summaryrefslogtreecommitdiff
path: root/absl/strings/internal/charconv_bigint.h
blob: 5c579437e5214b1b1116135380415d537a7c059a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
#define ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_

#include <algorithm>
#include <cstdint>
#include <iostream>
#include <string>

#include "absl/strings/ascii.h"
#include "absl/strings/internal/charconv_parse.h"
#include "absl/strings/string_view.h"

namespace absl {
namespace strings_internal {

// The largest power that 5 that can be raised to, and still fit in a uint32_t.
constexpr int kMaxSmallPowerOfFive = 13;
// The largest power that 10 that can be raised to, and still fit in a uint32_t.
constexpr int kMaxSmallPowerOfTen = 9;

extern const uint32_t kFiveToNth[kMaxSmallPowerOfFive + 1];
extern const uint32_t kTenToNth[kMaxSmallPowerOfTen + 1];

// Large, fixed-width unsigned integer.
//
// Exact rounding for decimal-to-binary floating point conversion requires very
// large integer math, but a design goal of absl::from_chars is to avoid
// allocating memory.  The integer precision needed for decimal-to-binary
// conversions is large but bounded, so a huge fixed-width integer class
// suffices.
//
// This is an intentionally limited big integer class.  Only needed operations
// are implemented.  All storage lives in an array data member, and all
// arithmetic is done in-place, to avoid requiring separate storage for operand
// and result.
//
// This is an internal class.  Some methods live in the .cc file, and are
// instantiated only for the values of max_words we need.
template <int max_words>
class BigUnsigned {
 public:
  static_assert(max_words == 4 || max_words == 84,
                "unsupported max_words value");

  BigUnsigned() : size_(0), words_{} {}
  explicit constexpr BigUnsigned(uint64_t v)
      : size_((v >> 32) ? 2 : v ? 1 : 0),
        words_{static_cast<uint32_t>(v & 0xffffffffu),
               static_cast<uint32_t>(v >> 32)} {}

  // Constructs a BigUnsigned from the given string_view containing a decimal
  // value.  If the input std::string is not a decimal integer, constructs a 0
  // instead.
  explicit BigUnsigned(absl::string_view sv) : size_(0), words_{} {
    // Check for valid input, returning a 0 otherwise.  This is reasonable
    // behavior only because this constructor is for unit tests.
    if (std::find_if_not(sv.begin(), sv.end(), ascii_isdigit) != sv.end() ||
        sv.empty()) {
      return;
    }
    int exponent_adjust =
        ReadDigits(sv.data(), sv.data() + sv.size(), Digits10() + 1);
    if (exponent_adjust > 0) {
      MultiplyByTenToTheNth(exponent_adjust);
    }
  }

  // Loads the mantissa value of a previously-parsed float.
  //
  // Returns the associated decimal exponent.  The value of the parsed float is
  // exactly *this * 10**exponent.
  int ReadFloatMantissa(const ParsedFloat& fp, int significant_digits);

  // Returns the number of decimal digits of precision this type provides.  All
  // numbers with this many decimal digits or fewer are representable by this
  // type.
  //
  // Analagous to std::numeric_limits<BigUnsigned>::digits10.
  static constexpr int Digits10() {
    // 9975007/1035508 is very slightly less than log10(2**32).
    return static_cast<uint64_t>(max_words) * 9975007 / 1035508;
  }

  // Shifts left by the given number of bits.
  void ShiftLeft(int count) {
    if (count > 0) {
      const int word_shift = count / 32;
      if (word_shift >= max_words) {
        SetToZero();
        return;
      }
      size_ = std::min(size_ + word_shift, max_words);
      count %= 32;
      if (count == 0) {
        std::copy_backward(words_, words_ + size_ - word_shift, words_ + size_);
      } else {
        for (int i = std::min(size_, max_words - 1); i > word_shift; --i) {
          words_[i] = (words_[i - word_shift] << count) |
                      (words_[i - word_shift - 1] >> (32 - count));
        }
        words_[word_shift] = words_[0] << count;
        // Grow size_ if necessary.
        if (size_ < max_words && words_[size_]) {
          ++size_;
        }
      }
      std::fill(words_, words_ + word_shift, 0u);
    }
  }


