  char expected[16 + 1];
  std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16));
  snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v));
  EXPECT_EQ(expected, actual) << " Input " << v;
}

TEST(Numbers, TestFastPrints) {
  for (int i = -100; i <= 100; i++) {
    CheckInt32(i);
    CheckInt64(i);
  }
  for (int i = 0; i <= 100; i++) {
    CheckUInt32(i);
    CheckUInt64(i);
  }
  // Test min int to make sure that works
  CheckInt32(INT_MIN);
  CheckInt32(INT_MAX);
  CheckInt64(LONG_MIN);
  CheckInt64(uint64_t{1000000000});
  CheckInt64(uint64_t{9999999999});
  CheckInt64(uint64_t{100000000000000});
  CheckInt64(uint64_t{999999999999999});
  CheckInt64(uint64_t{1000000000000000000});
  CheckInt64(uint64_t{1199999999999999999});
  CheckInt64(int64_t{-700000000000000000});
  CheckInt64(LONG_MAX);
  CheckUInt32(std::numeric_limits<uint32_t>::max());
  CheckUInt64(uint64_t{1000000000});
  CheckUInt64(uint64_t{9999999999});
  CheckUInt64(uint64_t{100000000000000});
  CheckUInt64(uint64_t{999999999999999});
  CheckUInt64(uint64_t{1000000000000000000});
  CheckUInt64(uint64_t{1199999999999999999});
  CheckUInt64(std::numeric_limits<uint64_t>::max());

  for (int i = 0; i < 10000; i++) {
    CheckHex64(i);
  }
  CheckHex64(uint64_t{0x123456789abcdef0});
}

template <typename int_type, typename in_val_type>
void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {
  std::string s = absl::StrCat(in_value);
  int_type x = static_cast<int_type>(~exp_value);
  EXPECT_TRUE(SimpleAtoi(s, &x))
      << "in_value=" << in_value << " s=" << s << " x=" << x;
  EXPECT_EQ(exp_value, x);
  x = static_cast<int_type>(~exp_value);
  EXPECT_TRUE(SimpleAtoi(s.c_str(), &x));
  EXPECT_EQ(exp_value, x);
}

template <typename int_type, typename in_val_type>
void VerifySimpleAtoiBad(in_val_type in_value) {
  std::string s = absl::StrCat(in_value);
  int_type x;
  EXPECT_FALSE(SimpleAtoi(s, &x));
  EXPECT_FALSE(SimpleAtoi(s.c_str(), &x));
}

TEST(NumbersTest, Atoi) {
  // SimpleAtoi(absl::string_view, int32_t)
  VerifySimpleAtoiGood<int32_t>(0, 0);
  VerifySimpleAtoiGood<int32_t>(42, 42);
  VerifySimpleAtoiGood<int32_t>(-42, -42);

  VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),
                                std::numeric_limits<int32_t>::min());
  VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),
                                std::numeric_limits<int32_t>::max());

  // SimpleAtoi(absl::string_view, uint32_t)
  VerifySimpleAtoiGood<uint32_t>(0, 0);
  VerifySimpleAtoiGood<uint32_t>(42, 42);
  VerifySimpleAtoiBad<uint32_t>(-42);

  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());
  VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),
                                 std::numeric_limits<int32_t>::max());
  VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),
                                 std::numeric_limits<uint32_t>::max());
  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());
  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());
  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());

  // SimpleAtoi(absl::string_view, int64_t)
  VerifySimpleAtoiGood<int64_t>(0, 0);
  VerifySimpleAtoiGood<int64_t>(42, 42);
  VerifySimpleAtoiGood<int64_t>(-42, -42);

  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),
                                std::numeric_limits<int32_t>::min());
  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),
                                std::numeric_limits<int32_t>::max());
  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),
                                std::numeric_limits<uint32_t>::max());
  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),
                                std::numeric_limits<int64_t>::min());
  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),
                                std::numeric_limits<int64_t>::max());
  VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());

  // SimpleAtoi(absl::string_view, uint64_t)
  VerifySimpleAtoiGood<uint64_t>(0, 0);
  VerifySimpleAtoiGood<uint64_t>(42, 42);
  VerifySimpleAtoiBad<uint64_t>(-42);

  VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());
  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),
                                 std::numeric_limits<int32_t>::max());
  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),
                                 std::numeric_limits<uint32_t>::max());
  VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());
  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),
                                 std::numeric_limits<int64_t>::max());
  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),
                                 std::numeric_limits<uint64_t>::max());

  // Some other types
  VerifySimpleAtoiGood<int>(-42, -42);
  VerifySimpleAtoiGood<int32_t>(-42, -42);
  VerifySimpleAtoiGood<uint32_t>(42, 42);
  VerifySimpleAtoiGood<unsigned int>(42, 42);
  VerifySimpleAtoiGood<int64_t>(-42, -42);
  VerifySimpleAtoiGood<long>(-42, -42);  // NOLINT(runtime/int)
  VerifySimpleAtoiGood<uint64_t>(42, 42);
  VerifySimpleAtoiGood<size_t>(42, 42);
  VerifySimpleAtoiGood<std::string::size_type>(42, 42);
}

TEST(NumbersTest, Atoenum) {
  enum E01 {
    E01_zero = 0,
    E01_one = 1,
  };

  VerifySimpleAtoiGood<E01>(E01_zero, E01_zero);
  VerifySimpleAtoiGood<E01>(E01_one, E01_one);

  enum E_101 {
    E_101_minusone = -1,
    E_101_zero = 0,
    E_101_one = 1,
  };

  VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone);
  VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero);
  VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one);

  enum E_bigint {
    E_bigint_zero = 0,
    E_bigint_one = 1,
    E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF),
  };

  VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero);
  VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one);
  VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31);

  enum E_fullint {
    E_fullint_zero = 0,
    E_fullint_one = 1,
    E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF),
    E_fullint_min32 = INT32_MIN,
  };

  VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero);
  VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one);
  VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31);
  VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32);

  enum E_biguint {
    E_biguint_zero = 0,
    E_biguint_one = 1,
    E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF),
    E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF),
  };

  VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero);
  VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one);
  VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31);
  VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32);
}

TEST(stringtest, safe_strto32_base) {
  int32_t value;
  EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16));
  EXPECT_EQ(0x34234324, value);

  EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16));
  EXPECT_EQ(0x34234324, value);

  EXPECT_TRUE(safe_strto32_base("34234324", &value, 16));
  EXPECT_EQ(0x34234324, value);

  EXPECT_TRUE(safe_strto32_base("0", &value, 16));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16));
  EXPECT_EQ(-0x34234324, value);

  EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16));
  EXPECT_EQ(-0x34234324, value);

  EXPECT_TRUE(safe_strto32_base("7654321", &value, 8));
  EXPECT_EQ(07654321, value);

  EXPECT_TRUE(safe_strto32_base("-01234", &value, 8));
  EXPECT_EQ(-01234, value);

  EXPECT_FALSE(safe_strto32_base("1834", &value, 8));

  // Autodetect base.
  EXPECT_TRUE(safe_strto32_base("0", &value, 0));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto32_base("077", &value, 0));
  EXPECT_EQ(077, value);  // Octal interpretation

  // Leading zero indicates octal, but then followed by invalid digit.
  EXPECT_FALSE(safe_strto32_base("088", &value, 0));

  // Leading 0x indicated hex, but then followed by invalid digit.
  EXPECT_FALSE(safe_strto32_base("0xG", &value, 0));

  // Base-10 version.
  EXPECT_TRUE(safe_strto32_base("34234324", &value, 10));
  EXPECT_EQ(34234324, value);

  EXPECT_TRUE(safe_strto32_base("0", &value, 10));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10));
  EXPECT_EQ(-34234324, value);

  EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10));
  EXPECT_EQ(34234324, value);

  // Invalid ints.
  EXPECT_FALSE(safe_strto32_base("", &value, 10));
  EXPECT_FALSE(safe_strto32_base("  ", &value, 10));
  EXPECT_FALSE(safe_strto32_base("abc", &value, 10));
  EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10));
  EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10));

  // Out of bounds.
  EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
  EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));

  // String version.
  EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16));
  EXPECT_EQ(0x1234, value);

  // Base-10 std::string version.
  EXPECT_TRUE(safe_strto32_base("1234", &value, 10));
  EXPECT_EQ(1234, value);
}

