summaryrefslogtreecommitdiff
path: root/absl/strings/internal/str_format/convert_test.cc
blob: 7f2227787717f86b63475e060199bdacc1d5cee3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <assert.h>
#include <locale.h>
#include <stdarg.h>
#include <stdio.h>

#include <algorithm>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <cwctype>
#include <limits>
#include <set>
#include <sstream>
#include <string>
#include <thread>  // NOLINT
#include <type_traits>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/log/log.h"
#include "absl/numeric/int128.h"
#include "absl/strings/ascii.h"
#include "absl/strings/internal/str_format/arg.h"
#include "absl/strings/internal/str_format/bind.h"
#include "absl/strings/match.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"

#if defined(ABSL_HAVE_STD_STRING_VIEW)
#include <string_view>
#endif

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {

struct NativePrintfTraits {
  bool hex_float_has_glibc_rounding;
  bool hex_float_prefers_denormal_repr;
  bool hex_float_uses_minimal_precision_when_not_specified;
  bool hex_float_optimizes_leading_digit_bit_count;
};

template <typename T, size_t N>
size_t ArraySize(T (&)[N]) {
  return N;
}

template <typename T>
struct AlwaysFalse : std::false_type {};

template <typename T>
std::string LengthModFor() {
  static_assert(AlwaysFalse<T>::value, "Unsupported type");
  return "";
}
template <>
std::string LengthModFor<char>() {
  return "hh";
}
template <>
std::string LengthModFor<signed char>() {
  return "hh";
}
template <>
std::string LengthModFor<unsigned char>() {
  return "hh";
}
template <>
std::string LengthModFor<short>() {  // NOLINT
  return "h";
}
template <>
std::string LengthModFor<unsigned short>() {  // NOLINT
  return "h";
}
template <>
std::string LengthModFor<int>() {
  return "";
}
template <>
std::string LengthModFor<unsigned>() {
  return "";
}
template <>
std::string LengthModFor<long>() {  // NOLINT
  return "l";
}
template <>
std::string LengthModFor<unsigned long>() {  // NOLINT
  return "l";
}
template <>
std::string LengthModFor<long long>() {  // NOLINT
  return "ll";
}
template <>
std::string LengthModFor<unsigned long long>() {  // NOLINT
  return "ll";
}

// An integral type of the same rank and signedness as `wchar_t`, that isn't
// `wchar_t`.
using IntegralTypeForWCharT =
    std::conditional_t<std::is_signed<wchar_t>::value,
                       // Some STLs are broken and return `wchar_t` from
                       // `std::make_[un]signed_t<wchar_t>` when the signedness
                       // matches. Work around by round-tripping through the
                       // opposite signedness.
                       std::make_signed_t<std::make_unsigned_t<wchar_t>>,
                       std::make_unsigned_t<std::make_signed_t<wchar_t>>>;

// Given an integral type `T`, returns a type of the same rank and signedness
// that is guaranteed to not be `wchar_t`.
template <typename T>
using MatchingIntegralType = std::conditional_t<std::is_same<T, wchar_t>::value,
                                                IntegralTypeForWCharT, T>;

std::string EscCharImpl(int v) {
  char buf[64];
  int n = absl::ascii_isprint(static_cast<unsigned char>(v))
              ? snprintf(buf, sizeof(buf), "'%c'", v)
              : snprintf(buf, sizeof(buf), "'\\x%.*x'", CHAR_BIT / 4,
                         static_cast<unsigned>(
                             static_cast<std::make_unsigned_t<char>>(v)));
  assert(n > 0 && static_cast<size_t>(n) < sizeof(buf));
  return std::string(buf, static_cast<size_t>(n));
}

std::string Esc(char v) { return EscCharImpl(v); }
std::string Esc(signed char v) { return EscCharImpl(v); }
std::string Esc(unsigned char v) { return EscCharImpl(v); }

std::string Esc(wchar_t v) {
  char buf[64];
  int n = std::iswprint(static_cast<wint_t>(v))
              ? snprintf(buf, sizeof(buf), "L'%lc'", static_cast<wint_t>(v))
              : snprintf(buf, sizeof(buf), "L'\\x%.*llx'",
                         static_cast<int>(sizeof(wchar_t) * CHAR_BIT / 4),
                         static_cast<unsigned long long>(
                             static_cast<std::make_unsigned_t<wchar_t>>(v)));
  assert(n > 0 && static_cast<size_t>(n) < sizeof(buf));
  return std::string(buf, static_cast<size_t>(n));
}

template <typename T>
std::string Esc(const T &v) {
  std::ostringstream oss;
  oss << v;
  return oss.str();
}

void StrAppendV(std::string *dst, const char *format, va_list ap) {
  // First try with a small fixed size buffer
  static const int kSpaceLength = 1024;
  char space[kSpaceLength];

  // It's possible for methods that use a va_list to invalidate
  // the data in it upon use.  The fix is to make a copy
  // of the structure before using it and use that copy instead.
  va_list backup_ap;
  va_copy(backup_ap, ap);
  int result = vsnprintf(space, kSpaceLength, format, backup_ap);
  va_end(backup_ap);
  if (result < kSpaceLength) {
    if (result >= 0) {
      // Normal case -- everything fit.
      dst->append(space, static_cast<size_t>(result));
      return;
    }
    if (result < 0) {
      // Just an error.
      return;
    }
  }

  // Increase the buffer size to the size requested by vsnprintf,
  // plus one for the closing \0.
  size_t length = static_cast<size_t>(result) + 1;
  char *buf = new char[length];

  // Restore the va_list before we use it again
  va_copy(backup_ap, ap);
  result = vsnprintf(buf, length, format, backup_ap);
  va_end(backup_ap);

  if (result >= 0 && static_cast<size_t>(result) < length) {
    // It fit
    dst->append(buf, static_cast<size_t>(result));
  }
  delete[] buf;
}

void StrAppend(std::string *, const char *, ...) ABSL_PRINTF_ATTRIBUTE(2, 3);
void StrAppend(std::string *out, const char *format, ...) {
  va_list ap;
  va_start(ap, format);
  StrAppendV(out, format, ap);
  va_end(ap);
}

std::string StrPrint(const char *, ...) ABSL_PRINTF_ATTRIBUTE(1, 2);
std::string StrPrint(const char *format, ...) {
  va_list ap;
  va_start(ap, format);
  std::string result;
  StrAppendV(&result, format, ap);
  va_end(ap);
  return result;
}

NativePrintfTraits VerifyNativeImplementationImpl() {
  NativePrintfTraits result;

  // >>> hex_float_has_glibc_rounding. To have glibc's rounding behavior we need
  // to meet three requirements:
  //
  //   - The threshold for rounding up is 8 (for e.g. MSVC uses 9).
  //   - If the digits lower than than the 8 are non-zero then we round up.
  //   - If the digits lower than the 8 are all zero then we round toward even.
  //
  // The numbers below represent all the cases covering {below,at,above} the
  // threshold (8) with both {zero,non-zero} lower bits and both {even,odd}
  // preceding digits.
  const double d0079 = 65657.0;  // 0x1.0079p+16
  const double d0179 = 65913.0;  // 0x1.0179p+16
  const double d0080 = 65664.0;  // 0x1.0080p+16
  const double d0180 = 65920.0;  // 0x1.0180p+16
  const double d0081 = 65665.0;  // 0x1.0081p+16
  const double d0181 = 65921.0;  // 0x1.0181p+16
  result.hex_float_has_glibc_rounding =
      StartsWith(StrPrint("%.2a", d0079), "0x1.00") &&
      StartsWith(StrPrint("%.2a", d0179), "0x1.01") &&
      StartsWith(StrPrint("%.2a", d0080), "0x1.00") &&
      StartsWith(StrPrint("%.2a", d0180), "0x1.02") &&
      StartsWith(StrPrint("%.2a", d0081), "0x1.01") &&
      StartsWith(StrPrint("%.2a", d0181), "0x1.02");

