summaryrefslogtreecommitdiff
path: root/absl/strings/cord.cc
blob: 08a165e1a0e25cab9c24b1b3a4b5bd76bae95470 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/strings/cord.h"

#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <memory>
#include <ostream>
#include <sstream>
#include <string>
#include <utility>

#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/container/inlined_vector.h"
#include "absl/crc/crc32c.h"
#include "absl/crc/internal/crc_cord_state.h"
#include "absl/functional/function_ref.h"
#include "absl/strings/cord_buffer.h"
#include "absl/strings/escaping.h"
#include "absl/strings/internal/cord_data_edge.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_crc.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/strings/internal/cordz_update_tracker.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/strings/strip.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"

namespace absl {
ABSL_NAMESPACE_BEGIN

using ::absl::cord_internal::CordRep;
using ::absl::cord_internal::CordRepBtree;
using ::absl::cord_internal::CordRepCrc;
using ::absl::cord_internal::CordRepExternal;
using ::absl::cord_internal::CordRepFlat;
using ::absl::cord_internal::CordRepSubstring;
using ::absl::cord_internal::CordzUpdateTracker;
using ::absl::cord_internal::InlineData;
using ::absl::cord_internal::kMaxFlatLength;
using ::absl::cord_internal::kMinFlatLength;

using ::absl::cord_internal::kInlinedVectorSize;
using ::absl::cord_internal::kMaxBytesToCopy;

static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
                     int indent = 0);
static bool VerifyNode(CordRep* root, CordRep* start_node);

static inline CordRep* VerifyTree(CordRep* node) {
  assert(node == nullptr || VerifyNode(node, node));
  static_cast<void>(&VerifyNode);
  return node;
}

static CordRepFlat* CreateFlat(const char* data, size_t length,
                               size_t alloc_hint) {
  CordRepFlat* flat = CordRepFlat::New(length + alloc_hint);
  flat->length = length;
  memcpy(flat->Data(), data, length);
  return flat;
}

// Creates a new flat or Btree out of the specified array.
// The returned node has a refcount of 1.
static CordRep* NewBtree(const char* data, size_t length, size_t alloc_hint) {
  if (length <= kMaxFlatLength) {
    return CreateFlat(data, length, alloc_hint);
  }
  CordRepFlat* flat = CreateFlat(data, kMaxFlatLength, 0);
  data += kMaxFlatLength;
  length -= kMaxFlatLength;
  auto* root = CordRepBtree::Create(flat);
  return CordRepBtree::Append(root, {data, length}, alloc_hint);
}

// Create a new tree out of the specified array.
// The returned node has a refcount of 1.
static CordRep* NewTree(const char* data, size_t length, size_t alloc_hint) {
  if (length == 0) return nullptr;
  return NewBtree(data, length, alloc_hint);
}

namespace cord_internal {

void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep) {
  assert(!data.empty());
  rep->length = data.size();
  rep->tag = EXTERNAL;
  rep->base = data.data();
  VerifyTree(rep);
}

}  // namespace cord_internal

// Creates a CordRep from the provided string. If the string is large enough,
// and not wasteful, we move the string into an external cord rep, preserving
// the already allocated string contents.
// Requires the provided string length to be larger than `kMaxInline`.
static CordRep* CordRepFromString(std::string&& src) {
  assert(src.length() > cord_internal::kMaxInline);
  if (
      // String is short: copy data to avoid external block overhead.
      src.size() <= kMaxBytesToCopy ||
      // String is wasteful: copy data to avoid pinning too much unused memory.
      src.size() < src.capacity() / 2
  ) {
    return NewTree(src.data(), src.size(), 0);
  }

  struct StringReleaser {
    void operator()(absl::string_view /* data */) {}
    std::string data;
  };
  const absl::string_view original_data = src;
  auto* rep =
      static_cast<::absl::cord_internal::CordRepExternalImpl<StringReleaser>*>(
          absl::cord_internal::NewExternalRep(original_data,
                                              StringReleaser{std::move(src)}));
  // Moving src may have invalidated its data pointer, so adjust it.
  rep->base = rep->template get<0>().data.data();
  return rep;
}