TEST(stringtest, safe_strto32_range) {
  // These tests verify underflow/overflow behaviour.
  int32_t value;
  EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
  EXPECT_EQ(std::numeric_limits<int32_t>::max(), value);

  EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10));
  EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);

  EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
  EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
}

TEST(stringtest, safe_strto64_range) {
  // These tests verify underflow/overflow behaviour.
  int64_t value;
  EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
  EXPECT_EQ(std::numeric_limits<int64_t>::max(), value);

  EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10));
  EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);

  EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
  EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
}

TEST(stringtest, safe_strto32_leading_substring) {
  // These tests verify this comment in numbers.h:
  // On error, returns false, and sets *value to: [...]
  //   conversion of leading substring if available ("123@@@" -> 123)
  //   0 if no leading substring available
  int32_t value;
  EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10));
  EXPECT_EQ(4069, value);

  EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8));
  EXPECT_EQ(0406, value);

  EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10));
  EXPECT_EQ(4069, value);

  EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16));
  EXPECT_EQ(0x4069ba, value);

  EXPECT_FALSE(safe_strto32_base("@@@", &value, 10));
  EXPECT_EQ(0, value);  // there was no leading substring
}

TEST(stringtest, safe_strto64_leading_substring) {
  // These tests verify this comment in numbers.h:
  // On error, returns false, and sets *value to: [...]
  //   conversion of leading substring if available ("123@@@" -> 123)
  //   0 if no leading substring available
  int64_t value;
  EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10));
  EXPECT_EQ(4069, value);

  EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8));
  EXPECT_EQ(0406, value);

  EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10));
  EXPECT_EQ(4069, value);

  EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16));
  EXPECT_EQ(0x4069ba, value);

  EXPECT_FALSE(safe_strto64_base("@@@", &value, 10));
  EXPECT_EQ(0, value);  // there was no leading substring
}

TEST(stringtest, safe_strto64_base) {
  int64_t value;
  EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16));
  EXPECT_EQ(int64_t{0x3423432448783446}, value);

  EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16));
  EXPECT_EQ(int64_t{0x3423432448783446}, value);

  EXPECT_TRUE(safe_strto64_base("0", &value, 16));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16));
  EXPECT_EQ(int64_t{-0x3423432448783446}, value);

  EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16));
  EXPECT_EQ(int64_t{-0x3423432448783446}, value);

  EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8));
  EXPECT_EQ(int64_t{0123456701234567012}, value);

  EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8));
  EXPECT_EQ(int64_t{-017777777777777}, value);

  EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8));

  // Autodetect base.
  EXPECT_TRUE(safe_strto64_base("0", &value, 0));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto64_base("077", &value, 0));
  EXPECT_EQ(077, value);  // Octal interpretation

  // Leading zero indicates octal, but then followed by invalid digit.
  EXPECT_FALSE(safe_strto64_base("088", &value, 0));

  // Leading 0x indicated hex, but then followed by invalid digit.
  EXPECT_FALSE(safe_strto64_base("0xG", &value, 0));

  // Base-10 version.
  EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10));
  EXPECT_EQ(int64_t{34234324487834466}, value);

  EXPECT_TRUE(safe_strto64_base("0", &value, 10));
  EXPECT_EQ(0, value);

  EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10));
  EXPECT_EQ(int64_t{-34234324487834466}, value);

  EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10));
  EXPECT_EQ(int64_t{34234324487834466}, value);

  // Invalid ints.
  EXPECT_FALSE(safe_strto64_base("", &value, 10));
  EXPECT_FALSE(safe_strto64_base("  ", &value, 10));
  EXPECT_FALSE(safe_strto64_base("abc", &value, 10));
  EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10));
  EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10));

  // Out of bounds.
  EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
  EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));

  // String version.
  EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16));
  EXPECT_EQ(0x1234, value);