  // >>> hex_float_prefers_denormal_repr. Formatting `denormal` on glibc yields
  // "0x0.0000000000001p-1022", whereas on std libs that don't use denormal
  // representation it would either be 0x1p-1074 or 0x1.0000000000000-1074.
  const double denormal = std::numeric_limits<double>::denorm_min();
  result.hex_float_prefers_denormal_repr =
      StartsWith(StrPrint("%a", denormal), "0x0.0000000000001");

  // >>> hex_float_uses_minimal_precision_when_not_specified. Some (non-glibc)
  // libs will format the following as "0x1.0079000000000p+16".
  result.hex_float_uses_minimal_precision_when_not_specified =
      (StrPrint("%a", d0079) == "0x1.0079p+16");

  // >>> hex_float_optimizes_leading_digit_bit_count. The number 1.5, when
  // formatted by glibc should yield "0x1.8p+0" for `double` and "0xcp-3" for
  // `long double`, i.e., number of bits in the leading digit is adapted to the
  // number of bits in the mantissa.
  const double d_15 = 1.5;
  const long double ld_15 = 1.5;
  result.hex_float_optimizes_leading_digit_bit_count =
      StartsWith(StrPrint("%a", d_15), "0x1.8") &&
      StartsWith(StrPrint("%La", ld_15), "0xc");

  return result;
}

const NativePrintfTraits &VerifyNativeImplementation() {
  static NativePrintfTraits native_traits = VerifyNativeImplementationImpl();
  return native_traits;
}

class FormatConvertTest : public ::testing::Test { };

template <typename T>
void TestStringConvert(const T& str) {
  const FormatArgImpl args[] = {FormatArgImpl(str)};
  struct Expectation {
    const char *out;
    const char *fmt;
  };
  const Expectation kExpect[] = {
    {"hello",  "%1$s"      },
    {"",       "%1$.s"     },
    {"",       "%1$.0s"    },
    {"h",      "%1$.1s"    },
    {"he",     "%1$.2s"    },
    {"hello",  "%1$.10s"   },
    {" hello", "%1$6s"     },
    {"   he",  "%1$5.2s"   },
    {"he   ",  "%1$-5.2s"  },
    {"hello ", "%1$-6.10s" },
  };
  for (const Expectation &e : kExpect) {
    UntypedFormatSpecImpl format(e.fmt);
    EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args)));
  }
}

TEST_F(FormatConvertTest, BasicString) {
  TestStringConvert("hello");  // As char array.
  TestStringConvert(L"hello");
  TestStringConvert(static_cast<const char*>("hello"));
  TestStringConvert(static_cast<const wchar_t*>(L"hello"));
  TestStringConvert(std::string("hello"));
  TestStringConvert(std::wstring(L"hello"));
  TestStringConvert(string_view("hello"));
#if defined(ABSL_HAVE_STD_STRING_VIEW)
  TestStringConvert(std::string_view("hello"));
  TestStringConvert(std::wstring_view(L"hello"));
#endif  // ABSL_HAVE_STD_STRING_VIEW
}

TEST_F(FormatConvertTest, NullString) {
  const char* p = nullptr;
  UntypedFormatSpecImpl format("%s");
  EXPECT_EQ("", FormatPack(format, {FormatArgImpl(p)}));

  const wchar_t* wp = nullptr;
  UntypedFormatSpecImpl wformat("%ls");
  EXPECT_EQ("", FormatPack(wformat, {FormatArgImpl(wp)}));
}

TEST_F(FormatConvertTest, StringPrecision) {
  // We cap at the precision.
  char c = 'a';
  const char* p = &c;
  UntypedFormatSpecImpl format("%.1s");
  EXPECT_EQ("a", FormatPack(format, {FormatArgImpl(p)}));

  wchar_t wc = L'a';
  const wchar_t* wp = &wc;
  UntypedFormatSpecImpl wformat("%.1ls");
  EXPECT_EQ("a", FormatPack(wformat, {FormatArgImpl(wp)}));

  // We cap at the NUL-terminator.
  p = "ABC";
  UntypedFormatSpecImpl format2("%.10s");
  EXPECT_EQ("ABC", FormatPack(format2, {FormatArgImpl(p)}));

  wp = L"ABC";
  UntypedFormatSpecImpl wformat2("%.10ls");
  EXPECT_EQ("ABC", FormatPack(wformat2, {FormatArgImpl(wp)}));
}

// Pointer formatting is implementation defined. This checks that the argument
// can be matched to `ptr`.
MATCHER_P(MatchesPointerString, ptr, "") {
  if (ptr == nullptr && arg == "(nil)") {
    return true;
  }
  void* parsed = nullptr;
  if (sscanf(arg.c_str(), "%p", &parsed) != 1) {
    LOG(FATAL) << "Could not parse " << arg;
  }
  return ptr == parsed;
}

TEST_F(FormatConvertTest, Pointer) {
  static int x = 0;
  const int *xp = &x;
  char c = 'h';
  char *mcp = &c;
  const char *cp = "hi";
  const char *cnil = nullptr;
  wchar_t wc = L'h';
  wchar_t *mwcp = &wc;
  const wchar_t *wcp = L"hi";
  const wchar_t *wcnil = nullptr;
  const int *inil = nullptr;
  using VoidF = void (*)();
  VoidF fp = [] {}, fnil = nullptr;
  volatile char vc;
  volatile char *vcp = &vc;
  volatile char *vcnil = nullptr;
  volatile wchar_t vwc;
  volatile wchar_t *vwcp = &vwc;
  volatile wchar_t *vwcnil = nullptr;
  const FormatArgImpl args_array[] = {
      FormatArgImpl(xp),    FormatArgImpl(cp),     FormatArgImpl(wcp),
      FormatArgImpl(inil),  FormatArgImpl(cnil),   FormatArgImpl(wcnil),
      FormatArgImpl(mcp),   FormatArgImpl(mwcp),   FormatArgImpl(fp),
      FormatArgImpl(fnil),  FormatArgImpl(vcp),    FormatArgImpl(vwcp),
      FormatArgImpl(vcnil), FormatArgImpl(vwcnil),
  };
  auto args = absl::MakeConstSpan(args_array);

  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%p"), args),
              MatchesPointerString(&x));
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%20p"), args),
              MatchesPointerString(&x));
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.1p"), args),
              MatchesPointerString(&x));
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.20p"), args),
              MatchesPointerString(&x));
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%30.20p"), args),
              MatchesPointerString(&x));

  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-p"), args),
              MatchesPointerString(&x));
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-20p"), args),
              MatchesPointerString(&x));
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-.1p"), args),
              MatchesPointerString(&x));
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.20p"), args),
              MatchesPointerString(&x));
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-30.20p"), args),
              MatchesPointerString(&x));

  // const int*
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%1$p"), args),
              MatchesPointerString(xp));
  // const char*
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%2$p"), args),
              MatchesPointerString(cp));
  // const wchar_t*
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%3$p"), args),
              MatchesPointerString(wcp));
  // null const int*
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%4$p"), args),
              MatchesPointerString(nullptr));
  // null const char*
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%5$p"), args),
              MatchesPointerString(nullptr));
  // null const wchar_t*
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%6$p"), args),
              MatchesPointerString(nullptr));
  // nonconst char*
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%7$p"), args),
              MatchesPointerString(mcp));
  // nonconst wchar_t*
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%8$p"), args),
              MatchesPointerString(mwcp));
  // function pointer
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%9$p"), args),
              MatchesPointerString(reinterpret_cast<const void *>(fp)));
  // null function pointer
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%10$p"), args),
              MatchesPointerString(nullptr));
  // volatile char*
  EXPECT_THAT(
      FormatPack(UntypedFormatSpecImpl("%11$p"), args),
      MatchesPointerString(reinterpret_cast<volatile const void *>(vcp)));
  // volatile wchar_t*
  EXPECT_THAT(
      FormatPack(UntypedFormatSpecImpl("%12$p"), args),
      MatchesPointerString(reinterpret_cast<volatile const void *>(vwcp)));
  // null volatile char*
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%13$p"), args),
              MatchesPointerString(nullptr));
  // null volatile wchar_t*
  EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%14$p"), args),
              MatchesPointerString(nullptr));
}

struct Cardinal {
  enum Pos { k1 = 1, k2 = 2, k3 = 3 };
  enum Neg { kM1 = -1, kM2 = -2, kM3 = -3 };
};