// --------------------------------------------------------------------
// Cord::InlineRep functions

#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr unsigned char Cord::InlineRep::kMaxInline;
#endif

inline void Cord::InlineRep::set_data(const char* data, size_t n) {
  static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");
  data_.set_inline_data(data, n);
}

inline char* Cord::InlineRep::set_data(size_t n) {
  assert(n <= kMaxInline);
  ResetToEmpty();
  set_inline_size(n);
  return data_.as_chars();
}

inline void Cord::InlineRep::reduce_size(size_t n) {
  size_t tag = inline_size();
  assert(tag <= kMaxInline);
  assert(tag >= n);
  tag -= n;
  memset(data_.as_chars() + tag, 0, n);
  set_inline_size(tag);
}

inline void Cord::InlineRep::remove_prefix(size_t n) {
  cord_internal::SmallMemmove(data_.as_chars(), data_.as_chars() + n,
                              inline_size() - n);
  reduce_size(n);
}

// Returns `rep` converted into a CordRepBtree.
// Directly returns `rep` if `rep` is already a CordRepBtree.
static CordRepBtree* ForceBtree(CordRep* rep) {
  return rep->IsBtree()
             ? rep->btree()
             : CordRepBtree::Create(cord_internal::RemoveCrcNode(rep));
}

void Cord::InlineRep::AppendTreeToInlined(CordRep* tree,
                                          MethodIdentifier method) {
  assert(!is_tree());
  if (!data_.is_empty()) {
    CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
    tree = CordRepBtree::Append(CordRepBtree::Create(flat), tree);
  }
  EmplaceTree(tree, method);
}

void Cord::InlineRep::AppendTreeToTree(CordRep* tree, MethodIdentifier method) {
  assert(is_tree());
  const CordzUpdateScope scope(data_.cordz_info(), method);
  tree = CordRepBtree::Append(ForceBtree(data_.as_tree()), tree);
  SetTree(tree, scope);
}

void Cord::InlineRep::AppendTree(CordRep* tree, MethodIdentifier method) {
  assert(tree != nullptr);
  assert(tree->length != 0);
  assert(!tree->IsCrc());
  if (data_.is_tree()) {
    AppendTreeToTree(tree, method);
  } else {
    AppendTreeToInlined(tree, method);
  }
}

void Cord::InlineRep::PrependTreeToInlined(CordRep* tree,
                                           MethodIdentifier method) {
  assert(!is_tree());
  if (!data_.is_empty()) {
    CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
    tree = CordRepBtree::Prepend(CordRepBtree::Create(flat), tree);
  }
  EmplaceTree(tree, method);
}

void Cord::InlineRep::PrependTreeToTree(CordRep* tree,
                                        MethodIdentifier method) {
  assert(is_tree());
  const CordzUpdateScope scope(data_.cordz_info(), method);
  tree = CordRepBtree::Prepend(ForceBtree(data_.as_tree()), tree);
  SetTree(tree, scope);
}

void Cord::InlineRep::PrependTree(CordRep* tree, MethodIdentifier method) {
  assert(tree != nullptr);
  assert(tree->length != 0);
  assert(!tree->IsCrc());
  if (data_.is_tree()) {
    PrependTreeToTree(tree, method);
  } else {
    PrependTreeToInlined(tree, method);
  }
}

// Searches for a non-full flat node at the rightmost leaf of the tree. If a
// suitable leaf is found, the function will update the length field for all
// nodes to account for the size increase. The append region address will be
// written to region and the actual size increase will be written to size.
static inline bool PrepareAppendRegion(CordRep* root, char** region,
                                       size_t* size, size_t max_length) {
  if (root->IsBtree() && root->refcount.IsOne()) {
    Span<char> span = root->btree()->GetAppendBuffer(max_length);
    if (!span.empty()) {
      *region = span.data();
      *size = span.size();
      return true;
    }
  }

  CordRep* dst = root;
  if (!dst->IsFlat() || !dst->refcount.IsOne()) {
    *region = nullptr;
    *size = 0;
    return false;
  }

  const size_t in_use = dst->length;
  const size_t capacity = dst->flat()->Capacity();
  if (in_use == capacity) {
    *region = nullptr;
    *size = 0;
    return false;
  }

  const size_t size_increase = std::min(capacity - in_use, max_length);
  dst->length += size_increase;

