summaryrefslogtreecommitdiff
path: root/absl/strings/internal/cord_internal.h
blob: ec2c767b6290c99c7420405ea665a4c786a1b7ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
#define ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_

#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <type_traits>

#include "absl/base/internal/invoke.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {

// Wraps std::atomic for reference counting.
class Refcount {
 public:
  constexpr Refcount() : count_{kRefIncrement} {}
  struct Immortal {};
  explicit constexpr Refcount(Immortal) : count_(kImmortalTag) {}

  // Increments the reference count. Imposes no memory ordering.
  inline void Increment() {
    count_.fetch_add(kRefIncrement, std::memory_order_relaxed);
  }

  // Asserts that the current refcount is greater than 0. If the refcount is
  // greater than 1, decrements the reference count.
  //
  // Returns false if there are no references outstanding; true otherwise.
  // Inserts barriers to ensure that state written before this method returns
  // false will be visible to a thread that just observed this method returning
  // false.
  inline bool Decrement() {
    int32_t refcount = count_.load(std::memory_order_acquire);
    assert(refcount > 0 || refcount & kImmortalTag);
    return refcount != kRefIncrement &&
           count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) !=
               kRefIncrement;
  }

  // Same as Decrement but expect that refcount is greater than 1.
  inline bool DecrementExpectHighRefcount() {
    int32_t refcount =
        count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel);
    assert(refcount > 0 || refcount & kImmortalTag);
    return refcount != kRefIncrement;
  }

  // Returns the current reference count using acquire semantics.
  inline int32_t Get() const {
    return count_.load(std::memory_order_acquire) >> kImmortalShift;
  }

  // Returns whether the atomic integer is 1.
  // If the reference count is used in the conventional way, a
  // reference count of 1 implies that the current thread owns the
  // reference and no other thread shares it.
  // This call performs the test for a reference count of one, and
  // performs the memory barrier needed for the owning thread
  // to act on the object, knowing that it has exclusive access to the
  // object.
  inline bool IsOne() {
    return count_.load(std::memory_order_acquire) == kRefIncrement;
  }

  bool IsImmortal() const {
    return (count_.load(std::memory_order_relaxed) & kImmortalTag) != 0;
  }

 private:
  // We reserve the bottom bit to tag a reference count as immortal.
  // By making it `1` we ensure that we never reach `0` when adding/subtracting
  // `2`, thus it never looks as if it should be destroyed.
  // These are used for the StringConstant constructor where we do not increase
  // the refcount at construction time (due to constinit requirements) but we
  // will still decrease it at destruction time to avoid branching on Unref.
  enum {
    kImmortalShift = 1,
    kRefIncrement = 1 << kImmortalShift,
    kImmortalTag = kRefIncrement - 1
  };

  std::atomic<int32_t> count_;
};

// The overhead of a vtable is too much for Cord, so we roll our own subclasses
// using only a single byte to differentiate classes from each other - the "tag"
// byte.  Define the subclasses first so we can provide downcasting helper
// functions in the base class.

struct CordRepConcat;
struct CordRepExternal;
struct CordRepFlat;
struct CordRepSubstring;

// Various representations that we allow
enum CordRepKind {
  CONCAT        = 0,
  EXTERNAL      = 1,
  SUBSTRING     = 2,
  RING          = 3,

  // We have different tags for different sized flat arrays,
  // starting with FLAT, and limited to MAX_FLAT_TAG. The 224 value is based on
  // the current 'size to tag' encoding of 8 / 32 bytes. If a new tag is needed
  // in the future, then 'FLAT' and 'MAX_FLAT_TAG' should be adjusted as well
  // as the Tag <---> Size logic so that FLAT stil represents the minimum flat
  // allocation size. (32 bytes as of now).
  FLAT = 4,
  MAX_FLAT_TAG = 224,
};

struct CordRep {
  CordRep() = default;
  constexpr CordRep(Refcount::Immortal immortal, size_t l)
      : length(l), refcount(immortal), tag(EXTERNAL), data{} {}

  // The following three fields have to be less than 32 bytes since
  // that is the smallest supported flat node size.
  size_t length;
  Refcount refcount;
  // If tag < FLAT, it represents CordRepKind and indicates the type of node.
  // Otherwise, the node type is CordRepFlat and the tag is the encoded size.
  uint8_t tag;
  char data[1];  // Starting point for flat array: MUST BE LAST FIELD of CordRep

  inline CordRepConcat* concat();
  inline const CordRepConcat* concat() const;
  inline CordRepSubstring* substring();
  inline const CordRepSubstring* substring() const;
  inline CordRepExternal* external();
  inline const CordRepExternal* external() const;
};

struct CordRepConcat : public CordRep {
  CordRep* left;
  CordRep* right;

  uint8_t depth() const { return static_cast<uint8_t>(data[0]); }
  void set_depth(uint8_t depth) { data[0] = static_cast<char>(depth); }
};

struct CordRepSubstring : public CordRep {
  size_t start;  // Starting offset of substring in child
  CordRep* child;
};