TEST_F(FormatConvertTest, Enum) {
  const Cardinal::Pos k3 = Cardinal::k3;
  const Cardinal::Neg km3 = Cardinal::kM3;
  const FormatArgImpl args[] = {FormatArgImpl(k3), FormatArgImpl(km3)};
  UntypedFormatSpecImpl format("%1$d");
  UntypedFormatSpecImpl format2("%2$d");
  EXPECT_EQ("3", FormatPack(format, absl::MakeSpan(args)));
  EXPECT_EQ("-3", FormatPack(format2, absl::MakeSpan(args)));
}

template <typename T>
class TypedFormatConvertTest : public FormatConvertTest { };

TYPED_TEST_SUITE_P(TypedFormatConvertTest);

std::vector<std::string> AllFlagCombinations() {
  const char kFlags[] = {'-', '#', '0', '+', ' '};
  std::vector<std::string> result;
  for (size_t fsi = 0; fsi < (1ull << ArraySize(kFlags)); ++fsi) {
    std::string flag_set;
    for (size_t fi = 0; fi < ArraySize(kFlags); ++fi)
      if (fsi & (1ull << fi))
        flag_set += kFlags[fi];
    result.push_back(flag_set);
  }
  return result;
}

TYPED_TEST_P(TypedFormatConvertTest, AllIntsWithFlags) {
  typedef TypeParam T;
  typedef typename std::make_unsigned<T>::type UnsignedT;
  using remove_volatile_t = typename std::remove_volatile<T>::type;
  const T kMin = std::numeric_limits<remove_volatile_t>::min();
  const T kMax = std::numeric_limits<remove_volatile_t>::max();
  const T kVals[] = {
      remove_volatile_t(1),
      remove_volatile_t(2),
      remove_volatile_t(3),
      remove_volatile_t(123),
      remove_volatile_t(-1),
      remove_volatile_t(-2),
      remove_volatile_t(-3),
      remove_volatile_t(-123),
      remove_volatile_t(0),
      kMax - remove_volatile_t(1),
      kMax,
      kMin + remove_volatile_t(1),
      kMin,
  };
  const char kConvChars[] = {'d', 'i', 'u', 'o', 'x', 'X'};
  const std::string kWid[] = {"", "4", "10"};
  const std::string kPrec[] = {"", ".", ".0", ".4", ".10"};

  const std::vector<std::string> flag_sets = AllFlagCombinations();

  for (size_t vi = 0; vi < ArraySize(kVals); ++vi) {
    const T val = kVals[vi];
    SCOPED_TRACE(Esc(val));
    const FormatArgImpl args[] = {FormatArgImpl(val)};
    for (size_t ci = 0; ci < ArraySize(kConvChars); ++ci) {
      const char conv_char = kConvChars[ci];
      for (size_t fsi = 0; fsi < flag_sets.size(); ++fsi) {
        const std::string &flag_set = flag_sets[fsi];
        for (size_t wi = 0; wi < ArraySize(kWid); ++wi) {
          const std::string &wid = kWid[wi];
          for (size_t pi = 0; pi < ArraySize(kPrec); ++pi) {
            const std::string &prec = kPrec[pi];

            const bool is_signed_conv = (conv_char == 'd' || conv_char == 'i');
            const bool is_unsigned_to_signed =
                !std::is_signed<T>::value && is_signed_conv;
            // Don't consider sign-related flags '+' and ' ' when doing
            // unsigned to signed conversions.
            if (is_unsigned_to_signed &&
                flag_set.find_first_of("+ ") != std::string::npos) {
              continue;
            }

            std::string new_fmt("%");
            new_fmt += flag_set;
            new_fmt += wid;
            new_fmt += prec;
            // old and new always agree up to here.
            std::string old_fmt = new_fmt;
            new_fmt += conv_char;
            std::string old_result;
            if (is_unsigned_to_signed) {
              // don't expect agreement on unsigned formatted as signed,
              // as printf can't do that conversion properly. For those
              // cases, we do expect agreement with printf with a "%u"
              // and the unsigned equivalent of 'val'.
              UnsignedT uval =
                  static_cast<std::remove_volatile_t<UnsignedT>>(val);
              old_fmt += LengthModFor<
                  MatchingIntegralType<std::remove_cv_t<decltype(uval)>>>();
              old_fmt += "u";
              old_result = StrPrint(old_fmt.c_str(), uval);
            } else {
              old_fmt += LengthModFor<
                  MatchingIntegralType<std::remove_cv_t<decltype(val)>>>();
              old_fmt += conv_char;
              old_result = StrPrint(old_fmt.c_str(), val);
            }

            SCOPED_TRACE(std::string() + " old_fmt: \"" + old_fmt +
                         "\"'"
                         " new_fmt: \"" +
                         new_fmt + "\"");
            UntypedFormatSpecImpl format(new_fmt);
            EXPECT_EQ(old_result, FormatPack(format, absl::MakeSpan(args)));
          }
        }
      }
    }
  }
}

template <typename T>
absl::optional<std::string> StrPrintChar(T c) {
  return StrPrint("%c", static_cast<int>(c));
}
template <>
absl::optional<std::string> StrPrintChar(wchar_t c) {
  // musl libc has a bug where ("%lc", 0) writes no characters, and Android
  // doesn't support forcing UTF-8 via setlocale(). Hardcode the expected
  // answers for ASCII inputs to maximize test coverage on these platforms.
  if (static_cast<std::make_unsigned_t<wchar_t>>(c) < 0x80) {
    return std::string(1, static_cast<char>(c));
  }

  // Force a UTF-8 locale to match the expected `StrFormat()` behavior.
  // It's important to copy the string returned by `old_locale` here, because
  // its contents are not guaranteed to be valid after the next `setlocale()`
  // call.
  std::string old_locale = setlocale(LC_CTYPE, nullptr);
  if (!setlocale(LC_CTYPE, "en_US.UTF-8")) {
    return absl::nullopt;
  }
  const std::string output = StrPrint("%lc", static_cast<wint_t>(c));
  setlocale(LC_CTYPE, old_locale.c_str());
  return output;
}

template <typename T>
typename std::remove_volatile<T>::type GetMaxForConversion() {
  return static_cast<typename std::remove_volatile<T>::type>(
      std::numeric_limits<int>::max());
}

template <>
wchar_t GetMaxForConversion<wchar_t>() {
  // Don't return values that aren't legal Unicode. For wchar_t conversions in a
  // UTF-8 locale, conversion behavior for such values is unspecified, and we
  // don't care about matching it.
  return (sizeof(wchar_t) * CHAR_BIT <= 16) ? wchar_t{0xffff}
                                            : static_cast<wchar_t>(0x10ffff);
}

TYPED_TEST_P(TypedFormatConvertTest, Char) {
  // Pass a bunch of values of type TypeParam to both FormatPack and libc's
  // vsnprintf("%c", ...) (wrapped in StrPrint) to make sure we get the same
  // value.
  typedef TypeParam T;
  using remove_volatile_t = typename std::remove_volatile<T>::type;
  std::vector<remove_volatile_t> vals = {
      remove_volatile_t(1),  remove_volatile_t(2),  remove_volatile_t(10),   //
      remove_volatile_t(-1), remove_volatile_t(-2), remove_volatile_t(-10),  //
      remove_volatile_t(0),
  };