  *region = dst->flat()->Data() + in_use;
  *size = size_increase;
  return true;
}

void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
  assert(&src != this);
  assert(is_tree() || src.is_tree());
  auto constexpr method = CordzUpdateTracker::kAssignCord;
  if (ABSL_PREDICT_TRUE(!is_tree())) {
    EmplaceTree(CordRep::Ref(src.as_tree()), src.data_, method);
    return;
  }

  CordRep* tree = as_tree();
  if (CordRep* src_tree = src.tree()) {
    // Leave any existing `cordz_info` in place, and let MaybeTrackCord()
    // decide if this cord should be (or remains to be) sampled or not.
    data_.set_tree(CordRep::Ref(src_tree));
    CordzInfo::MaybeTrackCord(data_, src.data_, method);
  } else {
    CordzInfo::MaybeUntrackCord(data_.cordz_info());
    data_ = src.data_;
  }
  CordRep::Unref(tree);
}

void Cord::InlineRep::UnrefTree() {
  if (is_tree()) {
    CordzInfo::MaybeUntrackCord(data_.cordz_info());
    CordRep::Unref(tree());
  }
}

// --------------------------------------------------------------------
// Constructors and destructors

Cord::Cord(absl::string_view src, MethodIdentifier method)
    : contents_(InlineData::kDefaultInit) {
  const size_t n = src.size();
  if (n <= InlineRep::kMaxInline) {
    contents_.set_data(src.data(), n);
  } else {
    CordRep* rep = NewTree(src.data(), n, 0);
    contents_.EmplaceTree(rep, method);
  }
}

template <typename T, Cord::EnableIfString<T>>
Cord::Cord(T&& src) : contents_(InlineData::kDefaultInit) {
  if (src.size() <= InlineRep::kMaxInline) {
    contents_.set_data(src.data(), src.size());
  } else {
    CordRep* rep = CordRepFromString(std::forward<T>(src));
    contents_.EmplaceTree(rep, CordzUpdateTracker::kConstructorString);
  }
}

template Cord::Cord(std::string&& src);

// The destruction code is separate so that the compiler can determine
// that it does not need to call the destructor on a moved-from Cord.
void Cord::DestroyCordSlow() {
  assert(contents_.is_tree());
  CordzInfo::MaybeUntrackCord(contents_.cordz_info());
  CordRep::Unref(VerifyTree(contents_.as_tree()));
}

// --------------------------------------------------------------------
// Mutators

void Cord::Clear() {
  if (CordRep* tree = contents_.clear()) {
    CordRep::Unref(tree);
  }
}

Cord& Cord::AssignLargeString(std::string&& src) {
  auto constexpr method = CordzUpdateTracker::kAssignString;
  assert(src.size() > kMaxBytesToCopy);
  CordRep* rep = CordRepFromString(std::move(src));
  if (CordRep* tree = contents_.tree()) {
    CordzUpdateScope scope(contents_.cordz_info(), method);
    contents_.SetTree(rep, scope);
    CordRep::Unref(tree);
  } else {
    contents_.EmplaceTree(rep, method);
  }
  return *this;
}

Cord& Cord::operator=(absl::string_view src) {
  auto constexpr method = CordzUpdateTracker::kAssignString;
  const char* data = src.data();
  size_t length = src.size();
  CordRep* tree = contents_.tree();
  if (length <= InlineRep::kMaxInline) {
    // Embed into this->contents_, which is somewhat subtle:
    // - MaybeUntrackCord must be called before Unref(tree).
    // - MaybeUntrackCord must be called before set_data() clobbers cordz_info.
    // - set_data() must be called before Unref(tree) as it may reference tree.
    if (tree != nullptr) CordzInfo::MaybeUntrackCord(contents_.cordz_info());
    contents_.set_data(data, length);
    if (tree != nullptr) CordRep::Unref(tree);
    return *this;
  }
  if (tree != nullptr) {
    CordzUpdateScope scope(contents_.cordz_info(), method);
    if (tree->IsFlat() && tree->flat()->Capacity() >= length &&
        tree->refcount.IsOne()) {
      // Copy in place if the existing FLAT node is reusable.
      memmove(tree->flat()->Data(), data, length);
      tree->length = length;
      VerifyTree(tree);
      return *this;
    }
    contents_.SetTree(NewTree(data, length, 0), scope);
    CordRep::Unref(tree);
  } else {
    contents_.EmplaceTree(NewTree(data, length, 0), method);
  }
  return *this;
}