  // Multiplies by v in-place.
  void MultiplyBy(uint32_t v) {
    if (size_ == 0 || v == 1) {
      return;
    }
    if (v == 0) {
      SetToZero();
      return;
    }
    const uint64_t factor = v;
    uint64_t window = 0;
    for (int i = 0; i < size_; ++i) {
      window += factor * words_[i];
      words_[i] = window & 0xffffffff;
      window >>= 32;
    }
    // If carry bits remain and there's space for them, grow size_.
    if (window && size_ < max_words) {
      words_[size_] = window & 0xffffffff;
      ++size_;
    }
  }

  void MultiplyBy(uint64_t v) {
    uint32_t words[2];
    words[0] = static_cast<uint32_t>(v);
    words[1] = static_cast<uint32_t>(v >> 32);
    if (words[1] == 0) {
      MultiplyBy(words[0]);
    } else {
      MultiplyBy(2, words);
    }
  }

  // Multiplies in place by 5 to the power of n.  n must be non-negative.
  void MultiplyByFiveToTheNth(int n) {
    while (n >= kMaxSmallPowerOfFive) {
      MultiplyBy(kFiveToNth[kMaxSmallPowerOfFive]);
      n -= kMaxSmallPowerOfFive;
    }
    if (n > 0) {
      MultiplyBy(kFiveToNth[n]);
    }
  }

  // Multiplies in place by 10 to the power of n.  n must be non-negative.
  void MultiplyByTenToTheNth(int n) {
    if (n > kMaxSmallPowerOfTen) {
      // For large n, raise to a power of 5, then shift left by the same amount.
      // (10**n == 5**n * 2**n.)  This requires fewer multiplications overall.
      MultiplyByFiveToTheNth(n);
      ShiftLeft(n);
    } else if (n > 0) {
      // We can do this more quickly for very small N by using a single
      // multiplication.
      MultiplyBy(kTenToNth[n]);
    }
  }

  // Returns the value of 5**n, for non-negative n.  This implementation uses
  // a lookup table, and is faster then seeding a BigUnsigned with 1 and calling
  // MultiplyByFiveToTheNth().
  static BigUnsigned FiveToTheNth(int n);

  // Multiplies by another BigUnsigned, in-place.
  template <int M>
  void MultiplyBy(const BigUnsigned<M>& other) {
    MultiplyBy(other.size(), other.words());
  }

  void SetToZero() {
    std::fill(words_, words_ + size_, 0u);
    size_ = 0;
  }

  // Returns the value of the nth word of this BigUnsigned.  This is
  // range-checked, and returns 0 on out-of-bounds accesses.
  uint32_t GetWord(int index) const {
    if (index < 0 || index >= size_) {
      return 0;
    }
    return words_[index];
  }

  // Returns this integer as a decimal std::string.  This is not used in the decimal-
  // to-binary conversion; it is intended to aid in testing.
  std::string ToString() const;

  int size() const { return size_; }
  const uint32_t* words() const { return words_; }

 private:
  // Reads the number between [begin, end), possibly containing a decimal point,
  // into this BigUnsigned.
  //
  // Callers are required to ensure [begin, end) contains a valid number, with
  // one or more decimal digits and at most one decimal point.  This routine
  // will behave unpredictably if these preconditions are not met.
  //
  // Only the first `significant_digits` digits are read.  Digits beyond this
  // limit are "sticky": If the final significant digit is 0 or 5, and if any
  // dropped digit is nonzero, then that final significant digit is adjusted up
  // to 1 or 6.  This adjustment allows for precise rounding.
  //
  // Returns `exponent_adjustment`, a power-of-ten exponent adjustment to
  // account for the decimal point and for dropped significant digits.  After
  // this function returns,
  //   actual_value_of_parsed_string ~= *this * 10**exponent_adjustment.
  int ReadDigits(const char* begin, const char* end, int significant_digits);

  // Performs a step of big integer multiplication.  This computes the full
  // (64-bit-wide) values that should be added at the given index (step), and
  // adds to that location in-place.
  //
  // Because our math all occurs in place, we must multiply starting from the
  // highest word working downward.  (This is a bit more expensive due to the
  // extra carries involved.)
  //
  // This must be called in steps, for each word to be calculated, starting from
  // the high end and working down to 0.  The first value of `step` should be
  //   `std::min(original_size + other.size_ - 2, max_words - 1)`.
  // The reason for this expression is that multiplying the i'th word from one
  // multiplicand and the j'th word of another multiplicand creates a
  // two-word-wide value to be stored at the (i+j)'th element.  The highest
  // word indices we will access are `original_size - 1` from this object, and
  // `other.size_ - 1` from our operand.  Therefore,
  // `original_size + other.size_ - 2` is the first step we should calculate,
  // but limited on an upper bound by max_words.

