summaryrefslogtreecommitdiff
path: root/absl/strings/internal/cord_internal.h
blob: b586ea3762e70b43ba48fba042226ac11e69e171 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
#define ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_

#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <type_traits>

#include "absl/base/internal/invoke.h"
#include "absl/base/optimization.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {

// Default feature enable states for cord ring buffers
enum CordFeatureDefaults {
  kCordEnableRingBufferDefault = false,
  kCordShallowSubcordsDefault = false
};

extern std::atomic<bool> cord_ring_buffer_enabled;
extern std::atomic<bool> shallow_subcords_enabled;

inline void enable_cord_ring_buffer(bool enable) {
  cord_ring_buffer_enabled.store(enable, std::memory_order_relaxed);
}

inline void enable_shallow_subcords(bool enable) {
  shallow_subcords_enabled.store(enable, std::memory_order_relaxed);
}

enum Constants {
  // The inlined size to use with absl::InlinedVector.
  //
  // Note: The InlinedVectors in this file (and in cord.h) do not need to use
  // the same value for their inlined size. The fact that they do is historical.
  // It may be desirable for each to use a different inlined size optimized for
  // that InlinedVector's usage.
  //
  // TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
  // the inlined vector size (47 exists for backward compatibility).
  kInlinedVectorSize = 47,

  // Prefer copying blocks of at most this size, otherwise reference count.
  kMaxBytesToCopy = 511
};

// Wraps std::atomic for reference counting.
class Refcount {
 public:
  constexpr Refcount() : count_{kRefIncrement} {}
  struct Immortal {};
  explicit constexpr Refcount(Immortal) : count_(kImmortalTag) {}

  // Increments the reference count. Imposes no memory ordering.
  inline void Increment() {
    count_.fetch_add(kRefIncrement, std::memory_order_relaxed);
  }

  // Asserts that the current refcount is greater than 0. If the refcount is
  // greater than 1, decrements the reference count.
  //
  // Returns false if there are no references outstanding; true otherwise.
  // Inserts barriers to ensure that state written before this method returns
  // false will be visible to a thread that just observed this method returning
  // false.
  inline bool Decrement() {
    int32_t refcount = count_.load(std::memory_order_acquire);
    assert(refcount > 0 || refcount & kImmortalTag);
    return refcount != kRefIncrement &&
           count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) !=
               kRefIncrement;
  }

  // Same as Decrement but expect that refcount is greater than 1.
  inline bool DecrementExpectHighRefcount() {
    int32_t refcount =
        count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel);
    assert(refcount > 0 || refcount & kImmortalTag);
    return refcount != kRefIncrement;
  }

  // Returns the current reference count using acquire semantics.
  inline int32_t Get() const {
    return count_.load(std::memory_order_acquire) >> kImmortalShift;
  }

  // Returns whether the atomic integer is 1.
  // If the reference count is used in the conventional way, a
  // reference count of 1 implies that the current thread owns the
  // reference and no other thread shares it.
  // This call performs the test for a reference count of one, and
  // performs the memory barrier needed for the owning thread
  // to act on the object, knowing that it has exclusive access to the
  // object.
  inline bool IsOne() {
    return count_.load(std::memory_order_acquire) == kRefIncrement;
  }

  bool IsImmortal() const {
    return (count_.load(std::memory_order_relaxed) & kImmortalTag) != 0;
  }

 private:
  // We reserve the bottom bit to tag a reference count as immortal.
  // By making it `1` we ensure that we never reach `0` when adding/subtracting
  // `2`, thus it never looks as if it should be destroyed.
  // These are used for the StringConstant constructor where we do not increase
  // the refcount at construction time (due to constinit requirements) but we
  // will still decrease it at destruction time to avoid branching on Unref.
  enum {
    kImmortalShift = 1,
    kRefIncrement = 1 << kImmortalShift,
    kImmortalTag = kRefIncrement - 1
  };

  std::atomic<int32_t> count_;
};

// The overhead of a vtable is too much for Cord, so we roll our own subclasses
// using only a single byte to differentiate classes from each other - the "tag"
// byte.  Define the subclasses first so we can provide downcasting helper
// functions in the base class.

struct CordRepConcat;
struct CordRepExternal;
struct CordRepFlat;
struct CordRepSubstring;

// Various representations that we allow
enum CordRepKind {
  CONCAT        = 0,
  EXTERNAL      = 1,
  SUBSTRING     = 2,
  RING          = 3,

