summaryrefslogtreecommitdiff
path: root/absl/strings/cord.cc
blob: 5cc68539941d046487c3f4d6ee44210ca82d2d19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/strings/cord.h"

#include <algorithm>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <iomanip>
#include <limits>
#include <ostream>
#include <sstream>
#include <type_traits>
#include <unordered_set>
#include <vector>

#include "absl/base/casts.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/port.h"
#include "absl/container/fixed_array.h"
#include "absl/container/inlined_vector.h"
#include "absl/strings/escaping.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/strings/string_view.h"

namespace absl {
ABSL_NAMESPACE_BEGIN

using ::absl::cord_internal::CordRep;
using ::absl::cord_internal::CordRepConcat;
using ::absl::cord_internal::CordRepExternal;
using ::absl::cord_internal::CordRepSubstring;

// Various representations that we allow
enum CordRepKind {
  CONCAT        = 0,
  EXTERNAL      = 1,
  SUBSTRING     = 2,

  // We have different tags for different sized flat arrays,
  // starting with FLAT
  FLAT          = 3,
};

namespace {

// Type used with std::allocator for allocating and deallocating
// `CordRepExternal`. std::allocator is used because it opaquely handles the
// different new / delete overloads available on a given platform.
struct alignas(absl::cord_internal::ExternalRepAlignment()) ExternalAllocType {
  unsigned char value[absl::cord_internal::ExternalRepAlignment()];
};

// Returns the number of objects to pass in to std::allocator<ExternalAllocType>
// allocate() and deallocate() to create enough room for `CordRepExternal` with
// `releaser_size` bytes on the end.
constexpr size_t GetExternalAllocNumObjects(size_t releaser_size) {
  // Be sure to round up since `releaser_size` could be smaller than
  // `sizeof(ExternalAllocType)`.
  return (sizeof(CordRepExternal) + releaser_size + sizeof(ExternalAllocType) -
          1) /
         sizeof(ExternalAllocType);
}

// Allocates enough memory for `CordRepExternal` and a releaser with size
// `releaser_size` bytes.
void* AllocateExternal(size_t releaser_size) {
  return std::allocator<ExternalAllocType>().allocate(
      GetExternalAllocNumObjects(releaser_size));
}

// Deallocates the memory for a `CordRepExternal` assuming it was allocated with
// a releaser of given size and alignment.
void DeallocateExternal(CordRepExternal* p, size_t releaser_size) {
  std::allocator<ExternalAllocType>().deallocate(
      reinterpret_cast<ExternalAllocType*>(p),
      GetExternalAllocNumObjects(releaser_size));
}

// Returns a pointer to the type erased releaser for the given CordRepExternal.
void* GetExternalReleaser(CordRepExternal* rep) {
  return rep + 1;
}

}  // namespace

namespace cord_internal {

inline CordRepConcat* CordRep::concat() {
  assert(tag == CONCAT);
  return static_cast<CordRepConcat*>(this);
}

inline const CordRepConcat* CordRep::concat() const {
  assert(tag == CONCAT);
  return static_cast<const CordRepConcat*>(this);
}

inline CordRepSubstring* CordRep::substring() {
  assert(tag == SUBSTRING);
  return static_cast<CordRepSubstring*>(this);
}

inline const CordRepSubstring* CordRep::substring() const {
  assert(tag == SUBSTRING);
  return static_cast<const CordRepSubstring*>(this);
}

inline CordRepExternal* CordRep::external() {
  assert(tag == EXTERNAL);
  return static_cast<CordRepExternal*>(this);
}

inline const CordRepExternal* CordRep::external() const {
  assert(tag == EXTERNAL);
  return static_cast<const CordRepExternal*>(this);
}

}  // namespace cord_internal

static const size_t kFlatOverhead = offsetof(CordRep, data);

// Largest and smallest flat node lengths we are willing to allocate
// Flat allocation size is stored in tag, which currently can encode sizes up
// to 4K, encoded as multiple of either 8 or 32 bytes.
// If we allow for larger sizes, we need to change this to 8/64, 16/128, etc.
static constexpr size_t kMaxFlatSize = 4096;
static constexpr size_t kMaxFlatLength = kMaxFlatSize - kFlatOverhead;
static constexpr size_t kMinFlatLength = 32 - kFlatOverhead;

// Prefer copying blocks of at most this size, otherwise reference count.
static const size_t kMaxBytesToCopy = 511;

// Helper functions for rounded div, and rounding to exact sizes.
static size_t DivUp(size_t n, size_t m) { return (n + m - 1) / m; }
static size_t RoundUp(size_t n, size_t m) { return DivUp(n, m) * m; }

// Returns the size to the nearest equal or larger value that can be
// expressed exactly as a tag value.
static size_t RoundUpForTag(size_t size) {
  return RoundUp(size, (size <= 1024) ? 8 : 32);
}

// Converts the allocated size to a tag, rounding down if the size
// does not exactly match a 'tag expressible' size value. The result is
// undefined if the size exceeds the maximum size that can be encoded in
// a tag, i.e., if size is larger than TagToAllocatedSize(<max tag>).
static uint8_t AllocatedSizeToTag(size_t size) {
  const size_t tag = (size <= 1024) ? size / 8 : 128 + size / 32 - 1024 / 32;
  assert(tag <= std::numeric_limits<uint8_t>::max());
  return tag;
}

// Converts the provided tag to the corresponding allocated size
static constexpr size_t TagToAllocatedSize(uint8_t tag) {
  return (tag <= 128) ? (tag * 8) : (1024 + (tag - 128) * 32);
}

// Converts the provided tag to the corresponding available data length
static constexpr size_t TagToLength(uint8_t tag) {
  return TagToAllocatedSize(tag) - kFlatOverhead;
}

// Enforce that kMaxFlatSize maps to a well-known exact tag value.
static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic");

constexpr uint64_t Fibonacci(unsigned char n, uint64_t a = 0, uint64_t b = 1) {
  return n == 0 ? a : Fibonacci(n - 1, b, a + b);
}

static_assert(Fibonacci(63) == 6557470319842,
              "Fibonacci values computed incorrectly");

// Minimum length required for a given depth tree -- a tree is considered
// balanced if
//      length(t) >= min_length[depth(t)]
// The root node depth is allowed to become twice as large to reduce rebalancing
// for larger strings (see IsRootBalanced).
static constexpr uint64_t min_length[] = {
    Fibonacci(2),
    Fibonacci(3),
    Fibonacci(4),
    Fibonacci(5),
    Fibonacci(6),
    Fibonacci(7),
    Fibonacci(8),
    Fibonacci(9),
    Fibonacci(10),
    Fibonacci(11),
    Fibonacci(12),
    Fibonacci(13),
    Fibonacci(14),
    Fibonacci(15),
    Fibonacci(16),
    Fibonacci(17),
    Fibonacci(18),
    Fibonacci(19),
    Fibonacci(20),
    Fibonacci(21),
    Fibonacci(22),
    Fibonacci(23),
    Fibonacci(24),
    Fibonacci(25),
    Fibonacci(26),
    Fibonacci(27),
    Fibonacci(28),
    Fibonacci(29),
    Fibonacci(30),
    Fibonacci(31),
    Fibonacci(32),
    Fibonacci(33),
    Fibonacci(34),
    Fibonacci(35),
    Fibonacci(36),
    Fibonacci(37),
    Fibonacci(38),
    Fibonacci(39),
    Fibonacci(40),
    Fibonacci(41),
    Fibonacci(42),
    Fibonacci(43),
    Fibonacci(44),
    Fibonacci(45),
    Fibonacci(46),
    Fibonacci(47),
    0xffffffffffffffffull,  // Avoid overflow
};

static const int kMinLengthSize = ABSL_ARRAYSIZE(min_length);