  // We'd like to test values near std::numeric_limits::min() and
  // std::numeric_limits::max(), too, but vsnprintf("%c", ...) can't handle
  // anything larger than an int. Add in the most extreme values we can without
  // exceeding that range.
  // Special case: Formatting a wchar_t should behave like vsnprintf("%lc").
  // Technically vsnprintf can accept a wint_t in this case, but since we must
  // pass a wchar_t to FormatPack, the largest type we can use here is wchar_t.
  using ArgType =
      std::conditional_t<std::is_same<T, wchar_t>::value, wchar_t, int>;
  static const T kMin =
      static_cast<remove_volatile_t>(std::numeric_limits<ArgType>::min());
  static const T kMax = GetMaxForConversion<T>();
  vals.insert(vals.end(), {static_cast<remove_volatile_t>(kMin + 1), kMin,
                           static_cast<remove_volatile_t>(kMax - 1), kMax});

  static const auto kMaxWCharT =
      static_cast<remove_volatile_t>(GetMaxForConversion<wchar_t>());
  for (const T c : vals) {
    SCOPED_TRACE(Esc(c));
    const FormatArgImpl args[] = {FormatArgImpl(c)};
    UntypedFormatSpecImpl format("%c");
    absl::optional<std::string> result = StrPrintChar(c);
    if (result.has_value()) {
      EXPECT_EQ(result.value(), FormatPack(format, absl::MakeSpan(args)));
    }

    // Also test that if the format specifier is "%lc", the argument is treated
    // as if it's a `wchar_t`.
    const T wc =
        std::max(remove_volatile_t{0},
                 std::min(static_cast<remove_volatile_t>(c), kMaxWCharT));
    SCOPED_TRACE(Esc(wc));
    const FormatArgImpl wide_args[] = {FormatArgImpl(wc)};
    UntypedFormatSpecImpl wide_format("%lc");
    result = StrPrintChar(static_cast<wchar_t>(wc));
    if (result.has_value()) {
      EXPECT_EQ(result.value(),
                FormatPack(wide_format, absl::MakeSpan(wide_args)));
    }
  }
}

REGISTER_TYPED_TEST_SUITE_P(TypedFormatConvertTest, AllIntsWithFlags, Char);

typedef ::testing::Types<int, unsigned, volatile int, short,   // NOLINT
                         unsigned short, long, unsigned long,  // NOLINT
                         long long, unsigned long long,        // NOLINT
                         signed char, unsigned char, char, wchar_t>
    AllIntTypes;
INSTANTIATE_TYPED_TEST_SUITE_P(TypedFormatConvertTestWithAllIntTypes,
                               TypedFormatConvertTest, AllIntTypes);
TEST_F(FormatConvertTest, VectorBool) {
  // Make sure vector<bool>'s values behave as bools.
  std::vector<bool> v = {true, false};
  const std::vector<bool> cv = {true, false};
  EXPECT_EQ("1,0,1,0",
            FormatPack(UntypedFormatSpecImpl("%d,%d,%d,%d"),
                       absl::Span<const FormatArgImpl>(
                           {FormatArgImpl(v[0]), FormatArgImpl(v[1]),
                            FormatArgImpl(cv[0]), FormatArgImpl(cv[1])})));
}

TEST_F(FormatConvertTest, UnicodeWideString) {
  // StrFormat() should be able to convert wide strings containing Unicode
  // characters (to UTF-8).
  const FormatArgImpl args[] = {FormatArgImpl(L"\u47e3 \U00011112")};
  // `u8""` forces UTF-8 encoding; MSVC will default to e.g. CP1252 (and warn)
  // without it. However, the resulting character type differs between pre-C++20
  // (`char`) and C++20 (`char8_t`). So deduce the right character type for all
  // C++ versions, init it with UTF-8, then `memcpy()` to get the result as a
  // `char*`.
  using ConstChar8T = std::remove_reference_t<decltype(*u8"a")>;
  ConstChar8T kOutputUtf8[] = u8"\u47e3 \U00011112";
  char output[sizeof kOutputUtf8];
  std::memcpy(output, kOutputUtf8, sizeof kOutputUtf8);
  EXPECT_EQ(output,
            FormatPack(UntypedFormatSpecImpl("%ls"), absl::MakeSpan(args)));
}

TEST_F(FormatConvertTest, Int128) {
  absl::int128 positive = static_cast<absl::int128>(0x1234567890abcdef) * 1979;
  absl::int128 negative = -positive;
  absl::int128 max = absl::Int128Max(), min = absl::Int128Min();
  const FormatArgImpl args[] = {FormatArgImpl(positive),
                                FormatArgImpl(negative), FormatArgImpl(max),
                                FormatArgImpl(min)};

  struct Case {
    const char* format;
    const char* expected;
  } cases[] = {
      {"%1$d", "2595989796776606496405"},
      {"%1$30d", "        2595989796776606496405"},
      {"%1$-30d", "2595989796776606496405        "},
      {"%1$u", "2595989796776606496405"},
      {"%1$x", "8cba9876066020f695"},
      {"%2$d", "-2595989796776606496405"},
      {"%2$30d", "       -2595989796776606496405"},
      {"%2$-30d", "-2595989796776606496405       "},
      {"%2$u", "340282366920938460867384810655161715051"},
      {"%2$x", "ffffffffffffff73456789f99fdf096b"},
      {"%3$d", "170141183460469231731687303715884105727"},
      {"%3$u", "170141183460469231731687303715884105727"},
      {"%3$x", "7fffffffffffffffffffffffffffffff"},
      {"%4$d", "-170141183460469231731687303715884105728"},
      {"%4$x", "80000000000000000000000000000000"},
  };

  for (auto c : cases) {
    UntypedFormatSpecImpl format(c.format);
    EXPECT_EQ(c.expected, FormatPack(format, absl::MakeSpan(args)));
  }
}

TEST_F(FormatConvertTest, Uint128) {
  absl::uint128 v = static_cast<absl::uint128>(0x1234567890abcdef) * 1979;
  absl::uint128 max = absl::Uint128Max();
  const FormatArgImpl args[] = {FormatArgImpl(v), FormatArgImpl(max)};

  struct Case {
    const char* format;
    const char* expected;
  } cases[] = {
      {"%1$d", "2595989796776606496405"},
      {"%1$30d", "        2595989796776606496405"},
      {"%1$-30d", "2595989796776606496405        "},
      {"%1$u", "2595989796776606496405"},
      {"%1$x", "8cba9876066020f695"},
      {"%2$d", "340282366920938463463374607431768211455"},
      {"%2$u", "340282366920938463463374607431768211455"},
      {"%2$x", "ffffffffffffffffffffffffffffffff"},
  };

  for (auto c : cases) {
    UntypedFormatSpecImpl format(c.format);
    EXPECT_EQ(c.expected, FormatPack(format, absl::MakeSpan(args)));
  }
}

template <typename Floating>
void TestWithMultipleFormatsHelper(const std::vector<Floating> &floats,
                                   const std::set<Floating> &skip_verify) {
  const NativePrintfTraits &native_traits = VerifyNativeImplementation();
  // Reserve the space to ensure we don't allocate memory in the output itself.
  std::string str_format_result;
  str_format_result.reserve(1 << 20);
  std::string string_printf_result;
  string_printf_result.reserve(1 << 20);

  const char *const kFormats[] = {
      "%",  "%.3", "%8.5", "%500",   "%.5000", "%.60", "%.30",   "%03",
      "%+", "% ",  "%-10", "%#15.3", "%#.0",   "%.0",  "%1$*2$", "%1$.*2$"};

  for (const char *fmt : kFormats) {
    for (char f : {'f', 'F',  //
                   'g', 'G',  //
                   'a', 'A',  //
                   'e', 'E'}) {
      std::string fmt_str = std::string(fmt) + f;

      if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F' &&
          f != 'a' && f != 'A') {
        // This particular test takes way too long with snprintf.
        // Disable for the case we are not implementing natively.
        continue;
      }

      if ((f == 'a' || f == 'A') &&
          !native_traits.hex_float_has_glibc_rounding) {
        continue;
      }

      for (Floating d : floats) {
        if (!native_traits.hex_float_prefers_denormal_repr &&
            (f == 'a' || f == 'A') && std::fpclassify(d) == FP_SUBNORMAL) {
          continue;
        }
        int i = -10;
        FormatArgImpl args[2] = {FormatArgImpl(d), FormatArgImpl(i)};
        UntypedFormatSpecImpl format(fmt_str);

        string_printf_result.clear();
        StrAppend(&string_printf_result, fmt_str.c_str(), d, i);
        str_format_result.clear();

        {
          AppendPack(&str_format_result, format, absl::MakeSpan(args));
        }