  // We have different tags for different sized flat arrays,
  // starting with FLAT, and limited to MAX_FLAT_TAG. The 224 value is based on
  // the current 'size to tag' encoding of 8 / 32 bytes. If a new tag is needed
  // in the future, then 'FLAT' and 'MAX_FLAT_TAG' should be adjusted as well
  // as the Tag <---> Size logic so that FLAT stil represents the minimum flat
  // allocation size. (32 bytes as of now).
  FLAT = 4,
  MAX_FLAT_TAG = 224,
};

struct CordRep {
  CordRep() = default;
  constexpr CordRep(Refcount::Immortal immortal, size_t l)
      : length(l), refcount(immortal), tag(EXTERNAL), storage{} {}

  // The following three fields have to be less than 32 bytes since
  // that is the smallest supported flat node size.
  size_t length;
  Refcount refcount;
  // If tag < FLAT, it represents CordRepKind and indicates the type of node.
  // Otherwise, the node type is CordRepFlat and the tag is the encoded size.
  uint8_t tag;
  char storage[1];  // Starting point for flat array: MUST BE LAST FIELD

  inline CordRepConcat* concat();
  inline const CordRepConcat* concat() const;
  inline CordRepSubstring* substring();
  inline const CordRepSubstring* substring() const;
  inline CordRepExternal* external();
  inline const CordRepExternal* external() const;
  inline CordRepFlat* flat();
  inline const CordRepFlat* flat() const;

  // --------------------------------------------------------------------
  // Memory management

  // This internal routine is called from the cold path of Unref below. Keeping
  // it in a separate routine allows good inlining of Unref into many profitable
  // call sites. However, the call to this function can be highly disruptive to
  // the register pressure in those callers. To minimize the cost to callers, we
  // use a special LLVM calling convention that preserves most registers. This
  // allows the call to this routine in cold paths to not disrupt the caller's
  // register pressure. This calling convention is not available on all
  // platforms; we intentionally allow LLVM to ignore the attribute rather than
  // attempting to hardcode the list of supported platforms.
#if defined(__clang__) && !defined(__i386__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wattributes"
  __attribute__((preserve_most))
#pragma clang diagnostic pop
#endif
  static void Destroy(CordRep* rep);

  // Increments the reference count of `rep`.
  // Requires `rep` to be a non-null pointer value.
  static inline CordRep* Ref(CordRep* rep);

  // Decrements the reference count of `rep`. Destroys rep if count reaches
  // zero. Requires `rep` to be a non-null pointer value.
  static inline void Unref(CordRep* rep);
};

struct CordRepConcat : public CordRep {
  CordRep* left;
  CordRep* right;

  uint8_t depth() const { return static_cast<uint8_t>(storage[0]); }
  void set_depth(uint8_t depth) { storage[0] = static_cast<char>(depth); }
};

struct CordRepSubstring : public CordRep {
  size_t start;  // Starting offset of substring in child
  CordRep* child;
};

// Type for function pointer that will invoke the releaser function and also
// delete the `CordRepExternalImpl` corresponding to the passed in
// `CordRepExternal`.
using ExternalReleaserInvoker = void (*)(CordRepExternal*);

// External CordReps are allocated together with a type erased releaser. The
// releaser is stored in the memory directly following the CordRepExternal.
struct CordRepExternal : public CordRep {
  CordRepExternal() = default;
  explicit constexpr CordRepExternal(absl::string_view str)
      : CordRep(Refcount::Immortal{}, str.size()),
        base(str.data()),
        releaser_invoker(nullptr) {}

  const char* base;
  // Pointer to function that knows how to call and destroy the releaser.
  ExternalReleaserInvoker releaser_invoker;

  // Deletes (releases) the external rep.
  // Requires rep != nullptr and rep->tag == EXTERNAL
  static void Delete(CordRep* rep);
};

struct Rank1 {};
struct Rank0 : Rank1 {};

template <typename Releaser, typename = ::absl::base_internal::invoke_result_t<
                                 Releaser, absl::string_view>>
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
  ::absl::base_internal::invoke(std::forward<Releaser>(releaser), data);
}

template <typename Releaser,
          typename = ::absl::base_internal::invoke_result_t<Releaser>>
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
  ::absl::base_internal::invoke(std::forward<Releaser>(releaser));
}

// We use CompressedTuple so that we can benefit from EBCO.
template <typename Releaser>
struct CordRepExternalImpl
    : public CordRepExternal,
      public ::absl::container_internal::CompressedTuple<Releaser> {
  // The extra int arg is so that we can avoid interfering with copy/move
  // constructors while still benefitting from perfect forwarding.
  template <typename T>
  CordRepExternalImpl(T&& releaser, int)
      : CordRepExternalImpl::CompressedTuple(std::forward<T>(releaser)) {
    this->releaser_invoker = &Release;
  }