// The inlined size to use with absl::InlinedVector.
//
// Note: The InlinedVectors in this file (and in cord.h) do not need to use
// the same value for their inlined size. The fact that they do is historical.
// It may be desirable for each to use a different inlined size optimized for
// that InlinedVector's usage.
//
// TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
// the inlined vector size (47 exists for backward compatibility).
static const int kInlinedVectorSize = 47;

static inline bool IsRootBalanced(CordRep* node) {
  if (node->tag != CONCAT) {
    return true;
  } else if (node->concat()->depth() <= 15) {
    return true;
  } else if (node->concat()->depth() > kMinLengthSize) {
    return false;
  } else {
    // Allow depth to become twice as large as implied by fibonacci rule to
    // reduce rebalancing for larger strings.
    return (node->length >= min_length[node->concat()->depth() / 2]);
  }
}

static CordRep* Rebalance(CordRep* node);
static void DumpNode(CordRep* rep, bool include_data, std::ostream* os);
static bool VerifyNode(CordRep* root, CordRep* start_node,
                       bool full_validation);

static inline CordRep* VerifyTree(CordRep* node) {
  // Verification is expensive, so only do it in debug mode.
  // Even in debug mode we normally do only light validation.
  // If you are debugging Cord itself, you should define the
  // macro EXTRA_CORD_VALIDATION, e.g. by adding
  // --copt=-DEXTRA_CORD_VALIDATION to the blaze line.
#ifdef EXTRA_CORD_VALIDATION
  assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/true));
#else   // EXTRA_CORD_VALIDATION
  assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/false));
#endif  // EXTRA_CORD_VALIDATION
  static_cast<void>(&VerifyNode);

  return node;
}

// --------------------------------------------------------------------
// Memory management

inline CordRep* Ref(CordRep* rep) {
  if (rep != nullptr) {
    rep->refcount.Increment();
  }
  return rep;
}

// This internal routine is called from the cold path of Unref below. Keeping it
// in a separate routine allows good inlining of Unref into many profitable call
// sites. However, the call to this function can be highly disruptive to the
// register pressure in those callers. To minimize the cost to callers, we use
// a special LLVM calling convention that preserves most registers. This allows
// the call to this routine in cold paths to not disrupt the caller's register
// pressure. This calling convention is not available on all platforms; we
// intentionally allow LLVM to ignore the attribute rather than attempting to
// hardcode the list of supported platforms.
#if defined(__clang__) && !defined(__i386__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wattributes"
__attribute__((preserve_most))
#pragma clang diagnostic pop
#endif
static void UnrefInternal(CordRep* rep) {
  assert(rep != nullptr);

  absl::InlinedVector<CordRep*, kInlinedVectorSize> pending;
  while (true) {
    if (rep->tag == CONCAT) {
      CordRepConcat* rep_concat = rep->concat();
      CordRep* right = rep_concat->right;
      if (!right->refcount.Decrement()) {
        pending.push_back(right);
      }
      CordRep* left = rep_concat->left;
      delete rep_concat;
      rep = nullptr;
      if (!left->refcount.Decrement()) {
        rep = left;
        continue;
      }
    } else if (rep->tag == EXTERNAL) {
      CordRepExternal* rep_external = rep->external();
      absl::string_view data(rep_external->base, rep->length);
      void* releaser = GetExternalReleaser(rep_external);
      size_t releaser_size = rep_external->releaser_invoker(releaser, data);
      rep_external->~CordRepExternal();
      DeallocateExternal(rep_external, releaser_size);
      rep = nullptr;
    } else if (rep->tag == SUBSTRING) {
      CordRepSubstring* rep_substring = rep->substring();
      CordRep* child = rep_substring->child;
      delete rep_substring;
      rep = nullptr;
      if (!child->refcount.Decrement()) {
        rep = child;
        continue;
      }
    } else {
      // Flat CordReps are allocated and constructed with raw ::operator new
      // and placement new, and must be destructed and deallocated
      // accordingly.
#if defined(__cpp_sized_deallocation)
      size_t size = TagToAllocatedSize(rep->tag);
      rep->~CordRep();
      ::operator delete(rep, size);
#else
      rep->~CordRep();
      ::operator delete(rep);
#endif
      rep = nullptr;
    }

    if (!pending.empty()) {
      rep = pending.back();
      pending.pop_back();
    } else {
      break;
    }
  }
}

inline void Unref(CordRep* rep) {
  // Fast-path for two common, hot cases: a null rep and a shared root.
  if (ABSL_PREDICT_TRUE(rep == nullptr ||
                        rep->refcount.DecrementExpectHighRefcount())) {
    return;
  }

  UnrefInternal(rep);
}

// Return the depth of a node
static int Depth(const CordRep* rep) {
  if (rep->tag == CONCAT) {
    return rep->concat()->depth();
  } else {
    return 0;
  }
}

static void SetConcatChildren(CordRepConcat* concat, CordRep* left,
                              CordRep* right) {
  concat->left = left;
  concat->right = right;

  concat->length = left->length + right->length;
  concat->set_depth(1 + std::max(Depth(left), Depth(right)));
}

// Create a concatenation of the specified nodes.
// Does not change the refcounts of "left" and "right".
// The returned node has a refcount of 1.
static CordRep* RawConcat(CordRep* left, CordRep* right) {
  // Avoid making degenerate concat nodes (one child is empty)
  if (left == nullptr || left->length == 0) {
    Unref(left);
    return right;
  }
  if (right == nullptr || right->length == 0) {
    Unref(right);
    return left;
  }

  CordRepConcat* rep = new CordRepConcat();
  rep->tag = CONCAT;
  SetConcatChildren(rep, left, right);

  return rep;
}

static CordRep* Concat(CordRep* left, CordRep* right) {
  CordRep* rep = RawConcat(left, right);
  if (rep != nullptr && !IsRootBalanced(rep)) {
    rep = Rebalance(rep);
  }
  return VerifyTree(rep);
}

// Make a balanced tree out of an array of leaf nodes.
static CordRep* MakeBalancedTree(CordRep** reps, size_t n) {
  // Make repeated passes over the array, merging adjacent pairs
  // until we are left with just a single node.
  while (n > 1) {
    size_t dst = 0;
    for (size_t src = 0; src < n; src += 2) {
      if (src + 1 < n) {
        reps[dst] = Concat(reps[src], reps[src + 1]);
      } else {
        reps[dst] = reps[src];
      }
      dst++;
    }
    n = dst;
  }

  return reps[0];
}

// Create a new flat node.
static CordRep* NewFlat(size_t length_hint) {
  if (length_hint <= kMinFlatLength) {
    length_hint = kMinFlatLength;
  } else if (length_hint > kMaxFlatLength) {
    length_hint = kMaxFlatLength;
  }

  // Round size up so it matches a size we can exactly express in a tag.
  const size_t size = RoundUpForTag(length_hint + kFlatOverhead);
  void* const raw_rep = ::operator new(size);
  CordRep* rep = new (raw_rep) CordRep();
  rep->tag = AllocatedSizeToTag(size);
  return VerifyTree(rep);
}

// Create a new tree out of the specified array.
// The returned node has a refcount of 1.
static CordRep* NewTree(const char* data,
                        size_t length,
                        size_t alloc_hint) {
  if (length == 0) return nullptr;
  absl::FixedArray<CordRep*> reps((length - 1) / kMaxFlatLength + 1);
  size_t n = 0;
  do {
    const size_t len = std::min(length, kMaxFlatLength);
    CordRep* rep = NewFlat(len + alloc_hint);
    rep->length = len;
    memcpy(rep->data, data, len);
    reps[n++] = VerifyTree(rep);
    data += len;
    length -= len;
  } while (length != 0);
  return MakeBalancedTree(reps.data(), n);
}

namespace cord_internal {

ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
    absl::string_view data, ExternalReleaserInvoker invoker,
    size_t releaser_size) {
  assert(!data.empty());

  void* raw_rep = AllocateExternal(releaser_size);
  auto* rep = new (raw_rep) CordRepExternal();
  rep->length = data.size();
  rep->tag = EXTERNAL;
  rep->base = data.data();
  rep->releaser_invoker = invoker;
  return {VerifyTree(rep), GetExternalReleaser(rep)};
}