  // Base-10 std::string version.
  EXPECT_TRUE(safe_strto64_base("1234", &value, 10));
  EXPECT_EQ(1234, value);
}

const size_t kNumRandomTests = 10000;

template <typename IntType>
void test_random_integer_parse_base(bool (*parse_func)(absl::string_view,
                                                       IntType* value,
                                                       int base)) {
  using RandomEngine = std::minstd_rand0;
  std::random_device rd;
  RandomEngine rng(rd());
  std::uniform_int_distribution<IntType> random_int(
      std::numeric_limits<IntType>::min());
  std::uniform_int_distribution<int> random_base(2, 35);
  for (size_t i = 0; i < kNumRandomTests; i++) {
    IntType value = random_int(rng);
    int base = random_base(rng);
    std::string str_value;
    EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
    IntType parsed_value;

    // Test successful parse
    EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
    EXPECT_EQ(parsed_value, value);

    // Test overflow
    EXPECT_FALSE(
        parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value),
                   &parsed_value, base));

    // Test underflow
    if (std::numeric_limits<IntType>::min() < 0) {
      EXPECT_FALSE(
          parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value),
                     &parsed_value, base));
    } else {
      EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base));
    }
  }
}

TEST(stringtest, safe_strto32_random) {
  test_random_integer_parse_base<int32_t>(&safe_strto32_base);
}
TEST(stringtest, safe_strto64_random) {
  test_random_integer_parse_base<int64_t>(&safe_strto64_base);
}
TEST(stringtest, safe_strtou32_random) {
  test_random_integer_parse_base<uint32_t>(&safe_strtou32_base);
}
TEST(stringtest, safe_strtou64_random) {
  test_random_integer_parse_base<uint64_t>(&safe_strtou64_base);
}

TEST(stringtest, safe_strtou32_base) {
  for (int i = 0; strtouint32_test_cases[i].str != nullptr; ++i) {
    const auto& e = strtouint32_test_cases[i];
    uint32_t value;
    EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base))
        << "str=\"" << e.str << "\" base=" << e.base;
    if (e.expect_ok) {
      EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str
                                   << "\" base=" << e.base;
    }
  }
}

TEST(stringtest, safe_strtou32_base_length_delimited) {
  for (int i = 0; strtouint32_test_cases[i].str != nullptr; ++i) {
    const auto& e = strtouint32_test_cases[i];
    std::string tmp(e.str);
    tmp.append("12");  // Adds garbage at the end.

    uint32_t value;
    EXPECT_EQ(e.expect_ok,
              safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)),
                                 &value, e.base))
        << "str=\"" << e.str << "\" base=" << e.base;
    if (e.expect_ok) {
      EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str
                                   << " base=" << e.base;
    }
  }
}

TEST(stringtest, safe_strtou64_base) {
  for (int i = 0; strtouint64_test_cases[i].str != nullptr; ++i) {
    const auto& e = strtouint64_test_cases[i];
    uint64_t value;
    EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base))
        << "str=\"" << e.str << "\" base=" << e.base;
    if (e.expect_ok) {
      EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base;
    }
  }
}

TEST(stringtest, safe_strtou64_base_length_delimited) {
  for (int i = 0; strtouint64_test_cases[i].str != nullptr; ++i) {
    const auto& e = strtouint64_test_cases[i];
    std::string tmp(e.str);
    tmp.append("12");  // Adds garbage at the end.

    uint64_t value;
    EXPECT_EQ(e.expect_ok,
              safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)),
                                 &value, e.base))
        << "str=\"" << e.str << "\" base=" << e.base;
    if (e.expect_ok) {
      EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base;
    }
  }
}

// feenableexcept() and fedisableexcept() are missing on Mac OS X, MSVC.
#if defined(_MSC_VER) || defined(__APPLE__)
#define ABSL_MISSING_FEENABLEEXCEPT 1
#define ABSL_MISSING_FEDISABLEEXCEPT 1
#endif

class SimpleDtoaTest : public testing::Test {
 protected:
  void SetUp() override {
    // Store the current floating point env & clear away any pending exceptions.
    feholdexcept(&fp_env_);
#ifndef ABSL_MISSING_FEENABLEEXCEPT
    // Turn on floating point exceptions.
    feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
  }

  void TearDown() override {
    // Restore the floating point environment to the original state.
    // In theory fedisableexcept is unnecessary; fesetenv will also do it.
    // In practice, our toolchains have subtle bugs.
#ifndef ABSL_MISSING_FEDISABLEEXCEPT
    fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
    fesetenv(&fp_env_);
  }

  std::string ToNineDigits(double value) {
    char buffer[16];  // more than enough for %.9g
    snprintf(buffer, sizeof(buffer), "%.9g", value);
    return buffer;
  }

  fenv_t fp_env_;
};