#ifdef _MSC_VER
        // MSVC has a different rounding policy than us so we can't test our
        // implementation against the native one there.
        continue;
#elif defined(__APPLE__)
        // Apple formats NaN differently (+nan) vs. (nan)
        if (std::isnan(d)) continue;
#endif
        if (string_printf_result != str_format_result &&
            skip_verify.find(d) == skip_verify.end()) {
          // We use ASSERT_EQ here because failures are usually correlated and a
          // bug would print way too many failed expectations causing the test
          // to time out.
          ASSERT_EQ(string_printf_result, str_format_result)
              << fmt_str << " " << StrPrint("%.18g", d) << " "
              << StrPrint("%a", d) << " " << StrPrint("%.50f", d);
        }
      }
    }
  }
}

TEST_F(FormatConvertTest, Float) {
  std::vector<float> floats = {0.0f,
                               -0.0f,
                               .9999999f,
                               9999999.f,
                               std::numeric_limits<float>::max(),
                               -std::numeric_limits<float>::max(),
                               std::numeric_limits<float>::min(),
                               -std::numeric_limits<float>::min(),
                               std::numeric_limits<float>::lowest(),
                               -std::numeric_limits<float>::lowest(),
                               std::numeric_limits<float>::epsilon(),
                               std::numeric_limits<float>::epsilon() + 1.0f,
                               std::numeric_limits<float>::infinity(),
                               -std::numeric_limits<float>::infinity(),
                               std::nanf("")};

  // Some regression tests.
  floats.push_back(0.999999989f);

  if (std::numeric_limits<float>::has_denorm != std::denorm_absent) {
    floats.push_back(std::numeric_limits<float>::denorm_min());
    floats.push_back(-std::numeric_limits<float>::denorm_min());
  }

  for (float base :
       {1.f, 12.f, 123.f, 1234.f, 12345.f, 123456.f, 1234567.f, 12345678.f,
        123456789.f, 1234567890.f, 12345678901.f, 12345678.f, 12345678.f}) {
    for (int exp = -123; exp <= 123; ++exp) {
      for (int sign : {1, -1}) {
        floats.push_back(sign * std::ldexp(base, exp));
      }
    }
  }

  for (int exp = -300; exp <= 300; ++exp) {
    const float all_ones_mantissa = 0xffffff;
    floats.push_back(std::ldexp(all_ones_mantissa, exp));
  }

  // Remove duplicates to speed up the logic below.
  std::sort(floats.begin(), floats.end(), [](const float a, const float b) {
    if (std::isnan(a)) return false;
    if (std::isnan(b)) return true;
    return a < b;
  });
  floats.erase(std::unique(floats.begin(), floats.end()), floats.end());

  TestWithMultipleFormatsHelper(floats, {});
}

TEST_F(FormatConvertTest, Double) {
  // For values that we know won't match the standard library implementation we
  // skip verification, but still run the algorithm to catch asserts/sanitizer
  // bugs.
  std::set<double> skip_verify;
  std::vector<double> doubles = {0.0,
                                 -0.0,
                                 .99999999999999,
                                 99999999999999.,
                                 std::numeric_limits<double>::max(),
                                 -std::numeric_limits<double>::max(),
                                 std::numeric_limits<double>::min(),
                                 -std::numeric_limits<double>::min(),
                                 std::numeric_limits<double>::lowest(),
                                 -std::numeric_limits<double>::lowest(),
                                 std::numeric_limits<double>::epsilon(),
                                 std::numeric_limits<double>::epsilon() + 1,
                                 std::numeric_limits<double>::infinity(),
                                 -std::numeric_limits<double>::infinity(),
                                 std::nan("")};

  // Some regression tests.
  doubles.push_back(0.99999999999999989);

  if (std::numeric_limits<double>::has_denorm != std::denorm_absent) {
    doubles.push_back(std::numeric_limits<double>::denorm_min());
    doubles.push_back(-std::numeric_limits<double>::denorm_min());
  }

  for (double base :
       {1., 12., 123., 1234., 12345., 123456., 1234567., 12345678., 123456789.,
        1234567890., 12345678901., 123456789012., 1234567890123.}) {
    for (int exp = -123; exp <= 123; ++exp) {
      for (int sign : {1, -1}) {
        doubles.push_back(sign * std::ldexp(base, exp));
      }
    }
  }

  // Workaround libc bug.
  // https://sourceware.org/bugzilla/show_bug.cgi?id=22142
  const bool gcc_bug_22142 =
      StrPrint("%f", std::numeric_limits<double>::max()) !=
      "1797693134862315708145274237317043567980705675258449965989174768031"
      "5726078002853876058955863276687817154045895351438246423432132688946"
      "4182768467546703537516986049910576551282076245490090389328944075868"
      "5084551339423045832369032229481658085593321233482747978262041447231"
      "68738177180919299881250404026184124858368.000000";

  for (int exp = -300; exp <= 300; ++exp) {
    const double all_ones_mantissa = 0x1fffffffffffff;
    doubles.push_back(std::ldexp(all_ones_mantissa, exp));
    if (gcc_bug_22142) {
      skip_verify.insert(doubles.back());
    }
  }

  if (gcc_bug_22142) {
    using L = std::numeric_limits<double>;
    skip_verify.insert(L::max());
    skip_verify.insert(L::min());  // NOLINT
    skip_verify.insert(L::denorm_min());
    skip_verify.insert(-L::max());
    skip_verify.insert(-L::min());  // NOLINT
    skip_verify.insert(-L::denorm_min());
  }

  // Remove duplicates to speed up the logic below.
  std::sort(doubles.begin(), doubles.end(), [](const double a, const double b) {
    if (std::isnan(a)) return false;
    if (std::isnan(b)) return true;
    return a < b;
  });
  doubles.erase(std::unique(doubles.begin(), doubles.end()), doubles.end());

  TestWithMultipleFormatsHelper(doubles, skip_verify);
}

TEST_F(FormatConvertTest, DoubleRound) {
  std::string s;
  const auto format = [&](const char *fmt, double d) -> std::string & {
    s.clear();
    FormatArgImpl args[1] = {FormatArgImpl(d)};
    AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
#if !defined(_MSC_VER)
    // MSVC has a different rounding policy than us so we can't test our
    // implementation against the native one there.
    EXPECT_EQ(StrPrint(fmt, d), s);
#endif  // _MSC_VER

    return s;
  };
  // All of these values have to be exactly represented.
  // Otherwise we might not be testing what we think we are testing.

  // These values can fit in a 64bit "fast" representation.
  const double exact_value = 0.00000000000005684341886080801486968994140625;
  assert(exact_value == std::pow(2, -44));
  // Round up at a 5xx.
  EXPECT_EQ(format("%.13f", exact_value), "0.0000000000001");
  // Round up at a >5
  EXPECT_EQ(format("%.14f", exact_value), "0.00000000000006");
  // Round down at a <5
  EXPECT_EQ(format("%.16f", exact_value), "0.0000000000000568");
  // Nine handling
  EXPECT_EQ(format("%.35f", exact_value),
            "0.00000000000005684341886080801486969");
  EXPECT_EQ(format("%.36f", exact_value),
            "0.000000000000056843418860808014869690");
  // Round down the last nine.
  EXPECT_EQ(format("%.37f", exact_value),
            "0.0000000000000568434188608080148696899");
  EXPECT_EQ(format("%.10f", 0.000003814697265625), "0.0000038147");
  // Round up the last nine
  EXPECT_EQ(format("%.11f", 0.000003814697265625), "0.00000381470");
  EXPECT_EQ(format("%.12f", 0.000003814697265625), "0.000003814697");

  // Round to even (down)
  EXPECT_EQ(format("%.43f", exact_value),
            "0.0000000000000568434188608080148696899414062");
  // Exact
  EXPECT_EQ(format("%.44f", exact_value),
            "0.00000000000005684341886080801486968994140625");
  // Round to even (up), let make the last digits 75 instead of 25
  EXPECT_EQ(format("%.43f", exact_value + std::pow(2, -43)),
            "0.0000000000001705302565824240446090698242188");
  // Exact, just to check.
  EXPECT_EQ(format("%.44f", exact_value + std::pow(2, -43)),
            "0.00000000000017053025658242404460906982421875");