}  // namespace cord_internal

static CordRep* NewSubstring(CordRep* child, size_t offset, size_t length) {
  // Never create empty substring nodes
  if (length == 0) {
    Unref(child);
    return nullptr;
  } else {
    CordRepSubstring* rep = new CordRepSubstring();
    assert((offset + length) <= child->length);
    rep->length = length;
    rep->tag = SUBSTRING;
    rep->start = offset;
    rep->child = child;
    return VerifyTree(rep);
  }
}

// --------------------------------------------------------------------
// Cord::InlineRep functions

// This will trigger LNK2005 in MSVC.
#ifndef COMPILER_MSVC
const unsigned char Cord::InlineRep::kMaxInline;
#endif  // COMPILER_MSVC

inline void Cord::InlineRep::set_data(const char* data, size_t n,
                                      bool nullify_tail) {
  static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");

  cord_internal::SmallMemmove(data_, data, n, nullify_tail);
  data_[kMaxInline] = static_cast<char>(n);
}

inline char* Cord::InlineRep::set_data(size_t n) {
  assert(n <= kMaxInline);
  memset(data_, 0, sizeof(data_));
  data_[kMaxInline] = static_cast<char>(n);
  return data_;
}

inline CordRep* Cord::InlineRep::force_tree(size_t extra_hint) {
  size_t len = data_[kMaxInline];
  CordRep* result;
  if (len > kMaxInline) {
    memcpy(&result, data_, sizeof(result));
  } else {
    result = NewFlat(len + extra_hint);
    result->length = len;
    memcpy(result->data, data_, len);
    set_tree(result);
  }
  return result;
}

inline void Cord::InlineRep::reduce_size(size_t n) {
  size_t tag = data_[kMaxInline];
  assert(tag <= kMaxInline);
  assert(tag >= n);
  tag -= n;
  memset(data_ + tag, 0, n);
  data_[kMaxInline] = static_cast<char>(tag);
}

inline void Cord::InlineRep::remove_prefix(size_t n) {
  cord_internal::SmallMemmove(data_, data_ + n, data_[kMaxInline] - n);
  reduce_size(n);
}

void Cord::InlineRep::AppendTree(CordRep* tree) {
  if (tree == nullptr) return;
  size_t len = data_[kMaxInline];
  if (len == 0) {
    set_tree(tree);
  } else {
    set_tree(Concat(force_tree(0), tree));
  }
}

void Cord::InlineRep::PrependTree(CordRep* tree) {
  if (tree == nullptr) return;
  size_t len = data_[kMaxInline];
  if (len == 0) {
    set_tree(tree);
  } else {
    set_tree(Concat(tree, force_tree(0)));
  }
}

// Searches for a non-full flat node at the rightmost leaf of the tree. If a
// suitable leaf is found, the function will update the length field for all
// nodes to account for the size increase. The append region address will be
// written to region and the actual size increase will be written to size.
static inline bool PrepareAppendRegion(CordRep* root, char** region,
                                       size_t* size, size_t max_length) {
  // Search down the right-hand path for a non-full FLAT node.
  CordRep* dst = root;
  while (dst->tag == CONCAT && dst->refcount.IsOne()) {
    dst = dst->concat()->right;
  }

  if (dst->tag < FLAT || !dst->refcount.IsOne()) {
    *region = nullptr;
    *size = 0;
    return false;
  }

  const size_t in_use = dst->length;
  const size_t capacity = TagToLength(dst->tag);
  if (in_use == capacity) {
    *region = nullptr;
    *size = 0;
    return false;
  }

  size_t size_increase = std::min(capacity - in_use, max_length);

  // We need to update the length fields for all nodes, including the leaf node.
  for (CordRep* rep = root; rep != dst; rep = rep->concat()->right) {
    rep->length += size_increase;
  }
  dst->length += size_increase;

  *region = dst->data + in_use;
  *size = size_increase;
  return true;
}

void Cord::InlineRep::GetAppendRegion(char** region, size_t* size,
                                      size_t max_length) {
  if (max_length == 0) {
    *region = nullptr;
    *size = 0;
    return;
  }

  // Try to fit in the inline buffer if possible.
  size_t inline_length = data_[kMaxInline];
  if (inline_length < kMaxInline && max_length <= kMaxInline - inline_length) {
    *region = data_ + inline_length;
    *size = max_length;
    data_[kMaxInline] = static_cast<char>(inline_length + max_length);
    return;
  }

  CordRep* root = force_tree(max_length);

  if (PrepareAppendRegion(root, region, size, max_length)) {
    return;
  }

  // Allocate new node.
  CordRep* new_node =
      NewFlat(std::max(static_cast<size_t>(root->length), max_length));
  new_node->length =
      std::min(static_cast<size_t>(TagToLength(new_node->tag)), max_length);
  *region = new_node->data;
  *size = new_node->length;
  replace_tree(Concat(root, new_node));
}

void Cord::InlineRep::GetAppendRegion(char** region, size_t* size) {
  const size_t max_length = std::numeric_limits<size_t>::max();

  // Try to fit in the inline buffer if possible.
  size_t inline_length = data_[kMaxInline];
  if (inline_length < kMaxInline) {
    *region = data_ + inline_length;
    *size = kMaxInline - inline_length;
    data_[kMaxInline] = kMaxInline;
    return;
  }

  CordRep* root = force_tree(max_length);

  if (PrepareAppendRegion(root, region, size, max_length)) {
    return;
  }

  // Allocate new node.
  CordRep* new_node = NewFlat(root->length);
  new_node->length = TagToLength(new_node->tag);
  *region = new_node->data;
  *size = new_node->length;
  replace_tree(Concat(root, new_node));
}

// If the rep is a leaf, this will increment the value at total_mem_usage and
// will return true.
static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
  if (rep->tag >= FLAT) {
    *total_mem_usage += TagToAllocatedSize(rep->tag);
    return true;
  }
  if (rep->tag == EXTERNAL) {
    *total_mem_usage += sizeof(CordRepConcat) + rep->length;
    return true;
  }
  return false;
}

void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
  ClearSlow();

  memcpy(data_, src.data_, sizeof(data_));
  if (is_tree()) {
    Ref(tree());
  }
}

void Cord::InlineRep::ClearSlow() {
  if (is_tree()) {
    Unref(tree());
  }
  memset(data_, 0, sizeof(data_));
}

// --------------------------------------------------------------------
// Constructors and destructors

Cord::Cord(const Cord& src) : contents_(src.contents_) {
  Ref(contents_.tree());  // Does nothing if contents_ has embedded data
}

Cord::Cord(absl::string_view src) {
  const size_t n = src.size();
  if (n <= InlineRep::kMaxInline) {
    contents_.set_data(src.data(), n, false);
  } else {
    contents_.set_tree(NewTree(src.data(), n, 0));
  }
}

// The destruction code is separate so that the compiler can determine
// that it does not need to call the destructor on a moved-from Cord.
void Cord::DestroyCordSlow() {
  Unref(VerifyTree(contents_.tree()));
}

// --------------------------------------------------------------------
// Mutators

void Cord::Clear() {
  Unref(contents_.clear());
}

Cord& Cord::operator=(absl::string_view src) {

  const char* data = src.data();
  size_t length = src.size();
  CordRep* tree = contents_.tree();
  if (length <= InlineRep::kMaxInline) {
    // Embed into this->contents_
    contents_.set_data(data, length, true);
    Unref(tree);
    return *this;
  }
  if (tree != nullptr && tree->tag >= FLAT &&
      TagToLength(tree->tag) >= length && tree->refcount.IsOne()) {
    // Copy in place if the existing FLAT node is reusable.
    memmove(tree->data, data, length);
    tree->length = length;
    VerifyTree(tree);
    return *this;
  }
  contents_.set_tree(NewTree(data, length, 0));
  Unref(tree);
  return *this;
}