// TODO(sanjay): Move to Cord::InlineRep section of file.  For now,
// we keep it here to make diffs easier.
void Cord::InlineRep::AppendArray(absl::string_view src,
                                  MethodIdentifier method) {
  MaybeRemoveEmptyCrcNode();
  if (src.empty()) return;  // memcpy(_, nullptr, 0) is undefined.

  size_t appended = 0;
  CordRep* rep = tree();
  const CordRep* const root = rep;
  CordzUpdateScope scope(root ? cordz_info() : nullptr, method);
  if (root != nullptr) {
    rep = cord_internal::RemoveCrcNode(rep);
    char* region;
    if (PrepareAppendRegion(rep, &region, &appended, src.size())) {
      memcpy(region, src.data(), appended);
    }
  } else {
    // Try to fit in the inline buffer if possible.
    size_t inline_length = inline_size();
    if (src.size() <= kMaxInline - inline_length) {
      // Append new data to embedded array
      set_inline_size(inline_length + src.size());
      memcpy(data_.as_chars() + inline_length, src.data(), src.size());
      return;
    }

    // Allocate flat to be a perfect fit on first append exceeding inlined size.
    // Subsequent growth will use amortized growth until we reach maximum flat
    // size.
    rep = CordRepFlat::New(inline_length + src.size());
    appended = std::min(src.size(), rep->flat()->Capacity() - inline_length);
    memcpy(rep->flat()->Data(), data_.as_chars(), inline_length);
    memcpy(rep->flat()->Data() + inline_length, src.data(), appended);
    rep->length = inline_length + appended;
  }

  src.remove_prefix(appended);
  if (src.empty()) {
    CommitTree(root, rep, scope, method);
    return;
  }

  // TODO(b/192061034): keep legacy 10% growth rate: consider other rates.
  rep = ForceBtree(rep);
  const size_t min_growth = std::max<size_t>(rep->length / 10, src.size());
  rep = CordRepBtree::Append(rep->btree(), src, min_growth - src.size());

  CommitTree(root, rep, scope, method);
}

inline CordRep* Cord::TakeRep() const& {
  return CordRep::Ref(contents_.tree());
}

inline CordRep* Cord::TakeRep() && {
  CordRep* rep = contents_.tree();
  contents_.clear();
  return rep;
}

template <typename C>
inline void Cord::AppendImpl(C&& src) {
  auto constexpr method = CordzUpdateTracker::kAppendCord;

  contents_.MaybeRemoveEmptyCrcNode();
  if (src.empty()) return;

  if (empty()) {
    // Since destination is empty, we can avoid allocating a node,
    if (src.contents_.is_tree()) {
      // by taking the tree directly
      CordRep* rep =
          cord_internal::RemoveCrcNode(std::forward<C>(src).TakeRep());
      contents_.EmplaceTree(rep, method);
    } else {
      // or copying over inline data
      contents_.data_ = src.contents_.data_;
    }
    return;
  }

  // For short cords, it is faster to copy data if there is room in dst.
  const size_t src_size = src.contents_.size();
  if (src_size <= kMaxBytesToCopy) {
    CordRep* src_tree = src.contents_.tree();
    if (src_tree == nullptr) {
      // src has embedded data.
      contents_.AppendArray({src.contents_.data(), src_size}, method);
      return;
    }
    if (src_tree->IsFlat()) {
      // src tree just has one flat node.
      contents_.AppendArray({src_tree->flat()->Data(), src_size}, method);
      return;
    }
    if (&src == this) {
      // ChunkIterator below assumes that src is not modified during traversal.
      Append(Cord(src));
      return;
    }
    // TODO(mec): Should we only do this if "dst" has space?
    for (absl::string_view chunk : src.Chunks()) {
      Append(chunk);
    }
    return;
  }