  // This value has to be small enough that it won't fit in the uint128
  // representation for printing.
  const double small_exact_value =
      0.000000000000000000000000000000000000752316384526264005099991383822237233803945956334136013765601092018187046051025390625;  // NOLINT
  assert(small_exact_value == std::pow(2, -120));
  // Round up at a 5xx.
  EXPECT_EQ(format("%.37f", small_exact_value),
            "0.0000000000000000000000000000000000008");
  // Round down at a <5
  EXPECT_EQ(format("%.38f", small_exact_value),
            "0.00000000000000000000000000000000000075");
  // Round up at a >5
  EXPECT_EQ(format("%.41f", small_exact_value),
            "0.00000000000000000000000000000000000075232");
  // Nine handling
  EXPECT_EQ(format("%.55f", small_exact_value),
            "0.0000000000000000000000000000000000007523163845262640051");
  EXPECT_EQ(format("%.56f", small_exact_value),
            "0.00000000000000000000000000000000000075231638452626400510");
  EXPECT_EQ(format("%.57f", small_exact_value),
            "0.000000000000000000000000000000000000752316384526264005100");
  EXPECT_EQ(format("%.58f", small_exact_value),
            "0.0000000000000000000000000000000000007523163845262640051000");
  // Round down the last nine
  EXPECT_EQ(format("%.59f", small_exact_value),
            "0.00000000000000000000000000000000000075231638452626400509999");
  // Round up the last nine
  EXPECT_EQ(format("%.79f", small_exact_value),
            "0.000000000000000000000000000000000000"
            "7523163845262640050999913838222372338039460");

  // Round to even (down)
  EXPECT_EQ(format("%.119f", small_exact_value),
            "0.000000000000000000000000000000000000"
            "75231638452626400509999138382223723380"
            "394595633413601376560109201818704605102539062");
  // Exact
  EXPECT_EQ(format("%.120f", small_exact_value),
            "0.000000000000000000000000000000000000"
            "75231638452626400509999138382223723380"
            "3945956334136013765601092018187046051025390625");
  // Round to even (up), let make the last digits 75 instead of 25
  EXPECT_EQ(format("%.119f", small_exact_value + std::pow(2, -119)),
            "0.000000000000000000000000000000000002"
            "25694915357879201529997415146671170141"
            "183786900240804129680327605456113815307617188");
  // Exact, just to check.
  EXPECT_EQ(format("%.120f", small_exact_value + std::pow(2, -119)),
            "0.000000000000000000000000000000000002"
            "25694915357879201529997415146671170141"
            "1837869002408041296803276054561138153076171875");
}

TEST_F(FormatConvertTest, DoubleRoundA) {
  const NativePrintfTraits &native_traits = VerifyNativeImplementation();
  std::string s;
  const auto format = [&](const char *fmt, double d) -> std::string & {
    s.clear();
    FormatArgImpl args[1] = {FormatArgImpl(d)};
    AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
    if (native_traits.hex_float_has_glibc_rounding) {
      EXPECT_EQ(StrPrint(fmt, d), s);
    }
    return s;
  };

  // 0x1.00018000p+100
  const double on_boundary_odd = 1267679614447900152596896153600.0;
  EXPECT_EQ(format("%.0a", on_boundary_odd), "0x1p+100");
  EXPECT_EQ(format("%.1a", on_boundary_odd), "0x1.0p+100");
  EXPECT_EQ(format("%.2a", on_boundary_odd), "0x1.00p+100");
  EXPECT_EQ(format("%.3a", on_boundary_odd), "0x1.000p+100");
  EXPECT_EQ(format("%.4a", on_boundary_odd), "0x1.0002p+100");  // round
  EXPECT_EQ(format("%.5a", on_boundary_odd), "0x1.00018p+100");
  EXPECT_EQ(format("%.6a", on_boundary_odd), "0x1.000180p+100");

  // 0x1.00028000p-2
  const double on_boundary_even = 0.250009536743164062500;
  EXPECT_EQ(format("%.0a", on_boundary_even), "0x1p-2");
  EXPECT_EQ(format("%.1a", on_boundary_even), "0x1.0p-2");
  EXPECT_EQ(format("%.2a", on_boundary_even), "0x1.00p-2");
  EXPECT_EQ(format("%.3a", on_boundary_even), "0x1.000p-2");
  EXPECT_EQ(format("%.4a", on_boundary_even), "0x1.0002p-2");  // no round
  EXPECT_EQ(format("%.5a", on_boundary_even), "0x1.00028p-2");
  EXPECT_EQ(format("%.6a", on_boundary_even), "0x1.000280p-2");

  // 0x1.00018001p+1
  const double slightly_over = 2.00004577683284878730773925781250;
  EXPECT_EQ(format("%.0a", slightly_over), "0x1p+1");
  EXPECT_EQ(format("%.1a", slightly_over), "0x1.0p+1");
  EXPECT_EQ(format("%.2a", slightly_over), "0x1.00p+1");
  EXPECT_EQ(format("%.3a", slightly_over), "0x1.000p+1");
  EXPECT_EQ(format("%.4a", slightly_over), "0x1.0002p+1");
  EXPECT_EQ(format("%.5a", slightly_over), "0x1.00018p+1");
  EXPECT_EQ(format("%.6a", slightly_over), "0x1.000180p+1");

  // 0x1.00017fffp+0
  const double slightly_under = 1.000022887950763106346130371093750;
  EXPECT_EQ(format("%.0a", slightly_under), "0x1p+0");
  EXPECT_EQ(format("%.1a", slightly_under), "0x1.0p+0");
  EXPECT_EQ(format("%.2a", slightly_under), "0x1.00p+0");
  EXPECT_EQ(format("%.3a", slightly_under), "0x1.000p+0");
  EXPECT_EQ(format("%.4a", slightly_under), "0x1.0001p+0");
  EXPECT_EQ(format("%.5a", slightly_under), "0x1.00018p+0");
  EXPECT_EQ(format("%.6a", slightly_under), "0x1.000180p+0");
  EXPECT_EQ(format("%.7a", slightly_under), "0x1.0001800p+0");

  // 0x1.1b3829ac28058p+3
  const double hex_value = 8.85060580848964661981881363317370414733886718750;
  EXPECT_EQ(format("%.0a", hex_value), "0x1p+3");
  EXPECT_EQ(format("%.1a", hex_value), "0x1.2p+3");
  EXPECT_EQ(format("%.2a", hex_value), "0x1.1bp+3");
  EXPECT_EQ(format("%.3a", hex_value), "0x1.1b4p+3");
  EXPECT_EQ(format("%.4a", hex_value), "0x1.1b38p+3");
  EXPECT_EQ(format("%.5a", hex_value), "0x1.1b383p+3");
  EXPECT_EQ(format("%.6a", hex_value), "0x1.1b382ap+3");
  EXPECT_EQ(format("%.7a", hex_value), "0x1.1b3829bp+3");
  EXPECT_EQ(format("%.8a", hex_value), "0x1.1b3829acp+3");
  EXPECT_EQ(format("%.9a", hex_value), "0x1.1b3829ac3p+3");
  EXPECT_EQ(format("%.10a", hex_value), "0x1.1b3829ac28p+3");
  EXPECT_EQ(format("%.11a", hex_value), "0x1.1b3829ac280p+3");
  EXPECT_EQ(format("%.12a", hex_value), "0x1.1b3829ac2806p+3");
  EXPECT_EQ(format("%.13a", hex_value), "0x1.1b3829ac28058p+3");
  EXPECT_EQ(format("%.14a", hex_value), "0x1.1b3829ac280580p+3");
  EXPECT_EQ(format("%.15a", hex_value), "0x1.1b3829ac2805800p+3");
  EXPECT_EQ(format("%.16a", hex_value), "0x1.1b3829ac28058000p+3");
  EXPECT_EQ(format("%.17a", hex_value), "0x1.1b3829ac280580000p+3");
  EXPECT_EQ(format("%.18a", hex_value), "0x1.1b3829ac2805800000p+3");
  EXPECT_EQ(format("%.19a", hex_value), "0x1.1b3829ac28058000000p+3");
  EXPECT_EQ(format("%.20a", hex_value), "0x1.1b3829ac280580000000p+3");
  EXPECT_EQ(format("%.21a", hex_value), "0x1.1b3829ac2805800000000p+3");