// TODO(sanjay): Move to Cord::InlineRep section of file.  For now,
// we keep it here to make diffs easier.
void Cord::InlineRep::AppendArray(const char* src_data, size_t src_size) {
  if (src_size == 0) return;  // memcpy(_, nullptr, 0) is undefined.
  // Try to fit in the inline buffer if possible.
  size_t inline_length = data_[kMaxInline];
  if (inline_length < kMaxInline && src_size <= kMaxInline - inline_length) {
    // Append new data to embedded array
    data_[kMaxInline] = static_cast<char>(inline_length + src_size);
    memcpy(data_ + inline_length, src_data, src_size);
    return;
  }

  CordRep* root = tree();

  size_t appended = 0;
  if (root) {
    char* region;
    if (PrepareAppendRegion(root, &region, &appended, src_size)) {
      memcpy(region, src_data, appended);
    }
  } else {
    // It is possible that src_data == data_, but when we transition from an
    // InlineRep to a tree we need to assign data_ = root via set_tree. To
    // avoid corrupting the source data before we copy it, delay calling
    // set_tree until after we've copied data.
    // We are going from an inline size to beyond inline size. Make the new size
    // either double the inlined size, or the added size + 10%.
    const size_t size1 = inline_length * 2 + src_size;
    const size_t size2 = inline_length + src_size / 10;
    root = NewFlat(std::max<size_t>(size1, size2));
    appended = std::min(src_size, TagToLength(root->tag) - inline_length);
    memcpy(root->data, data_, inline_length);
    memcpy(root->data + inline_length, src_data, appended);
    root->length = inline_length + appended;
    set_tree(root);
  }

  src_data += appended;
  src_size -= appended;
  if (src_size == 0) {
    return;
  }

  // Use new block(s) for any remaining bytes that were not handled above.
  // Alloc extra memory only if the right child of the root of the new tree is
  // going to be a FLAT node, which will permit further inplace appends.
  size_t length = src_size;
  if (src_size < kMaxFlatLength) {
    // The new length is either
    // - old size + 10%
    // - old_size + src_size
    // This will cause a reasonable conservative step-up in size that is still
    // large enough to avoid excessive amounts of small fragments being added.
    length = std::max<size_t>(root->length / 10, src_size);
  }
  set_tree(Concat(root, NewTree(src_data, src_size, length - src_size)));
}

inline CordRep* Cord::TakeRep() const& {
  return Ref(contents_.tree());
}

inline CordRep* Cord::TakeRep() && {
  CordRep* rep = contents_.tree();
  contents_.clear();
  return rep;
}

template <typename C>
inline void Cord::AppendImpl(C&& src) {
  if (empty()) {
    // In case of an empty destination avoid allocating a new node, do not copy
    // data.
    *this = std::forward<C>(src);
    return;
  }

  // For short cords, it is faster to copy data if there is room in dst.
  const size_t src_size = src.contents_.size();
  if (src_size <= kMaxBytesToCopy) {
    CordRep* src_tree = src.contents_.tree();
    if (src_tree == nullptr) {
      // src has embedded data.
      contents_.AppendArray(src.contents_.data(), src_size);
      return;
    }
    if (src_tree->tag >= FLAT) {
      // src tree just has one flat node.
      contents_.AppendArray(src_tree->data, src_size);
      return;
    }
    if (&src == this) {
      // ChunkIterator below assumes that src is not modified during traversal.
      Append(Cord(src));
      return;
    }
    // TODO(mec): Should we only do this if "dst" has space?
    for (absl::string_view chunk : src.Chunks()) {
      Append(chunk);
    }
    return;
  }

  contents_.AppendTree(std::forward<C>(src).TakeRep());
}

void Cord::Append(const Cord& src) { AppendImpl(src); }

void Cord::Append(Cord&& src) { AppendImpl(std::move(src)); }

void Cord::Prepend(const Cord& src) {
  CordRep* src_tree = src.contents_.tree();
  if (src_tree != nullptr) {
    Ref(src_tree);
    contents_.PrependTree(src_tree);
    return;
  }

  // `src` cord is inlined.
  absl::string_view src_contents(src.contents_.data(), src.contents_.size());
  return Prepend(src_contents);
}

void Cord::Prepend(absl::string_view src) {
  if (src.empty()) return;  // memcpy(_, nullptr, 0) is undefined.
  size_t cur_size = contents_.size();
  if (!contents_.is_tree() && cur_size + src.size() <= InlineRep::kMaxInline) {
    // Use embedded storage.
    char data[InlineRep::kMaxInline + 1] = {0};
    data[InlineRep::kMaxInline] = cur_size + src.size();  // set size
    memcpy(data, src.data(), src.size());
    memcpy(data + src.size(), contents_.data(), cur_size);
    memcpy(reinterpret_cast<void*>(&contents_), data,
           InlineRep::kMaxInline + 1);
  } else {
    contents_.PrependTree(NewTree(src.data(), src.size(), 0));
  }
}

static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
  if (n >= node->length) return nullptr;
  if (n == 0) return Ref(node);
  absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack;

  while (node->tag == CONCAT) {
    assert(n <= node->length);
    if (n < node->concat()->left->length) {
      // Push right to stack, descend left.
      rhs_stack.push_back(node->concat()->right);
      node = node->concat()->left;
    } else {
      // Drop left, descend right.
      n -= node->concat()->left->length;
      node = node->concat()->right;
    }
  }
  assert(n <= node->length);

  if (n == 0) {
    Ref(node);
  } else {
    size_t start = n;
    size_t len = node->length - n;
    if (node->tag == SUBSTRING) {
      // Consider in-place update of node, similar to in RemoveSuffixFrom().
      start += node->substring()->start;
      node = node->substring()->child;
    }
    node = NewSubstring(Ref(node), start, len);
  }
  while (!rhs_stack.empty()) {
    node = Concat(node, Ref(rhs_stack.back()));
    rhs_stack.pop_back();
  }
  return node;
}

// RemoveSuffixFrom() is very similar to RemovePrefixFrom(), with the
// exception that removing a suffix has an optimization where a node may be
// edited in place iff that node and all its ancestors have a refcount of 1.
static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
  if (n >= node->length) return nullptr;
  if (n == 0) return Ref(node);
  absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack;
  bool inplace_ok = node->refcount.IsOne();

  while (node->tag == CONCAT) {
    assert(n <= node->length);
    if (n < node->concat()->right->length) {
      // Push left to stack, descend right.
      lhs_stack.push_back(node->concat()->left);
      node = node->concat()->right;
    } else {
      // Drop right, descend left.
      n -= node->concat()->right->length;
      node = node->concat()->left;
    }
    inplace_ok = inplace_ok && node->refcount.IsOne();
  }
  assert(n <= node->length);

  if (n == 0) {
    Ref(node);
  } else if (inplace_ok && node->tag != EXTERNAL) {
    // Consider making a new buffer if the current node capacity is much
    // larger than the new length.
    Ref(node);
    node->length -= n;
  } else {
    size_t start = 0;
    size_t len = node->length - n;
    if (node->tag == SUBSTRING) {
      start = node->substring()->start;
      node = node->substring()->child;
    }
    node = NewSubstring(Ref(node), start, len);
  }
  while (!lhs_stack.empty()) {
    node = Concat(Ref(lhs_stack.back()), node);
    lhs_stack.pop_back();
  }
  return node;
}

void Cord::RemovePrefix(size_t n) {
  ABSL_INTERNAL_CHECK(n <= size(),
                      absl::StrCat("Requested prefix size ", n,
                                   " exceeds Cord's size ", size()));
  CordRep* tree = contents_.tree();
  if (tree == nullptr) {
    contents_.remove_prefix(n);
  } else {
    CordRep* newrep = RemovePrefixFrom(tree, n);
    Unref(tree);
    contents_.replace_tree(VerifyTree(newrep));
  }
}

void Cord::RemoveSuffix(size_t n) {
  ABSL_INTERNAL_CHECK(n <= size(),
                      absl::StrCat("Requested suffix size ", n,
                                   " exceeds Cord's size ", size()));
  CordRep* tree = contents_.tree();
  if (tree == nullptr) {
    contents_.reduce_size(n);
  } else {
    CordRep* newrep = RemoveSuffixFrom(tree, n);
    Unref(tree);
    contents_.replace_tree(VerifyTree(newrep));
  }
}