  // Guaranteed to be a tree (kMaxBytesToCopy > kInlinedSize)
  CordRep* rep = cord_internal::RemoveCrcNode(std::forward<C>(src).TakeRep());
  contents_.AppendTree(rep, CordzUpdateTracker::kAppendCord);
}

static CordRep::ExtractResult ExtractAppendBuffer(CordRep* rep,
                                                  size_t min_capacity) {
  switch (rep->tag) {
    case cord_internal::BTREE:
      return CordRepBtree::ExtractAppendBuffer(rep->btree(), min_capacity);
    default:
      if (rep->IsFlat() && rep->refcount.IsOne() &&
          rep->flat()->Capacity() - rep->length >= min_capacity) {
        return {nullptr, rep};
      }
      return {rep, nullptr};
  }
}

static CordBuffer CreateAppendBuffer(InlineData& data, size_t block_size,
                                     size_t capacity) {
  // Watch out for overflow, people can ask for size_t::max().
  const size_t size = data.inline_size();
  const size_t max_capacity = std::numeric_limits<size_t>::max() - size;
  capacity = (std::min)(max_capacity, capacity) + size;
  CordBuffer buffer =
      block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity)
                 : CordBuffer::CreateWithDefaultLimit(capacity);
  cord_internal::SmallMemmove(buffer.data(), data.as_chars(), size);
  buffer.SetLength(size);
  data = {};
  return buffer;
}

CordBuffer Cord::GetAppendBufferSlowPath(size_t block_size, size_t capacity,
                                         size_t min_capacity) {
  auto constexpr method = CordzUpdateTracker::kGetAppendBuffer;
  CordRep* tree = contents_.tree();
  if (tree != nullptr) {
    CordzUpdateScope scope(contents_.cordz_info(), method);
    CordRep::ExtractResult result = ExtractAppendBuffer(tree, min_capacity);
    if (result.extracted != nullptr) {
      contents_.SetTreeOrEmpty(result.tree, scope);
      return CordBuffer(result.extracted->flat());
    }
    return block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity)
                      : CordBuffer::CreateWithDefaultLimit(capacity);
  }
  return CreateAppendBuffer(contents_.data_, block_size, capacity);
}

void Cord::Append(const Cord& src) { AppendImpl(src); }

void Cord::Append(Cord&& src) { AppendImpl(std::move(src)); }

template <typename T, Cord::EnableIfString<T>>
void Cord::Append(T&& src) {
  if (src.size() <= kMaxBytesToCopy) {
    Append(absl::string_view(src));
  } else {
    CordRep* rep = CordRepFromString(std::forward<T>(src));
    contents_.AppendTree(rep, CordzUpdateTracker::kAppendString);
  }
}

template void Cord::Append(std::string&& src);

void Cord::Prepend(const Cord& src) {
  contents_.MaybeRemoveEmptyCrcNode();
  if (src.empty()) return;

  CordRep* src_tree = src.contents_.tree();
  if (src_tree != nullptr) {
    CordRep::Ref(src_tree);
    contents_.PrependTree(cord_internal::RemoveCrcNode(src_tree),
                          CordzUpdateTracker::kPrependCord);
    return;
  }

  // `src` cord is inlined.
  absl::string_view src_contents(src.contents_.data(), src.contents_.size());
  return Prepend(src_contents);
}

void Cord::PrependArray(absl::string_view src, MethodIdentifier method) {
  contents_.MaybeRemoveEmptyCrcNode();
  if (src.empty()) return;  // memcpy(_, nullptr, 0) is undefined.