  ~CordRepExternalImpl() {
    InvokeReleaser(Rank0{}, std::move(this->template get<0>()),
                   absl::string_view(base, length));
  }

  static void Release(CordRepExternal* rep) {
    delete static_cast<CordRepExternalImpl*>(rep);
  }
};

inline void CordRepExternal::Delete(CordRep* rep) {
  assert(rep != nullptr && rep->tag == EXTERNAL);
  auto* rep_external = static_cast<CordRepExternal*>(rep);
  assert(rep_external->releaser_invoker != nullptr);
  rep_external->releaser_invoker(rep_external);
}

template <typename Str>
struct ConstInitExternalStorage {
  ABSL_CONST_INIT static CordRepExternal value;
};

template <typename Str>
CordRepExternal ConstInitExternalStorage<Str>::value(Str::value);

enum {
  kMaxInline = 15,
  // Tag byte & kMaxInline means we are storing a pointer.
  kTreeFlag = 1 << 4,
  // Tag byte & kProfiledFlag means we are profiling the Cord.
  kProfiledFlag = 1 << 5
};

// If the data has length <= kMaxInline, we store it in `as_chars`, and
// store the size in `tagged_size`.
// Else we store it in a tree and store a pointer to that tree in
// `as_tree.rep` and store a tag in `tagged_size`.
struct AsTree {
  absl::cord_internal::CordRep* rep;
  char padding[kMaxInline + 1 - sizeof(absl::cord_internal::CordRep*) - 1];
  char tagged_size;
};

constexpr char GetOrNull(absl::string_view data, size_t pos) {
  return pos < data.size() ? data[pos] : '\0';
}

union InlineData {
  constexpr InlineData() : as_chars{} {}
  explicit constexpr InlineData(AsTree tree) : as_tree(tree) {}
  explicit constexpr InlineData(absl::string_view chars)
      : as_chars{GetOrNull(chars, 0),  GetOrNull(chars, 1),
                 GetOrNull(chars, 2),  GetOrNull(chars, 3),
                 GetOrNull(chars, 4),  GetOrNull(chars, 5),
                 GetOrNull(chars, 6),  GetOrNull(chars, 7),
                 GetOrNull(chars, 8),  GetOrNull(chars, 9),
                 GetOrNull(chars, 10), GetOrNull(chars, 11),
                 GetOrNull(chars, 12), GetOrNull(chars, 13),
                 GetOrNull(chars, 14), static_cast<char>(chars.size())} {}

  AsTree as_tree;
  char as_chars[kMaxInline + 1];
};
static_assert(sizeof(InlineData) == kMaxInline + 1, "");
static_assert(sizeof(AsTree) == sizeof(InlineData), "");
static_assert(offsetof(AsTree, tagged_size) == kMaxInline, "");

inline CordRepConcat* CordRep::concat() {
  assert(tag == CONCAT);
  return static_cast<CordRepConcat*>(this);
}

inline const CordRepConcat* CordRep::concat() const {
  assert(tag == CONCAT);
  return static_cast<const CordRepConcat*>(this);
}

inline CordRepSubstring* CordRep::substring() {
  assert(tag == SUBSTRING);
  return static_cast<CordRepSubstring*>(this);
}

inline const CordRepSubstring* CordRep::substring() const {
  assert(tag == SUBSTRING);
  return static_cast<const CordRepSubstring*>(this);
}

inline CordRepExternal* CordRep::external() {
  assert(tag == EXTERNAL);
  return static_cast<CordRepExternal*>(this);
}

inline const CordRepExternal* CordRep::external() const {
  assert(tag == EXTERNAL);
  return static_cast<const CordRepExternal*>(this);
}

inline CordRepFlat* CordRep::flat() {
  assert(tag >= FLAT && tag <= MAX_FLAT_TAG);
  return reinterpret_cast<CordRepFlat*>(this);
}

inline const CordRepFlat* CordRep::flat() const {
  assert(tag >= FLAT && tag <= MAX_FLAT_TAG);
  return reinterpret_cast<const CordRepFlat*>(this);
}

inline CordRep* CordRep::Ref(CordRep* rep) {
  assert(rep != nullptr);
  rep->refcount.Increment();
  return rep;
}

inline void CordRep::Unref(CordRep* rep) {
  assert(rep != nullptr);
  // Expect refcount to be 0. Avoiding the cost of an atomic decrement should
  // typically outweigh the cost of an extra branch checking for ref == 1.
  if (ABSL_PREDICT_FALSE(!rep->refcount.DecrementExpectHighRefcount())) {
    Destroy(rep);
  }
}

}  // namespace cord_internal

ABSL_NAMESPACE_END
}  // namespace absl
#endif  // ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_