// Work item for NewSubRange().
struct SubRange {
  SubRange(CordRep* a_node, size_t a_pos, size_t a_n)
      : node(a_node), pos(a_pos), n(a_n) {}
  CordRep* node;  // nullptr means concat last 2 results.
  size_t pos;
  size_t n;
};

static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
  absl::InlinedVector<CordRep*, kInlinedVectorSize> results;
  absl::InlinedVector<SubRange, kInlinedVectorSize> todo;
  todo.push_back(SubRange(node, pos, n));
  do {
    const SubRange& sr = todo.back();
    node = sr.node;
    pos = sr.pos;
    n = sr.n;
    todo.pop_back();

    if (node == nullptr) {
      assert(results.size() >= 2);
      CordRep* right = results.back();
      results.pop_back();
      CordRep* left = results.back();
      results.pop_back();
      results.push_back(Concat(left, right));
    } else if (pos == 0 && n == node->length) {
      results.push_back(Ref(node));
    } else if (node->tag != CONCAT) {
      if (node->tag == SUBSTRING) {
        pos += node->substring()->start;
        node = node->substring()->child;
      }
      results.push_back(NewSubstring(Ref(node), pos, n));
    } else if (pos + n <= node->concat()->left->length) {
      todo.push_back(SubRange(node->concat()->left, pos, n));
    } else if (pos >= node->concat()->left->length) {
      pos -= node->concat()->left->length;
      todo.push_back(SubRange(node->concat()->right, pos, n));
    } else {
      size_t left_n = node->concat()->left->length - pos;
      todo.push_back(SubRange(nullptr, 0, 0));  // Concat()
      todo.push_back(SubRange(node->concat()->right, 0, n - left_n));
      todo.push_back(SubRange(node->concat()->left, pos, left_n));
    }
  } while (!todo.empty());
  assert(results.size() == 1);
  return results[0];
}

Cord Cord::Subcord(size_t pos, size_t new_size) const {
  Cord sub_cord;
  size_t length = size();
  if (pos > length) pos = length;
  if (new_size > length - pos) new_size = length - pos;
  CordRep* tree = contents_.tree();
  if (tree == nullptr) {
    // sub_cord is newly constructed, no need to re-zero-out the tail of
    // contents_ memory.
    sub_cord.contents_.set_data(contents_.data() + pos, new_size, false);
  } else if (new_size == 0) {
    // We want to return empty subcord, so nothing to do.
  } else if (new_size <= InlineRep::kMaxInline) {
    Cord::ChunkIterator it = chunk_begin();
    it.AdvanceBytes(pos);
    char* dest = sub_cord.contents_.data_;
    size_t remaining_size = new_size;
    while (remaining_size > it->size()) {
      cord_internal::SmallMemmove(dest, it->data(), it->size());
      remaining_size -= it->size();
      dest += it->size();
      ++it;
    }
    cord_internal::SmallMemmove(dest, it->data(), remaining_size);
    sub_cord.contents_.data_[InlineRep::kMaxInline] = new_size;
  } else {
    sub_cord.contents_.set_tree(NewSubRange(tree, pos, new_size));
  }
  return sub_cord;
}

// --------------------------------------------------------------------
// Balancing

class CordForest {
 public:
  explicit CordForest(size_t length)
      : root_length_(length), trees_(kMinLengthSize, nullptr) {}

  void Build(CordRep* cord_root) {
    std::vector<CordRep*> pending = {cord_root};

    while (!pending.empty()) {
      CordRep* node = pending.back();
      pending.pop_back();
      CheckNode(node);
      if (ABSL_PREDICT_FALSE(node->tag != CONCAT)) {
        AddNode(node);
        continue;
      }

      CordRepConcat* concat_node = node->concat();
      if (concat_node->depth() >= kMinLengthSize ||
          concat_node->length < min_length[concat_node->depth()]) {
        pending.push_back(concat_node->right);
        pending.push_back(concat_node->left);

        if (concat_node->refcount.IsOne()) {
          concat_node->left = concat_freelist_;
          concat_freelist_ = concat_node;
        } else {
          Ref(concat_node->right);
          Ref(concat_node->left);
          Unref(concat_node);
        }
      } else {
        AddNode(node);
      }
    }
  }

  CordRep* ConcatNodes() {
    CordRep* sum = nullptr;
    for (auto* node : trees_) {
      if (node == nullptr) continue;

      sum = PrependNode(node, sum);
      root_length_ -= node->length;
      if (root_length_ == 0) break;
    }
    ABSL_INTERNAL_CHECK(sum != nullptr, "Failed to locate sum node");
    return VerifyTree(sum);
  }

 private:
  CordRep* AppendNode(CordRep* node, CordRep* sum) {
    return (sum == nullptr) ? node : MakeConcat(sum, node);
  }

  CordRep* PrependNode(CordRep* node, CordRep* sum) {
    return (sum == nullptr) ? node : MakeConcat(node, sum);
  }

  void AddNode(CordRep* node) {
    CordRep* sum = nullptr;

    // Collect together everything with which we will merge node
    int i = 0;
    for (; node->length > min_length[i + 1]; ++i) {
      auto& tree_at_i = trees_[i];

      if (tree_at_i == nullptr) continue;
      sum = PrependNode(tree_at_i, sum);
      tree_at_i = nullptr;
    }

    sum = AppendNode(node, sum);

    // Insert sum into appropriate place in the forest
    for (; sum->length >= min_length[i]; ++i) {
      auto& tree_at_i = trees_[i];
      if (tree_at_i == nullptr) continue;

      sum = MakeConcat(tree_at_i, sum);
      tree_at_i = nullptr;
    }

    // min_length[0] == 1, which means sum->length >= min_length[0]
    assert(i > 0);
    trees_[i - 1] = sum;
  }

  // Make concat node trying to resue existing CordRepConcat nodes we
  // already collected in the concat_freelist_.
  CordRep* MakeConcat(CordRep* left, CordRep* right) {
    if (concat_freelist_ == nullptr) return RawConcat(left, right);

    CordRepConcat* rep = concat_freelist_;
    if (concat_freelist_->left == nullptr) {
      concat_freelist_ = nullptr;
    } else {
      concat_freelist_ = concat_freelist_->left->concat();
    }
    SetConcatChildren(rep, left, right);

    return rep;
  }

  static void CheckNode(CordRep* node) {
    ABSL_INTERNAL_CHECK(node->length != 0u, "");
    if (node->tag == CONCAT) {
      ABSL_INTERNAL_CHECK(node->concat()->left != nullptr, "");
      ABSL_INTERNAL_CHECK(node->concat()->right != nullptr, "");
      ABSL_INTERNAL_CHECK(node->length == (node->concat()->left->length +
                                           node->concat()->right->length),
                          "");
    }
  }

  size_t root_length_;

  // use an inlined vector instead of a flat array to get bounds checking
  absl::InlinedVector<CordRep*, kInlinedVectorSize> trees_;

  // List of concat nodes we can re-use for Cord balancing.
  CordRepConcat* concat_freelist_ = nullptr;
};

static CordRep* Rebalance(CordRep* node) {
  VerifyTree(node);
  assert(node->tag == CONCAT);

  if (node->length == 0) {
    return nullptr;
  }

  CordForest forest(node->length);
  forest.Build(node);
  return forest.ConcatNodes();
}