  if (!contents_.is_tree()) {
    size_t cur_size = contents_.inline_size();
    if (cur_size + src.size() <= InlineRep::kMaxInline) {
      // Use embedded storage.
      InlineData data;
      data.set_inline_size(cur_size + src.size());
      memcpy(data.as_chars(), src.data(), src.size());
      memcpy(data.as_chars() + src.size(), contents_.data(), cur_size);
      contents_.data_ = data;
      return;
    }
  }
  CordRep* rep = NewTree(src.data(), src.size(), 0);
  contents_.PrependTree(rep, method);
}

void Cord::AppendPrecise(absl::string_view src, MethodIdentifier method) {
  assert(!src.empty());
  assert(src.size() <= cord_internal::kMaxFlatLength);
  if (contents_.remaining_inline_capacity() >= src.size()) {
    const size_t inline_length = contents_.inline_size();
    contents_.set_inline_size(inline_length + src.size());
    memcpy(contents_.data_.as_chars() + inline_length, src.data(), src.size());
  } else {
    contents_.AppendTree(CordRepFlat::Create(src), method);
  }
}

void Cord::PrependPrecise(absl::string_view src, MethodIdentifier method) {
  assert(!src.empty());
  assert(src.size() <= cord_internal::kMaxFlatLength);
  if (contents_.remaining_inline_capacity() >= src.size()) {
    const size_t cur_size = contents_.inline_size();
    InlineData data;
    data.set_inline_size(cur_size + src.size());
    memcpy(data.as_chars(), src.data(), src.size());
    memcpy(data.as_chars() + src.size(), contents_.data(), cur_size);
    contents_.data_ = data;
  } else {
    contents_.PrependTree(CordRepFlat::Create(src), method);
  }
}

template <typename T, Cord::EnableIfString<T>>
inline void Cord::Prepend(T&& src) {
  if (src.size() <= kMaxBytesToCopy) {
    Prepend(absl::string_view(src));
  } else {
    CordRep* rep = CordRepFromString(std::forward<T>(src));
    contents_.PrependTree(rep, CordzUpdateTracker::kPrependString);
  }
}

template void Cord::Prepend(std::string&& src);

void Cord::RemovePrefix(size_t n) {
  ABSL_INTERNAL_CHECK(n <= size(),
                      absl::StrCat("Requested prefix size ", n,
                                   " exceeds Cord's size ", size()));
  contents_.MaybeRemoveEmptyCrcNode();
  CordRep* tree = contents_.tree();
  if (tree == nullptr) {
    contents_.remove_prefix(n);
  } else {
    auto constexpr method = CordzUpdateTracker::kRemovePrefix;
    CordzUpdateScope scope(contents_.cordz_info(), method);
    tree = cord_internal::RemoveCrcNode(tree);
    if (n >= tree->length) {
      CordRep::Unref(tree);
      tree = nullptr;
    } else if (tree->IsBtree()) {
      CordRep* old = tree;
      tree = tree->btree()->SubTree(n, tree->length - n);
      CordRep::Unref(old);
    } else if (tree->IsSubstring() && tree->refcount.IsOne()) {
      tree->substring()->start += n;
      tree->length -= n;
    } else {
      CordRep* rep = CordRepSubstring::Substring(tree, n, tree->length - n);
      CordRep::Unref(tree);
      tree = rep;
    }
    contents_.SetTreeOrEmpty(tree, scope);
  }
}

void Cord::RemoveSuffix(size_t n) {
  ABSL_INTERNAL_CHECK(n <= size(),
                      absl::StrCat("Requested suffix size ", n,
                                   " exceeds Cord's size ", size()));
  contents_.MaybeRemoveEmptyCrcNode();
  CordRep* tree = contents_.tree();
  if (tree == nullptr) {
    contents_.reduce_size(n);
  } else {
    auto constexpr method = CordzUpdateTracker::kRemoveSuffix;
    CordzUpdateScope scope(contents_.cordz_info(), method);
    tree = cord_internal::RemoveCrcNode(tree);
    if (n >= tree->length) {
      CordRep::Unref(tree);
      tree = nullptr;
    } else if (tree->IsBtree()) {
      tree = CordRepBtree::RemoveSuffix(tree->btree(), n);
    } else if (!tree->IsExternal() && tree->refcount.IsOne()) {
      assert(tree->IsFlat() || tree->IsSubstring());
      tree->length -= n;
    } else {
      CordRep* rep = CordRepSubstring::Substring(tree, 0, tree->length - n);
      CordRep::Unref(tree);
      tree = rep;
    }
    contents_.SetTreeOrEmpty(tree, scope);
  }
}