  // 0x1.0818283848586p+3
  const double hex_value2 = 8.2529488658208371987257123691961169242858886718750;
  EXPECT_EQ(format("%.0a", hex_value2), "0x1p+3");
  EXPECT_EQ(format("%.1a", hex_value2), "0x1.1p+3");
  EXPECT_EQ(format("%.2a", hex_value2), "0x1.08p+3");
  EXPECT_EQ(format("%.3a", hex_value2), "0x1.082p+3");
  EXPECT_EQ(format("%.4a", hex_value2), "0x1.0818p+3");
  EXPECT_EQ(format("%.5a", hex_value2), "0x1.08183p+3");
  EXPECT_EQ(format("%.6a", hex_value2), "0x1.081828p+3");
  EXPECT_EQ(format("%.7a", hex_value2), "0x1.0818284p+3");
  EXPECT_EQ(format("%.8a", hex_value2), "0x1.08182838p+3");
  EXPECT_EQ(format("%.9a", hex_value2), "0x1.081828385p+3");
  EXPECT_EQ(format("%.10a", hex_value2), "0x1.0818283848p+3");
  EXPECT_EQ(format("%.11a", hex_value2), "0x1.08182838486p+3");
  EXPECT_EQ(format("%.12a", hex_value2), "0x1.081828384858p+3");
  EXPECT_EQ(format("%.13a", hex_value2), "0x1.0818283848586p+3");
  EXPECT_EQ(format("%.14a", hex_value2), "0x1.08182838485860p+3");
  EXPECT_EQ(format("%.15a", hex_value2), "0x1.081828384858600p+3");
  EXPECT_EQ(format("%.16a", hex_value2), "0x1.0818283848586000p+3");
  EXPECT_EQ(format("%.17a", hex_value2), "0x1.08182838485860000p+3");
  EXPECT_EQ(format("%.18a", hex_value2), "0x1.081828384858600000p+3");
  EXPECT_EQ(format("%.19a", hex_value2), "0x1.0818283848586000000p+3");
  EXPECT_EQ(format("%.20a", hex_value2), "0x1.08182838485860000000p+3");
  EXPECT_EQ(format("%.21a", hex_value2), "0x1.081828384858600000000p+3");
}

TEST_F(FormatConvertTest, LongDoubleRoundA) {
  if (std::numeric_limits<long double>::digits % 4 != 0) {
    // This test doesn't really make sense to run on platforms where a long
    // double has a different mantissa size (mod 4) than Prod, since then the
    // leading digit will be formatted differently.
    return;
  }
  const NativePrintfTraits &native_traits = VerifyNativeImplementation();
  std::string s;
  const auto format = [&](const char *fmt, long double d) -> std::string & {
    s.clear();
    FormatArgImpl args[1] = {FormatArgImpl(d)};
    AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
    if (native_traits.hex_float_has_glibc_rounding &&
        native_traits.hex_float_optimizes_leading_digit_bit_count) {
      EXPECT_EQ(StrPrint(fmt, d), s);
    }
    return s;
  };

  // 0x8.8p+4
  const long double on_boundary_even = 136.0;
  EXPECT_EQ(format("%.0La", on_boundary_even), "0x8p+4");
  EXPECT_EQ(format("%.1La", on_boundary_even), "0x8.8p+4");
  EXPECT_EQ(format("%.2La", on_boundary_even), "0x8.80p+4");
  EXPECT_EQ(format("%.3La", on_boundary_even), "0x8.800p+4");
  EXPECT_EQ(format("%.4La", on_boundary_even), "0x8.8000p+4");
  EXPECT_EQ(format("%.5La", on_boundary_even), "0x8.80000p+4");
  EXPECT_EQ(format("%.6La", on_boundary_even), "0x8.800000p+4");

  // 0x9.8p+4
  const long double on_boundary_odd = 152.0;
  EXPECT_EQ(format("%.0La", on_boundary_odd), "0xap+4");
  EXPECT_EQ(format("%.1La", on_boundary_odd), "0x9.8p+4");
  EXPECT_EQ(format("%.2La", on_boundary_odd), "0x9.80p+4");
  EXPECT_EQ(format("%.3La", on_boundary_odd), "0x9.800p+4");
  EXPECT_EQ(format("%.4La", on_boundary_odd), "0x9.8000p+4");
  EXPECT_EQ(format("%.5La", on_boundary_odd), "0x9.80000p+4");
  EXPECT_EQ(format("%.6La", on_boundary_odd), "0x9.800000p+4");

  // 0x8.80001p+24
  const long double slightly_over = 142606352.0;
  EXPECT_EQ(format("%.0La", slightly_over), "0x9p+24");
  EXPECT_EQ(format("%.1La", slightly_over), "0x8.8p+24");
  EXPECT_EQ(format("%.2La", slightly_over), "0x8.80p+24");
  EXPECT_EQ(format("%.3La", slightly_over), "0x8.800p+24");
  EXPECT_EQ(format("%.4La", slightly_over), "0x8.8000p+24");
  EXPECT_EQ(format("%.5La", slightly_over), "0x8.80001p+24");
  EXPECT_EQ(format("%.6La", slightly_over), "0x8.800010p+24");

  // 0x8.7ffffp+24
  const long double slightly_under = 142606320.0;
  EXPECT_EQ(format("%.0La", slightly_under), "0x8p+24");
  EXPECT_EQ(format("%.1La", slightly_under), "0x8.8p+24");
  EXPECT_EQ(format("%.2La", slightly_under), "0x8.80p+24");
  EXPECT_EQ(format("%.3La", slightly_under), "0x8.800p+24");
  EXPECT_EQ(format("%.4La", slightly_under), "0x8.8000p+24");
  EXPECT_EQ(format("%.5La", slightly_under), "0x8.7ffffp+24");
  EXPECT_EQ(format("%.6La", slightly_under), "0x8.7ffff0p+24");
  EXPECT_EQ(format("%.7La", slightly_under), "0x8.7ffff00p+24");

  // 0xc.0828384858688000p+128
  const long double eights = 4094231060438608800781871108094404067328.0;
  EXPECT_EQ(format("%.0La", eights), "0xcp+128");
  EXPECT_EQ(format("%.1La", eights), "0xc.1p+128");
  EXPECT_EQ(format("%.2La", eights), "0xc.08p+128");
  EXPECT_EQ(format("%.3La", eights), "0xc.083p+128");
  EXPECT_EQ(format("%.4La", eights), "0xc.0828p+128");
  EXPECT_EQ(format("%.5La", eights), "0xc.08284p+128");
  EXPECT_EQ(format("%.6La", eights), "0xc.082838p+128");
  EXPECT_EQ(format("%.7La", eights), "0xc.0828385p+128");
  EXPECT_EQ(format("%.8La", eights), "0xc.08283848p+128");
  EXPECT_EQ(format("%.9La", eights), "0xc.082838486p+128");
  EXPECT_EQ(format("%.10La", eights), "0xc.0828384858p+128");
  EXPECT_EQ(format("%.11La", eights), "0xc.08283848587p+128");
  EXPECT_EQ(format("%.12La", eights), "0xc.082838485868p+128");
  EXPECT_EQ(format("%.13La", eights), "0xc.0828384858688p+128");
  EXPECT_EQ(format("%.14La", eights), "0xc.08283848586880p+128");
  EXPECT_EQ(format("%.15La", eights), "0xc.082838485868800p+128");
  EXPECT_EQ(format("%.16La", eights), "0xc.0828384858688000p+128");
}

// We don't actually store the results. This is just to exercise the rest of the
// machinery.
struct NullSink {
  friend void AbslFormatFlush(NullSink *, string_view) {}
};

template <typename... T>
bool FormatWithNullSink(absl::string_view fmt, const T &... a) {
  NullSink sink;
  FormatArgImpl args[] = {FormatArgImpl(a)...};
  return FormatUntyped(&sink, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
}