  // Working from high-to-low ensures that we do not overwrite the portions of
  // the initial value of *this which are still needed for later steps.
  //
  // Once called with step == 0, *this contains the result of the
  // multiplication.
  //
  // `original_size` is the size_ of *this before the first call to
  // MultiplyStep().  `other_words` and `other_size` are the contents of our
  // operand.  `step` is the step to perform, as described above.
  void MultiplyStep(int original_size, const uint32_t* other_words,
                    int other_size, int step);

  void MultiplyBy(int other_size, const uint32_t* other_words) {
    const int original_size = size_;
    const int first_step =
        std::min(original_size + other_size - 2, max_words - 1);
    for (int step = first_step; step >= 0; --step) {
      MultiplyStep(original_size, other_words, other_size, step);
    }
  }

  // Adds a 32-bit value to the index'th word, with carry.
  void AddWithCarry(int index, uint32_t value) {
    if (value) {
      while (index < max_words && value > 0) {
        words_[index] += value;
        // carry if we overflowed in this word:
        if (value > words_[index]) {
          value = 1;
          ++index;
        } else {
          value = 0;
        }
      }
      size_ = std::min(max_words, std::max(index + 1, size_));
    }
  }

  void AddWithCarry(int index, uint64_t value) {
    if (value && index < max_words) {
      uint32_t high = value >> 32;
      uint32_t low = value & 0xffffffff;
      words_[index] += low;
      if (words_[index] < low) {
        ++high;
        if (high == 0) {
          // Carry from the low word caused our high word to overflow.
          // Short circuit here to do the right thing.
          AddWithCarry(index + 2, static_cast<uint32_t>(1));
          return;
        }
      }
      if (high > 0) {
        AddWithCarry(index + 1, high);
      } else {
        // Normally 32-bit AddWithCarry() sets size_, but since we don't call
        // it when `high` is 0, do it ourselves here.
        size_ = std::min(max_words, std::max(index + 1, size_));
      }
    }
  }

  // Divide this in place by a constant divisor.  Returns the remainder of the
  // division.
  template <uint32_t divisor>
  uint32_t DivMod() {
    uint64_t accumulator = 0;
    for (int i = size_ - 1; i >= 0; --i) {
      accumulator <<= 32;
      accumulator += words_[i];
      // accumulator / divisor will never overflow an int32_t in this loop
      words_[i] = static_cast<uint32_t>(accumulator / divisor);
      accumulator = accumulator % divisor;
    }
    while (size_ > 0 && words_[size_ - 1] == 0) {
      --size_;
    }
    return static_cast<uint32_t>(accumulator);
  }

  // The number of elements in words_ that may carry significant values.
  // All elements beyond this point are 0.
  //
  // When size_ is 0, this BigUnsigned stores the value 0.
  // When size_ is nonzero, is *not* guaranteed that words_[size_ - 1] is
  // nonzero.  This can occur due to overflow truncation.
  // In particular, x.size_ != y.size_ does *not* imply x != y.
  int size_;
  uint32_t words_[max_words];
};

// Compares two big integer instances.
//
// Returns -1 if lhs < rhs, 0 if lhs == rhs, and 1 if lhs > rhs.
template <int N, int M>
int Compare(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
  int limit = std::max(lhs.size(), rhs.size());
  for (int i = limit - 1; i >= 0; --i) {
    const uint32_t lhs_word = lhs.GetWord(i);
    const uint32_t rhs_word = rhs.GetWord(i);
    if (lhs_word < rhs_word) {
      return -1;
    } else if (lhs_word > rhs_word) {
      return 1;
    }
  }
  return 0;
}

template <int N, int M>
bool operator==(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
  int limit = std::max(lhs.size(), rhs.size());
  for (int i = 0; i < limit; ++i) {
    if (lhs.GetWord(i) != rhs.GetWord(i)) {
      return false;
    }
  }
  return true;
}

template <int N, int M>
bool operator!=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
  return !(lhs == rhs);
}

template <int N, int M>
bool operator<(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
  return Compare(lhs, rhs) == -1;
}

template <int N, int M>
bool operator>(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
  return rhs < lhs;
}
template <int N, int M>
bool operator<=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
  return !(rhs < lhs);
}
template <int N, int M>
bool operator>=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
  return !(lhs < rhs);
}

// Output operator for BigUnsigned, for testing purposes only.
template <int N>
std::ostream& operator<<(std::ostream& os, const BigUnsigned<N>& num) {
  return os << num.ToString();
}

// Explicit instantiation declarations for the sizes of BigUnsigned that we
// are using.
//
// For now, the choices of 4 and 84 are arbitrary; 4 is a small value that is
// still bigger than an int128, and 84 is a large value we will want to use
// in the from_chars implementation.
//
// Comments justifying the use of 84 belong in the from_chars implementation,
// and will be added in a follow-up CL.
extern template class BigUnsigned<4>;
extern template class BigUnsigned<84>;

}  // namespace strings_internal
}  // namespace absl

#endif  // ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_