Cord Cord::Subcord(size_t pos, size_t new_size) const {
  Cord sub_cord;
  size_t length = size();
  if (pos > length) pos = length;
  if (new_size > length - pos) new_size = length - pos;
  if (new_size == 0) return sub_cord;

  CordRep* tree = contents_.tree();
  if (tree == nullptr) {
    sub_cord.contents_.set_data(contents_.data() + pos, new_size);
    return sub_cord;
  }

  if (new_size <= InlineRep::kMaxInline) {
    sub_cord.contents_.set_inline_size(new_size);
    char* dest = sub_cord.contents_.data_.as_chars();
    Cord::ChunkIterator it = chunk_begin();
    it.AdvanceBytes(pos);
    size_t remaining_size = new_size;
    while (remaining_size > it->size()) {
      cord_internal::SmallMemmove(dest, it->data(), it->size());
      remaining_size -= it->size();
      dest += it->size();
      ++it;
    }
    cord_internal::SmallMemmove(dest, it->data(), remaining_size);
    return sub_cord;
  }

  tree = cord_internal::SkipCrcNode(tree);
  if (tree->IsBtree()) {
    tree = tree->btree()->SubTree(pos, new_size);
  } else {
    tree = CordRepSubstring::Substring(tree, pos, new_size);
  }
  sub_cord.contents_.EmplaceTree(tree, contents_.data_,
                                 CordzUpdateTracker::kSubCord);
  return sub_cord;
}

// --------------------------------------------------------------------
// Comparators

namespace {

int ClampResult(int memcmp_res) {
  return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
}

int CompareChunks(absl::string_view* lhs, absl::string_view* rhs,
                  size_t* size_to_compare) {
  size_t compared_size = std::min(lhs->size(), rhs->size());
  assert(*size_to_compare >= compared_size);
  *size_to_compare -= compared_size;

  int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
  if (memcmp_res != 0) return memcmp_res;

  lhs->remove_prefix(compared_size);
  rhs->remove_prefix(compared_size);

  return 0;
}

// This overload set computes comparison results from memcmp result. This
// interface is used inside GenericCompare below. Different implementations
// are specialized for int and bool. For int we clamp result to {-1, 0, 1}
// set. For bool we just interested in "value == 0".
template <typename ResultType>
ResultType ComputeCompareResult(int memcmp_res) {
  return ClampResult(memcmp_res);
}
template <>
bool ComputeCompareResult<bool>(int memcmp_res) {
  return memcmp_res == 0;
}

}  // namespace

// Helper routine. Locates the first flat or external chunk of the Cord without
// initializing the iterator, and returns a string_view referencing the data.
inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
  if (!is_tree()) {
    return absl::string_view(data_.as_chars(), data_.inline_size());
  }

  CordRep* node = cord_internal::SkipCrcNode(tree());
  if (node->IsFlat()) {
    return absl::string_view(node->flat()->Data(), node->length);
  }

  if (node->IsExternal()) {
    return absl::string_view(node->external()->base, node->length);
  }

  if (node->IsBtree()) {
    CordRepBtree* tree = node->btree();
    int height = tree->height();
    while (--height >= 0) {
      tree = tree->Edge(CordRepBtree::kFront)->btree();
    }
    return tree->Data(tree->begin());
  }

  // Get the child node if we encounter a SUBSTRING.
  size_t offset = 0;
  size_t length = node->length;
  assert(length != 0);

  if (node->IsSubstring()) {
    offset = node->substring()->start;
    node = node->substring()->child;
  }

  if (node->IsFlat()) {
    return absl::string_view(node->flat()->Data() + offset, length);
  }

  assert(node->IsExternal() && "Expect FLAT or EXTERNAL node here");

  return absl::string_view(node->external()->base + offset, length);
}

void Cord::SetCrcCordState(crc_internal::CrcCordState state) {
  auto constexpr method = CordzUpdateTracker::kSetExpectedChecksum;
  if (empty()) {
    contents_.MaybeRemoveEmptyCrcNode();
    CordRep* rep = CordRepCrc::New(nullptr, std::move(state));
    contents_.EmplaceTree(rep, method);
  } else if (!contents_.is_tree()) {
    CordRep* rep = contents_.MakeFlatWithExtraCapacity(0);
    rep = CordRepCrc::New(rep, std::move(state));
    contents_.EmplaceTree(rep, method);
  } else {
    const CordzUpdateScope scope(contents_.data_.cordz_info(), method);
    CordRep* rep = CordRepCrc::New(contents_.data_.as_tree(), std::move(state));
    contents_.SetTree(rep, scope);
  }
}