TEST_F(FormatConvertTest, ExtremeWidthPrecision) {
  for (const char *fmt : {"f"}) {
    for (double d : {1e-100, 1.0, 1e100}) {
      constexpr int max = std::numeric_limits<int>::max();
      EXPECT_TRUE(FormatWithNullSink(std::string("%.*") + fmt, max, d));
      EXPECT_TRUE(FormatWithNullSink(std::string("%1.*") + fmt, max, d));
      EXPECT_TRUE(FormatWithNullSink(std::string("%*") + fmt, max, d));
      EXPECT_TRUE(FormatWithNullSink(std::string("%*.*") + fmt, max, max, d));
    }
  }
}

TEST_F(FormatConvertTest, LongDouble) {
  const NativePrintfTraits &native_traits = VerifyNativeImplementation();
  const char *const kFormats[] = {"%",    "%.3", "%8.5", "%9",  "%.5000",
                                  "%.60", "%+",  "% ",   "%-10"};

  std::vector<long double> doubles = {
      0.0,
      -0.0,
      std::numeric_limits<long double>::max(),
      -std::numeric_limits<long double>::max(),
      std::numeric_limits<long double>::min(),
      -std::numeric_limits<long double>::min(),
      std::numeric_limits<long double>::infinity(),
      -std::numeric_limits<long double>::infinity()};

  for (long double base : {1.L, 12.L, 123.L, 1234.L, 12345.L, 123456.L,
                           1234567.L, 12345678.L, 123456789.L, 1234567890.L,
                           12345678901.L, 123456789012.L, 1234567890123.L,
                           // This value is not representable in double, but it
                           // is in long double that uses the extended format.
                           // This is to verify that we are not truncating the
                           // value mistakenly through a double.
                           10000000000000000.25L}) {
    for (int exp : {-1000, -500, 0, 500, 1000}) {
      for (int sign : {1, -1}) {
        doubles.push_back(sign * std::ldexp(base, exp));
        doubles.push_back(sign / std::ldexp(base, exp));
      }
    }
  }

  // Regression tests
  //
  // Using a string literal because not all platforms support hex literals or it
  // might be out of range.
  doubles.push_back(std::strtold("-0xf.ffffffb5feafffbp-16324L", nullptr));

  for (const char *fmt : kFormats) {
    for (char f : {'f', 'F',  //
                   'g', 'G',  //
                   'a', 'A',  //
                   'e', 'E'}) {
      std::string fmt_str = std::string(fmt) + 'L' + f;

      if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F' &&
          f != 'a' && f != 'A') {
        // This particular test takes way too long with snprintf.
        // Disable for the case we are not implementing natively.
        continue;
      }

      if (f == 'a' || f == 'A') {
        if (!native_traits.hex_float_has_glibc_rounding ||
            !native_traits.hex_float_optimizes_leading_digit_bit_count) {
          continue;
        }
      }

      for (auto d : doubles) {
        FormatArgImpl arg(d);
        UntypedFormatSpecImpl format(fmt_str);
        std::string result = FormatPack(format, {&arg, 1});

#ifdef _MSC_VER
        // MSVC has a different rounding policy than us so we can't test our
        // implementation against the native one there.
        continue;
#endif  // _MSC_VER

        // We use ASSERT_EQ here because failures are usually correlated and a
        // bug would print way too many failed expectations causing the test to
        // time out.
        ASSERT_EQ(StrPrint(fmt_str.c_str(), d), result)
            << fmt_str << " " << StrPrint("%.18Lg", d) << " "
            << StrPrint("%La", d) << " " << StrPrint("%.1080Lf", d);
      }
    }
  }
}

TEST_F(FormatConvertTest, IntAsDouble) {
  const NativePrintfTraits &native_traits = VerifyNativeImplementation();
  const int kMin = std::numeric_limits<int>::min();
  const int kMax = std::numeric_limits<int>::max();
  const int ia[] = {
    1, 2, 3, 123,
    -1, -2, -3, -123,
    0, kMax - 1, kMax, kMin + 1, kMin };
  for (const int fx : ia) {
    SCOPED_TRACE(fx);
    const FormatArgImpl args[] = {FormatArgImpl(fx)};
    struct Expectation {
      int line;
      std::string out;
      const char *fmt;
    };
    const double dx = static_cast<double>(fx);
    std::vector<Expectation> expect = {
        {__LINE__, StrPrint("%f", dx), "%f"},
        {__LINE__, StrPrint("%12f", dx), "%12f"},
        {__LINE__, StrPrint("%.12f", dx), "%.12f"},
        {__LINE__, StrPrint("%.12a", dx), "%.12a"},
    };
    if (native_traits.hex_float_uses_minimal_precision_when_not_specified) {
      Expectation ex = {__LINE__, StrPrint("%12a", dx), "%12a"};
      expect.push_back(ex);
    }
    for (const Expectation &e : expect) {
      SCOPED_TRACE(e.line);
      SCOPED_TRACE(e.fmt);
      UntypedFormatSpecImpl format(e.fmt);
      EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args)));
    }
  }
}

template <typename T>
bool FormatFails(const char* test_format, T value) {
  std::string format_string = std::string("<<") + test_format + ">>";
  UntypedFormatSpecImpl format(format_string);

  int one = 1;
  const FormatArgImpl args[] = {FormatArgImpl(value), FormatArgImpl(one)};
  EXPECT_EQ(FormatPack(format, absl::MakeSpan(args)), "")
      << "format=" << test_format << " value=" << value;
  return FormatPack(format, absl::MakeSpan(args)).empty();
}

TEST_F(FormatConvertTest, ExpectedFailures) {
  // Int input
  EXPECT_TRUE(FormatFails("%p", 1));
  EXPECT_TRUE(FormatFails("%s", 1));
  EXPECT_TRUE(FormatFails("%n", 1));

  // Double input
  EXPECT_TRUE(FormatFails("%p", 1.));
  EXPECT_TRUE(FormatFails("%s", 1.));
  EXPECT_TRUE(FormatFails("%n", 1.));
  EXPECT_TRUE(FormatFails("%c", 1.));
  EXPECT_TRUE(FormatFails("%d", 1.));
  EXPECT_TRUE(FormatFails("%x", 1.));
  EXPECT_TRUE(FormatFails("%*d", 1.));

  // String input
  EXPECT_TRUE(FormatFails("%n", ""));
  EXPECT_TRUE(FormatFails("%c", ""));
  EXPECT_TRUE(FormatFails("%d", ""));
  EXPECT_TRUE(FormatFails("%x", ""));
  EXPECT_TRUE(FormatFails("%f", ""));
  EXPECT_TRUE(FormatFails("%*d", ""));
}

// Sanity check to make sure that we are testing what we think we're testing on
// e.g. the x86_64+glibc platform.
TEST_F(FormatConvertTest, GlibcHasCorrectTraits) {
#if defined(__GLIBC__) && defined(__x86_64__)
  constexpr bool kIsSupportedGlibc = true;
#else
  constexpr bool kIsSupportedGlibc = false;
#endif

  if (!kIsSupportedGlibc) {
    GTEST_SKIP() << "Test does not support this platform";
  }

  const NativePrintfTraits &native_traits = VerifyNativeImplementation();
  // If one of the following tests break then it is either because the above PP
  // macro guards failed to exclude a new platform (likely) or because something
  // has changed in the implementation of glibc sprintf float formatting
  // behavior.  If the latter, then the code that computes these flags needs to
  // be revisited and/or possibly the StrFormat implementation.
  EXPECT_TRUE(native_traits.hex_float_has_glibc_rounding);
  EXPECT_TRUE(native_traits.hex_float_prefers_denormal_repr);
  EXPECT_TRUE(
      native_traits.hex_float_uses_minimal_precision_when_not_specified);
  EXPECT_TRUE(native_traits.hex_float_optimizes_leading_digit_bit_count);
}

}  // namespace
}  // namespace str_format_internal
ABSL_NAMESPACE_END
}  // namespace absl