// --------------------------------------------------------------------
// Comparators

namespace {

int ClampResult(int memcmp_res) {
  return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
}

int CompareChunks(absl::string_view* lhs, absl::string_view* rhs,
                  size_t* size_to_compare) {
  size_t compared_size = std::min(lhs->size(), rhs->size());
  assert(*size_to_compare >= compared_size);
  *size_to_compare -= compared_size;

  int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
  if (memcmp_res != 0) return memcmp_res;

  lhs->remove_prefix(compared_size);
  rhs->remove_prefix(compared_size);

  return 0;
}

// This overload set computes comparison results from memcmp result. This
// interface is used inside GenericCompare below. Differet implementations
// are specialized for int and bool. For int we clamp result to {-1, 0, 1}
// set. For bool we just interested in "value == 0".
template <typename ResultType>
ResultType ComputeCompareResult(int memcmp_res) {
  return ClampResult(memcmp_res);
}
template <>
bool ComputeCompareResult<bool>(int memcmp_res) {
  return memcmp_res == 0;
}

}  // namespace

// Helper routine. Locates the first flat chunk of the Cord without
// initializing the iterator.
inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
  size_t n = data_[kMaxInline];
  if (n <= kMaxInline) {
    return absl::string_view(data_, n);
  }

  CordRep* node = tree();
  if (node->tag >= FLAT) {
    return absl::string_view(node->data, node->length);
  }

  if (node->tag == EXTERNAL) {
    return absl::string_view(node->external()->base, node->length);
  }

  // Walk down the left branches until we hit a non-CONCAT node.
  while (node->tag == CONCAT) {
    node = node->concat()->left;
  }

  // Get the child node if we encounter a SUBSTRING.
  size_t offset = 0;
  size_t length = node->length;
  assert(length != 0);

  if (node->tag == SUBSTRING) {
    offset = node->substring()->start;
    node = node->substring()->child;
  }

  if (node->tag >= FLAT) {
    return absl::string_view(node->data + offset, length);
  }

  assert((node->tag == EXTERNAL) && "Expect FLAT or EXTERNAL node here");

  return absl::string_view(node->external()->base + offset, length);
}

inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
                                 size_t size_to_compare) const {
  auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
    if (!chunk->empty()) return true;
    ++*it;
    if (it->bytes_remaining_ == 0) return false;
    *chunk = **it;
    return true;
  };

  Cord::ChunkIterator lhs_it = chunk_begin();

  // compared_size is inside first chunk.
  absl::string_view lhs_chunk =
      (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
  assert(compared_size <= lhs_chunk.size());
  assert(compared_size <= rhs.size());
  lhs_chunk.remove_prefix(compared_size);
  rhs.remove_prefix(compared_size);
  size_to_compare -= compared_size;  // skip already compared size.

  while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
    int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
    if (comparison_result != 0) return comparison_result;
    if (size_to_compare == 0) return 0;
  }

  return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
}

inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
                                 size_t size_to_compare) const {
  auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
    if (!chunk->empty()) return true;
    ++*it;
    if (it->bytes_remaining_ == 0) return false;
    *chunk = **it;
    return true;
  };

  Cord::ChunkIterator lhs_it = chunk_begin();
  Cord::ChunkIterator rhs_it = rhs.chunk_begin();

  // compared_size is inside both first chunks.
  absl::string_view lhs_chunk =
      (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
  absl::string_view rhs_chunk =
      (rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
  assert(compared_size <= lhs_chunk.size());
  assert(compared_size <= rhs_chunk.size());
  lhs_chunk.remove_prefix(compared_size);
  rhs_chunk.remove_prefix(compared_size);
  size_to_compare -= compared_size;  // skip already compared size.

  while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
    int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
    if (memcmp_res != 0) return memcmp_res;
    if (size_to_compare == 0) return 0;
  }

  return static_cast<int>(rhs_chunk.empty()) -
         static_cast<int>(lhs_chunk.empty());
}

inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
  return c.contents_.FindFlatStartPiece();
}
inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
  return sv;
}

// Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
// that 'size_to_compare' is greater that size of smallest of first chunks.
template <typename ResultType, typename RHS>
ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
                          size_t size_to_compare) {
  absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
  absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);

  size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
  assert(size_to_compare >= compared_size);
  int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
  if (compared_size == size_to_compare || memcmp_res != 0) {
    return ComputeCompareResult<ResultType>(memcmp_res);
  }

  return ComputeCompareResult<ResultType>(
      lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
}

bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
  return GenericCompare<bool>(*this, rhs, size_to_compare);
}

bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
  return GenericCompare<bool>(*this, rhs, size_to_compare);
}

template <typename RHS>
inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
  size_t lhs_size = lhs.size();
  size_t rhs_size = rhs.size();
  if (lhs_size == rhs_size) {
    return GenericCompare<int>(lhs, rhs, lhs_size);
  }
  if (lhs_size < rhs_size) {
    auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
    return data_comp_res == 0 ? -1 : data_comp_res;
  }

  auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
  return data_comp_res == 0 ? +1 : data_comp_res;
}

int Cord::Compare(absl::string_view rhs) const {
  return SharedCompareImpl(*this, rhs);
}

int Cord::CompareImpl(const Cord& rhs) const {
  return SharedCompareImpl(*this, rhs);
}

bool Cord::EndsWith(absl::string_view rhs) const {
  size_t my_size = size();
  size_t rhs_size = rhs.size();

  if (my_size < rhs_size) return false;

  Cord tmp(*this);
  tmp.RemovePrefix(my_size - rhs_size);
  return tmp.EqualsImpl(rhs, rhs_size);
}

bool Cord::EndsWith(const Cord& rhs) const {
  size_t my_size = size();
  size_t rhs_size = rhs.size();

  if (my_size < rhs_size) return false;

  Cord tmp(*this);
  tmp.RemovePrefix(my_size - rhs_size);
  return tmp.EqualsImpl(rhs, rhs_size);
}

// --------------------------------------------------------------------
// Misc.

Cord::operator std::string() const {
  std::string s;
  absl::CopyCordToString(*this, &s);
  return s;
}

void CopyCordToString(const Cord& src, std::string* dst) {
  if (!src.contents_.is_tree()) {
    src.contents_.CopyTo(dst);
  } else {
    absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
    src.CopyToArraySlowPath(&(*dst)[0]);
  }
}

void Cord::CopyToArraySlowPath(char* dst) const {
  assert(contents_.is_tree());
  absl::string_view fragment;
  if (GetFlatAux(contents_.tree(), &fragment)) {
    memcpy(dst, fragment.data(), fragment.size());
    return;
  }
  for (absl::string_view chunk : Chunks()) {
    memcpy(dst, chunk.data(), chunk.size());
    dst += chunk.size();
  }
}

Cord::ChunkIterator& Cord::ChunkIterator::operator++() {
  assert(bytes_remaining_ > 0 && "Attempted to iterate past `end()`");
  assert(bytes_remaining_ >= current_chunk_.size());
  bytes_remaining_ -= current_chunk_.size();

  if (stack_of_right_children_.empty()) {
    assert(!current_chunk_.empty());  // Called on invalid iterator.
    // We have reached the end of the Cord.
    return *this;
  }

  // Process the next node on the stack.
  CordRep* node = stack_of_right_children_.back();
  stack_of_right_children_.pop_back();

  // Walk down the left branches until we hit a non-CONCAT node. Save the
  // right children to the stack for subsequent traversal.
  while (node->tag == CONCAT) {
    stack_of_right_children_.push_back(node->concat()->right);
    node = node->concat()->left;
  }

  // Get the child node if we encounter a SUBSTRING.
  size_t offset = 0;
  size_t length = node->length;
  if (node->tag == SUBSTRING) {
    offset = node->substring()->start;
    node = node->substring()->child;
  }

  assert(node->tag == EXTERNAL || node->tag >= FLAT);
  assert(length != 0);
  const char* data =
      node->tag == EXTERNAL ? node->external()->base : node->data;
  current_chunk_ = absl::string_view(data + offset, length);
  current_leaf_ = node;
  return *this;
}

Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
  assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
  Cord subcord;

  if (n <= InlineRep::kMaxInline) {
    // Range to read fits in inline data. Flatten it.
    char* data = subcord.contents_.set_data(n);
    while (n > current_chunk_.size()) {
      memcpy(data, current_chunk_.data(), current_chunk_.size());
      data += current_chunk_.size();
      n -= current_chunk_.size();
      ++*this;
    }
    memcpy(data, current_chunk_.data(), n);
    if (n < current_chunk_.size()) {
      RemoveChunkPrefix(n);
    } else if (n > 0) {
      ++*this;
    }
    return subcord;
  }
  if (n < current_chunk_.size()) {
    // Range to read is a proper subrange of the current chunk.
    assert(current_leaf_ != nullptr);
    CordRep* subnode = Ref(current_leaf_);
    const char* data =
        subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data;
    subnode = NewSubstring(subnode, current_chunk_.data() - data, n);
    subcord.contents_.set_tree(VerifyTree(subnode));
    RemoveChunkPrefix(n);
    return subcord;
  }

  // Range to read begins with a proper subrange of the current chunk.
  assert(!current_chunk_.empty());
  assert(current_leaf_ != nullptr);
  CordRep* subnode = Ref(current_leaf_);
  if (current_chunk_.size() < subnode->length) {
    const char* data =
        subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data;
    subnode = NewSubstring(subnode, current_chunk_.data() - data,
                           current_chunk_.size());
  }
  n -= current_chunk_.size();
  bytes_remaining_ -= current_chunk_.size();

  // Process the next node(s) on the stack, reading whole subtrees depending on
  // their length and how many bytes we are advancing.
  CordRep* node = nullptr;
  while (!stack_of_right_children_.empty()) {
    node = stack_of_right_children_.back();
    stack_of_right_children_.pop_back();
    if (node->length > n) break;
    // TODO(qrczak): This might unnecessarily recreate existing concat nodes.
    // Avoiding that would need pretty complicated logic (instead of
    // current_leaf_, keep current_subtree_ which points to the highest node
    // such that the current leaf can be found on the path of left children
    // starting from current_subtree_; delay creating subnode while node is
    // below current_subtree_; find the proper node along the path of left
    // children starting from current_subtree_ if this loop exits while staying
    // below current_subtree_; etc.; alternatively, push parents instead of
    // right children on the stack).
    subnode = Concat(subnode, Ref(node));
    n -= node->length;
    bytes_remaining_ -= node->length;
    node = nullptr;
  }

  if (node == nullptr) {
    // We have reached the end of the Cord.
    assert(bytes_remaining_ == 0);
    subcord.contents_.set_tree(VerifyTree(subnode));
    return subcord;
  }

  // Walk down the appropriate branches until we hit a non-CONCAT node. Save the
  // right children to the stack for subsequent traversal.
  while (node->tag == CONCAT) {
    if (node->concat()->left->length > n) {
      // Push right, descend left.
      stack_of_right_children_.push_back(node->concat()->right);
      node = node->concat()->left;
    } else {
      // Read left, descend right.
      subnode = Concat(subnode, Ref(node->concat()->left));
      n -= node->concat()->left->length;
      bytes_remaining_ -= node->concat()->left->length;
      node = node->concat()->right;
    }
  }

  // Get the child node if we encounter a SUBSTRING.
  size_t offset = 0;
  size_t length = node->length;
  if (node->tag == SUBSTRING) {
    offset = node->substring()->start;
    node = node->substring()->child;
  }

  // Range to read ends with a proper (possibly empty) subrange of the current
  // chunk.
  assert(node->tag == EXTERNAL || node->tag >= FLAT);
  assert(length > n);
  if (n > 0) subnode = Concat(subnode, NewSubstring(Ref(node), offset, n));
  const char* data =
      node->tag == EXTERNAL ? node->external()->base : node->data;
  current_chunk_ = absl::string_view(data + offset + n, length - n);
  current_leaf_ = node;
  bytes_remaining_ -= n;
  subcord.contents_.set_tree(VerifyTree(subnode));
  return subcord;
}

void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) {
  assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
  assert(n >= current_chunk_.size());  // This should only be called when
                                       // iterating to a new node.

  n -= current_chunk_.size();
  bytes_remaining_ -= current_chunk_.size();

  // Process the next node(s) on the stack, skipping whole subtrees depending on
  // their length and how many bytes we are advancing.
  CordRep* node = nullptr;
  while (!stack_of_right_children_.empty()) {
    node = stack_of_right_children_.back();
    stack_of_right_children_.pop_back();
    if (node->length > n) break;
    n -= node->length;
    bytes_remaining_ -= node->length;
    node = nullptr;
  }

  if (node == nullptr) {
    // We have reached the end of the Cord.
    assert(bytes_remaining_ == 0);
    return;
  }

  // Walk down the appropriate branches until we hit a non-CONCAT node. Save the
  // right children to the stack for subsequent traversal.
  while (node->tag == CONCAT) {
    if (node->concat()->left->length > n) {
      // Push right, descend left.
      stack_of_right_children_.push_back(node->concat()->right);
      node = node->concat()->left;
    } else {
      // Skip left, descend right.
      n -= node->concat()->left->length;
      bytes_remaining_ -= node->concat()->left->length;
      node = node->concat()->right;
    }
  }

  // Get the child node if we encounter a SUBSTRING.
  size_t offset = 0;
  size_t length = node->length;
  if (node->tag == SUBSTRING) {
    offset = node->substring()->start;
    node = node->substring()->child;
  }

  assert(node->tag == EXTERNAL || node->tag >= FLAT);
  assert(length > n);
  const char* data =
      node->tag == EXTERNAL ? node->external()->base : node->data;
  current_chunk_ = absl::string_view(data + offset + n, length - n);
  current_leaf_ = node;
  bytes_remaining_ -= n;
}

char Cord::operator[](size_t i) const {
  assert(i < size());
  size_t offset = i;
  const CordRep* rep = contents_.tree();
  if (rep == nullptr) {
    return contents_.data()[i];
  }
  while (true) {
    assert(rep != nullptr);
    assert(offset < rep->length);
    if (rep->tag >= FLAT) {
      // Get the "i"th character directly from the flat array.
      return rep->data[offset];
    } else if (rep->tag == EXTERNAL) {
      // Get the "i"th character from the external array.
      return rep->external()->base[offset];
    } else if (rep->tag == CONCAT) {
      // Recursively branch to the side of the concatenation that the "i"th
      // character is on.
      size_t left_length = rep->concat()->left->length;
      if (offset < left_length) {
        rep = rep->concat()->left;
      } else {
        offset -= left_length;
        rep = rep->concat()->right;
      }
    } else {
      // This must be a substring a node, so bypass it to get to the child.
      assert(rep->tag == SUBSTRING);
      offset += rep->substring()->start;
      rep = rep->substring()->child;
    }
  }
}

absl::string_view Cord::FlattenSlowPath() {
  size_t total_size = size();
  CordRep* new_rep;
  char* new_buffer;

  // Try to put the contents into a new flat rep. If they won't fit in the
  // biggest possible flat node, use an external rep instead.
  if (total_size <= kMaxFlatLength) {
    new_rep = NewFlat(total_size);
    new_rep->length = total_size;
    new_buffer = new_rep->data;
    CopyToArraySlowPath(new_buffer);
  } else {
    new_buffer = std::allocator<char>().allocate(total_size);
    CopyToArraySlowPath(new_buffer);
    new_rep = absl::cord_internal::NewExternalRep(
        absl::string_view(new_buffer, total_size), [](absl::string_view s) {
          std::allocator<char>().deallocate(const_cast<char*>(s.data()),
                                            s.size());
        });
  }
  Unref(contents_.tree());
  contents_.set_tree(new_rep);
  return absl::string_view(new_buffer, total_size);
}

/* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
  assert(rep != nullptr);
  if (rep->tag >= FLAT) {
    *fragment = absl::string_view(rep->data, rep->length);
    return true;
  } else if (rep->tag == EXTERNAL) {
    *fragment = absl::string_view(rep->external()->base, rep->length);
    return true;
  } else if (rep->tag == SUBSTRING) {
    CordRep* child = rep->substring()->child;
    if (child->tag >= FLAT) {
      *fragment =
          absl::string_view(child->data + rep->substring()->start, rep->length);
      return true;
    } else if (child->tag == EXTERNAL) {
      *fragment = absl::string_view(
          child->external()->base + rep->substring()->start, rep->length);
      return true;
    }
  }
  return false;
}

/* static */ void Cord::ForEachChunkAux(
    absl::cord_internal::CordRep* rep,
    absl::FunctionRef<void(absl::string_view)> callback) {
  assert(rep != nullptr);
  int stack_pos = 0;
  constexpr int stack_max = 128;
  // Stack of right branches for tree traversal
  absl::cord_internal::CordRep* stack[stack_max];
  absl::cord_internal::CordRep* current_node = rep;
  while (true) {
    if (current_node->tag == CONCAT) {
      if (stack_pos == stack_max) {
        // There's no more room on our stack array to add another right branch,
        // and the idea is to avoid allocations, so call this function
        // recursively to navigate this subtree further.  (This is not something
        // we expect to happen in practice).
        ForEachChunkAux(current_node, callback);

        // Pop the next right branch and iterate.
        current_node = stack[--stack_pos];
        continue;
      } else {
        // Save the right branch for later traversal and continue down the left
        // branch.
        stack[stack_pos++] = current_node->concat()->right;
        current_node = current_node->concat()->left;
        continue;
      }
    }
    // This is a leaf node, so invoke our callback.
    absl::string_view chunk;
    bool success = GetFlatAux(current_node, &chunk);
    assert(success);
    if (success) {
      callback(chunk);
    }
    if (stack_pos == 0) {
      // end of traversal
      return;
    }
    current_node = stack[--stack_pos];
  }
}

static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
  const int kIndentStep = 1;
  int indent = 0;
  absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
  absl::InlinedVector<int, kInlinedVectorSize> indents;
  for (;;) {
    *os << std::setw(3) << rep->refcount.Get();
    *os << " " << std::setw(7) << rep->length;
    *os << " [";
    if (include_data) *os << static_cast<void*>(rep);
    *os << "]";
    *os << " " << (IsRootBalanced(rep) ? 'b' : 'u');
    *os << " " << std::setw(indent) << "";
    if (rep->tag == CONCAT) {
      *os << "CONCAT depth=" << Depth(rep) << "\n";
      indent += kIndentStep;
      indents.push_back(indent);
      stack.push_back(rep->concat()->right);
      rep = rep->concat()->left;
    } else if (rep->tag == SUBSTRING) {
      *os << "SUBSTRING @ " << rep->substring()->start << "\n";
      indent += kIndentStep;
      rep = rep->substring()->child;
    } else {  // Leaf
      if (rep->tag == EXTERNAL) {
        *os << "EXTERNAL [";
        if (include_data)
          *os << absl::CEscape(std::string(rep->external()->base, rep->length));
        *os << "]\n";
      } else {
        *os << "FLAT cap=" << TagToLength(rep->tag) << " [";
        if (include_data)
          *os << absl::CEscape(std::string(rep->data, rep->length));
        *os << "]\n";
      }
      if (stack.empty()) break;
      rep = stack.back();
      stack.pop_back();
      indent = indents.back();
      indents.pop_back();
    }
  }
  ABSL_INTERNAL_CHECK(indents.empty(), "");
}

static std::string ReportError(CordRep* root, CordRep* node) {
  std::ostringstream buf;
  buf << "Error at node " << node << " in:";
  DumpNode(root, true, &buf);
  return buf.str();
}

static bool VerifyNode(CordRep* root, CordRep* start_node,
                       bool full_validation) {
  absl::InlinedVector<CordRep*, 2> worklist;
  worklist.push_back(start_node);
  do {
    CordRep* node = worklist.back();
    worklist.pop_back();

    ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
    if (node != root) {
      ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
    }

    if (node->tag == CONCAT) {
      ABSL_INTERNAL_CHECK(node->concat()->left != nullptr,
                          ReportError(root, node));
      ABSL_INTERNAL_CHECK(node->concat()->right != nullptr,
                          ReportError(root, node));
      ABSL_INTERNAL_CHECK((node->length == node->concat()->left->length +
                                               node->concat()->right->length),
                          ReportError(root, node));
      if (full_validation) {
        worklist.push_back(node->concat()->right);
        worklist.push_back(node->concat()->left);
      }
    } else if (node->tag >= FLAT) {
      ABSL_INTERNAL_CHECK(node->length <= TagToLength(node->tag),
                          ReportError(root, node));
    } else if (node->tag == EXTERNAL) {
      ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
                          ReportError(root, node));
    } else if (node->tag == SUBSTRING) {
      ABSL_INTERNAL_CHECK(
          node->substring()->start < node->substring()->child->length,
          ReportError(root, node));
      ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
                              node->substring()->child->length,
                          ReportError(root, node));
    }
  } while (!worklist.empty());
  return true;
}

// Traverses the tree and computes the total memory allocated.
/* static */ size_t Cord::MemoryUsageAux(const CordRep* rep) {
  size_t total_mem_usage = 0;

  // Allow a quick exit for the common case that the root is a leaf.
  if (RepMemoryUsageLeaf(rep, &total_mem_usage)) {
    return total_mem_usage;
  }

  // Iterate over the tree. cur_node is never a leaf node and leaf nodes will
  // never be appended to tree_stack. This reduces overhead from manipulating
  // tree_stack.
  absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack;
  const CordRep* cur_node = rep;
  while (true) {
    const CordRep* next_node = nullptr;

    if (cur_node->tag == CONCAT) {
      total_mem_usage += sizeof(CordRepConcat);
      const CordRep* left = cur_node->concat()->left;
      if (!RepMemoryUsageLeaf(left, &total_mem_usage)) {
        next_node = left;
      }

      const CordRep* right = cur_node->concat()->right;
      if (!RepMemoryUsageLeaf(right, &total_mem_usage)) {
        if (next_node) {
          tree_stack.push_back(next_node);
        }
        next_node = right;
      }
    } else {
      // Since cur_node is not a leaf or a concat node it must be a substring.
      assert(cur_node->tag == SUBSTRING);
      total_mem_usage += sizeof(CordRepSubstring);
      next_node = cur_node->substring()->child;
      if (RepMemoryUsageLeaf(next_node, &total_mem_usage)) {
        next_node = nullptr;
      }
    }

    if (!next_node) {
      if (tree_stack.empty()) {
        return total_mem_usage;
      }
      next_node = tree_stack.back();
      tree_stack.pop_back();
    }
    cur_node = next_node;
  }
}

std::ostream& operator<<(std::ostream& out, const Cord& cord) {
  for (absl::string_view chunk : cord.Chunks()) {
    out.write(chunk.data(), chunk.size());
  }
  return out;
}

namespace strings_internal {
size_t CordTestAccess::FlatOverhead() { return kFlatOverhead; }
size_t CordTestAccess::MaxFlatLength() { return kMaxFlatLength; }
size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
  return TagToLength(tag);
}
uint8_t CordTestAccess::LengthToTag(size_t s) {
  ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
  return AllocatedSizeToTag(s + kFlatOverhead);
}
size_t CordTestAccess::SizeofCordRepConcat() { return sizeof(CordRepConcat); }
size_t CordTestAccess::SizeofCordRepExternal() {
  return sizeof(CordRepExternal);
}
size_t CordTestAccess::SizeofCordRepSubstring() {
  return sizeof(CordRepSubstring);
}
}  // namespace strings_internal
ABSL_NAMESPACE_END
}  // namespace absl