// Run the given runnable functor for "cases" test cases, chosen over the
// available range of float.  pi and e and 1/e are seeded, and then all
// available integer powers of 2 and 10 are multiplied against them.  In
// addition to trying all those values, we try the next higher and next lower
// float, and then we add additional test cases evenly distributed between them.
// Each test case is passed to runnable as both a positive and negative value.
template <typename R>
void ExhaustiveFloat(uint32_t cases, R&& runnable) {
  runnable(0.0f);
  runnable(-0.0f);
  if (cases >= 2e9) {  // more than 2 billion?  Might as well run them all.
    for (float f = 0; f < std::numeric_limits<float>::max(); ) {
      f = nextafterf(f, std::numeric_limits<float>::max());
      runnable(-f);
      runnable(f);
    }
    return;
  }
  std::set<float> floats = {3.4028234e38f};
  for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) {
    for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf);
    for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf);
    for (float testf = f; testf < 3e38f / 2; testf *= 2.0f)
      floats.insert(testf);
    for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf);
  }

  float last = *floats.begin();

  runnable(last);
  runnable(-last);
  int iters_per_float = cases / floats.size();
  if (iters_per_float == 0) iters_per_float = 1;
  for (float f : floats) {
    if (f == last) continue;
    float testf = nextafter(last, std::numeric_limits<float>::max());
    runnable(testf);
    runnable(-testf);
    last = testf;
    if (f == last) continue;
    double step = (double{f} - last) / iters_per_float;
    for (double d = last + step; d < f; d += step) {
      testf = d;
      if (testf != last) {
        runnable(testf);
        runnable(-testf);
        last = testf;
      }
    }
    testf = nextafter(f, 0.0f);
    if (testf > last) {
      runnable(testf);
      runnable(-testf);
      last = testf;
    }
    if (f != last) {
      runnable(f);
      runnable(-f);
      last = f;
    }
  }
}

TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) {
  uint64_t test_count = 0;
  std::vector<double> mismatches;
  auto checker = [&](double d) {
    if (d != d) return;  // rule out NaNs
    ++test_count;
    char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
    SixDigitsToBuffer(d, sixdigitsbuf);
    char snprintfbuf[kSixDigitsToBufferSize] = {0};
    snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
    if (strcmp(sixdigitsbuf, snprintfbuf) != 0) {
      mismatches.push_back(d);
      if (mismatches.size() < 10) {
        ABSL_RAW_LOG(ERROR, "%s",
                     absl::StrCat("Six-digit failure with double.  ", "d=", d,
                                  "=", d, " sixdigits=", sixdigitsbuf,
                                  " printf(%g)=", snprintfbuf)
                         .c_str());
      }
    }
  };
  // Some quick sanity checks...
  checker(5e-324);
  checker(1e-308);
  checker(1.0);
  checker(1.000005);
  checker(1.7976931348623157e308);
  checker(0.00390625);
#ifndef _MSC_VER
  // on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it
  // to 0.00195312 (round half to even).
  checker(0.001953125);
#endif
  checker(0.005859375);
  // Some cases where the rounding is very very close
  checker(1.089095e-15);
  checker(3.274195e-55);
  checker(6.534355e-146);
  checker(2.920845e+234);

  if (mismatches.empty()) {
    test_count = 0;
    ExhaustiveFloat(kFloatNumCases, checker);

    test_count = 0;
    std::vector<int> digit_testcases{
        100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100,  // misc
        195312, 195313,  // 1.953125 is a case where we round down, just barely.
        200000, 500000, 800000,  // misc mid-range cases
        585937, 585938,  // 5.859375 is a case where we round up, just barely.
        900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999};
    if (kFloatNumCases >= 1e9) {
      // If at least 1 billion test cases were requested, user wants an
      // exhaustive test. So let's test all mantissas, too.
      constexpr int min_mantissa = 100000, max_mantissa = 999999;
      digit_testcases.resize(max_mantissa - min_mantissa + 1);
      std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa);
    }