// Type for function pointer that will invoke the releaser function and also
// delete the `CordRepExternalImpl` corresponding to the passed in
// `CordRepExternal`.
using ExternalReleaserInvoker = void (*)(CordRepExternal*);

// External CordReps are allocated together with a type erased releaser. The
// releaser is stored in the memory directly following the CordRepExternal.
struct CordRepExternal : public CordRep {
  CordRepExternal() = default;
  explicit constexpr CordRepExternal(absl::string_view str)
      : CordRep(Refcount::Immortal{}, str.size()),
        base(str.data()),
        releaser_invoker(nullptr) {}

  const char* base;
  // Pointer to function that knows how to call and destroy the releaser.
  ExternalReleaserInvoker releaser_invoker;

  // Deletes (releases) the external rep.
  // Requires rep != nullptr and rep->tag == EXTERNAL
  static void Delete(CordRep* rep);
};

struct Rank1 {};
struct Rank0 : Rank1 {};

template <typename Releaser, typename = ::absl::base_internal::invoke_result_t<
                                 Releaser, absl::string_view>>
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
  ::absl::base_internal::invoke(std::forward<Releaser>(releaser), data);
}

template <typename Releaser,
          typename = ::absl::base_internal::invoke_result_t<Releaser>>
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
  ::absl::base_internal::invoke(std::forward<Releaser>(releaser));
}

// We use CompressedTuple so that we can benefit from EBCO.
template <typename Releaser>
struct CordRepExternalImpl
    : public CordRepExternal,
      public ::absl::container_internal::CompressedTuple<Releaser> {
  // The extra int arg is so that we can avoid interfering with copy/move
  // constructors while still benefitting from perfect forwarding.
  template <typename T>
  CordRepExternalImpl(T&& releaser, int)
      : CordRepExternalImpl::CompressedTuple(std::forward<T>(releaser)) {
    this->releaser_invoker = &Release;
  }

  ~CordRepExternalImpl() {
    InvokeReleaser(Rank0{}, std::move(this->template get<0>()),
                   absl::string_view(base, length));
  }

  static void Release(CordRepExternal* rep) {
    delete static_cast<CordRepExternalImpl*>(rep);
  }
};

inline void CordRepExternal::Delete(CordRep* rep) {
  assert(rep != nullptr && rep->tag == EXTERNAL);
  auto* rep_external = static_cast<CordRepExternal*>(rep);
  assert(rep_external->releaser_invoker != nullptr);
  rep_external->releaser_invoker(rep_external);
}

template <typename Str>
struct ConstInitExternalStorage {
  ABSL_CONST_INIT static CordRepExternal value;
};

template <typename Str>
CordRepExternal ConstInitExternalStorage<Str>::value(Str::value);

enum {
  kMaxInline = 15,
  // Tag byte & kMaxInline means we are storing a pointer.
  kTreeFlag = 1 << 4,
  // Tag byte & kProfiledFlag means we are profiling the Cord.
  kProfiledFlag = 1 << 5
};

// If the data has length <= kMaxInline, we store it in `as_chars`, and
// store the size in `tagged_size`.
// Else we store it in a tree and store a pointer to that tree in
// `as_tree.rep` and store a tag in `tagged_size`.
struct AsTree {
  absl::cord_internal::CordRep* rep;
  char padding[kMaxInline + 1 - sizeof(absl::cord_internal::CordRep*) - 1];
  char tagged_size;
};

constexpr char GetOrNull(absl::string_view data, size_t pos) {
  return pos < data.size() ? data[pos] : '\0';
}

union InlineData {
  constexpr InlineData() : as_chars{} {}
  explicit constexpr InlineData(AsTree tree) : as_tree(tree) {}
  explicit constexpr InlineData(absl::string_view chars)
      : as_chars{GetOrNull(chars, 0),  GetOrNull(chars, 1),
                 GetOrNull(chars, 2),  GetOrNull(chars, 3),
                 GetOrNull(chars, 4),  GetOrNull(chars, 5),
                 GetOrNull(chars, 6),  GetOrNull(chars, 7),
                 GetOrNull(chars, 8),  GetOrNull(chars, 9),
                 GetOrNull(chars, 10), GetOrNull(chars, 11),
                 GetOrNull(chars, 12), GetOrNull(chars, 13),
                 GetOrNull(chars, 14), static_cast<char>(chars.size())} {}

  AsTree as_tree;
  char as_chars[kMaxInline + 1];
};
static_assert(sizeof(InlineData) == kMaxInline + 1, "");
static_assert(sizeof(AsTree) == sizeof(InlineData), "");
static_assert(offsetof(AsTree, tagged_size) == kMaxInline, "");

}  // namespace cord_internal
ABSL_NAMESPACE_END
}  // namespace absl
#endif  // ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_