    for (int exponent = -324; exponent <= 308; ++exponent) {
      double powten = pow(10.0, exponent);
      if (powten == 0) powten = 5e-324;
      if (kFloatNumCases >= 1e9) {
        // The exhaustive test takes a very long time, so log progress.
        char buf[kSixDigitsToBufferSize];
        ABSL_RAW_LOG(
            INFO, "%s",
            absl::StrCat("Exp ", exponent, " powten=", powten, "(",
                         powten, ") (",
                         std::string(buf, SixDigitsToBuffer(powten, buf)), ")")
                .c_str());
      }
      for (int digits : digit_testcases) {
        if (exponent == 308 && digits >= 179769) break;  // don't overflow!
        double digiform = (digits + 0.5) * 0.00001;
        double testval = digiform * powten;
        double pretestval = nextafter(testval, 0);
        double posttestval = nextafter(testval, 1.7976931348623157e308);
        checker(testval);
        checker(pretestval);
        checker(posttestval);
      }
    }
  } else {
    EXPECT_EQ(mismatches.size(), 0);
    for (size_t i = 0; i < mismatches.size(); ++i) {
      if (i > 100) i = mismatches.size() - 1;
      double d = mismatches[i];
      char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
      SixDigitsToBuffer(d, sixdigitsbuf);
      char snprintfbuf[kSixDigitsToBufferSize] = {0};
      snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
      double before = nextafter(d, 0.0);
      double after = nextafter(d, 1.7976931348623157e308);
      char b1[32], b2[kSixDigitsToBufferSize];
      ABSL_RAW_LOG(
          ERROR, "%s",
          absl::StrCat(
              "Mismatch #", i, "  d=", d, " (", ToNineDigits(d), ")",
              " sixdigits='", sixdigitsbuf, "'", " snprintf='", snprintfbuf,
              "'", " Before.=", PerfectDtoa(before), " ",
              (SixDigitsToBuffer(before, b2), b2),
              " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", before), b1),
              " Perfect=", PerfectDtoa(d), " ", (SixDigitsToBuffer(d, b2), b2),
              " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", d), b1),
              " After.=.", PerfectDtoa(after), " ",
              (SixDigitsToBuffer(after, b2), b2),
              " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", after), b1))
              .c_str());
    }
  }
}

TEST(StrToInt32, Partial) {
  struct Int32TestLine {
    std::string input;
    bool status;
    int32_t value;
  };
  const int32_t int32_min = std::numeric_limits<int32_t>::min();
  const int32_t int32_max = std::numeric_limits<int32_t>::max();
  Int32TestLine int32_test_line[] = {
      {"", false, 0},
      {" ", false, 0},
      {"-", false, 0},
      {"123@@@", false, 123},
      {absl::StrCat(int32_min, int32_max), false, int32_min},
      {absl::StrCat(int32_max, int32_max), false, int32_max},
  };

  for (const Int32TestLine& test_line : int32_test_line) {
    int32_t value = -2;
    bool status = safe_strto32_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = -2;
    status = safe_strto32_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = -2;
    status = safe_strto32_base(absl::string_view(test_line.input), &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
  }
}

TEST(StrToUint32, Partial) {
  struct Uint32TestLine {
    std::string input;
    bool status;
    uint32_t value;
  };
  const uint32_t uint32_max = std::numeric_limits<uint32_t>::max();
  Uint32TestLine uint32_test_line[] = {
      {"", false, 0},
      {" ", false, 0},
      {"-", false, 0},
      {"123@@@", false, 123},
      {absl::StrCat(uint32_max, uint32_max), false, uint32_max},
  };

  for (const Uint32TestLine& test_line : uint32_test_line) {
    uint32_t value = 2;
    bool status = safe_strtou32_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = 2;
    status = safe_strtou32_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = 2;
    status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
  }
}

TEST(StrToInt64, Partial) {
  struct Int64TestLine {
    std::string input;
    bool status;
    int64_t value;
  };
  const int64_t int64_min = std::numeric_limits<int64_t>::min();
  const int64_t int64_max = std::numeric_limits<int64_t>::max();
  Int64TestLine int64_test_line[] = {
      {"", false, 0},
      {" ", false, 0},
      {"-", false, 0},
      {"123@@@", false, 123},
      {absl::StrCat(int64_min, int64_max), false, int64_min},
      {absl::StrCat(int64_max, int64_max), false, int64_max},
  };

  for (const Int64TestLine& test_line : int64_test_line) {
    int64_t value = -2;
    bool status = safe_strto64_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = -2;
    status = safe_strto64_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = -2;
    status = safe_strto64_base(absl::string_view(test_line.input), &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
  }
}

TEST(StrToUint64, Partial) {
  struct Uint64TestLine {
    std::string input;
    bool status;
    uint64_t value;
  };
  const uint64_t uint64_max = std::numeric_limits<uint64_t>::max();
  Uint64TestLine uint64_test_line[] = {
      {"", false, 0},
      {" ", false, 0},
      {"-", false, 0},
      {"123@@@", false, 123},
      {absl::StrCat(uint64_max, uint64_max), false, uint64_max},
  };

  for (const Uint64TestLine& test_line : uint64_test_line) {
    uint64_t value = 2;
    bool status = safe_strtou64_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = 2;
    status = safe_strtou64_base(test_line.input, &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
    value = 2;
    status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10);
    EXPECT_EQ(test_line.status, status) << test_line.input;
    EXPECT_EQ(test_line.value, value) << test_line.input;
  }
}

TEST(StrToInt32Base, PrefixOnly) {
  struct Int32TestLine {
    std::string input;
    bool status;
    int32_t value;
  };
  Int32TestLine int32_test_line[] = {
    { "", false, 0 },
    { "-", false, 0 },
    { "-0", true, 0 },
    { "0", true, 0 },
    { "0x", false, 0 },
    { "-0x", false, 0 },
  };
  const int base_array[] = { 0, 2, 8, 10, 16 };

  for (const Int32TestLine& line : int32_test_line) {
    for (const int base : base_array) {
      int32_t value = 2;
      bool status = safe_strto32_base(line.input.c_str(), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strto32_base(line.input, &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strto32_base(absl::string_view(line.input), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
    }
  }
}

TEST(StrToUint32Base, PrefixOnly) {
  struct Uint32TestLine {
    std::string input;
    bool status;
    uint32_t value;
  };
  Uint32TestLine uint32_test_line[] = {
    { "", false, 0 },
    { "0", true, 0 },
    { "0x", false, 0 },
  };
  const int base_array[] = { 0, 2, 8, 10, 16 };

  for (const Uint32TestLine& line : uint32_test_line) {
    for (const int base : base_array) {
      uint32_t value = 2;
      bool status = safe_strtou32_base(line.input.c_str(), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strtou32_base(line.input, &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strtou32_base(absl::string_view(line.input), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
    }
  }
}

TEST(StrToInt64Base, PrefixOnly) {
  struct Int64TestLine {
    std::string input;
    bool status;
    int64_t value;
  };
  Int64TestLine int64_test_line[] = {
    { "", false, 0 },
    { "-", false, 0 },
    { "-0", true, 0 },
    { "0", true, 0 },
    { "0x", false, 0 },
    { "-0x", false, 0 },
  };
  const int base_array[] = { 0, 2, 8, 10, 16 };

  for (const Int64TestLine& line : int64_test_line) {
    for (const int base : base_array) {
      int64_t value = 2;
      bool status = safe_strto64_base(line.input.c_str(), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strto64_base(line.input, &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strto64_base(absl::string_view(line.input), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
    }
  }
}

TEST(StrToUint64Base, PrefixOnly) {
  struct Uint64TestLine {
    std::string input;
    bool status;
    uint64_t value;
  };
  Uint64TestLine uint64_test_line[] = {
    { "", false, 0 },
    { "0", true, 0 },
    { "0x", false, 0 },
  };
  const int base_array[] = { 0, 2, 8, 10, 16 };

  for (const Uint64TestLine& line : uint64_test_line) {
    for (const int base : base_array) {
      uint64_t value = 2;
      bool status = safe_strtou64_base(line.input.c_str(), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strtou64_base(line.input, &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
      value = 2;
      status = safe_strtou64_base(absl::string_view(line.input), &value, base);
      EXPECT_EQ(line.status, status) << line.input << " " << base;
      EXPECT_EQ(line.value, value) << line.input << " " << base;
    }
  }
}

}  // namespace