void Cord::SetExpectedChecksum(uint32_t crc) {
  // Construct a CrcCordState with a single chunk.
  crc_internal::CrcCordState state;
  state.mutable_rep()->prefix_crc.push_back(
      crc_internal::CrcCordState::PrefixCrc(size(), absl::crc32c_t{crc}));
  SetCrcCordState(std::move(state));
}

const crc_internal::CrcCordState* Cord::MaybeGetCrcCordState() const {
  if (!contents_.is_tree() || !contents_.tree()->IsCrc()) {
    return nullptr;
  }
  return &contents_.tree()->crc()->crc_cord_state;
}

absl::optional<uint32_t> Cord::ExpectedChecksum() const {
  if (!contents_.is_tree() || !contents_.tree()->IsCrc()) {
    return absl::nullopt;
  }
  return static_cast<uint32_t>(
      contents_.tree()->crc()->crc_cord_state.Checksum());
}

inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
                                 size_t size_to_compare) const {
  auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
    if (!chunk->empty()) return true;
    ++*it;
    if (it->bytes_remaining_ == 0) return false;
    *chunk = **it;
    return true;
  };

  Cord::ChunkIterator lhs_it = chunk_begin();

  // compared_size is inside first chunk.
  absl::string_view lhs_chunk =
      (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
  assert(compared_size <= lhs_chunk.size());
  assert(compared_size <= rhs.size());
  lhs_chunk.remove_prefix(compared_size);
  rhs.remove_prefix(compared_size);
  size_to_compare -= compared_size;  // skip already compared size.

  while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
    int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
    if (comparison_result != 0) return comparison_result;
    if (size_to_compare == 0) return 0;
  }

  return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
}

inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
                                 size_t size_to_compare) const {
  auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
    if (!chunk->empty()) return true;
    ++*it;
    if (it->bytes_remaining_ == 0) return false;
    *chunk = **it;
    return true;
  };

  Cord::ChunkIterator lhs_it = chunk_begin();
  Cord::ChunkIterator rhs_it = rhs.chunk_begin();

  // compared_size is inside both first chunks.
  absl::string_view lhs_chunk =
      (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
  absl::string_view rhs_chunk =
      (rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
  assert(compared_size <= lhs_chunk.size());
  assert(compared_size <= rhs_chunk.size());
  lhs_chunk.remove_prefix(compared_size);
  rhs_chunk.remove_prefix(compared_size);
  size_to_compare -= compared_size;  // skip already compared size.

  while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
    int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
    if (memcmp_res != 0) return memcmp_res;
    if (size_to_compare == 0) return 0;
  }

  return static_cast<int>(rhs_chunk.empty()) -
         static_cast<int>(lhs_chunk.empty());
}

inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
  if (c.empty()) return {};
  return c.contents_.FindFlatStartPiece();
}
inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
  return sv;
}

// Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
// that 'size_to_compare' is greater that size of smallest of first chunks.
template <typename ResultType, typename RHS>
ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
                          size_t size_to_compare) {
  absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
  absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);

  size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
  assert(size_to_compare >= compared_size);
  int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
  if (compared_size == size_to_compare || memcmp_res != 0) {
    return ComputeCompareResult<ResultType>(memcmp_res);
  }

  return ComputeCompareResult<ResultType>(
      lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
}

bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
  return GenericCompare<bool>(*this, rhs, size_to_compare);
}

bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
  return GenericCompare<bool>(*this, rhs, size_to_compare);
}

template <typename RHS>
inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
  size_t lhs_size = lhs.size();
  size_t rhs_size = rhs.size();
  if (lhs_size == rhs_size) {
    return GenericCompare<int>(lhs, rhs, lhs_size);
  }
  if (lhs_size < rhs_size) {
    auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
    return data_comp_res == 0 ? -1 : data_comp_res;
  }

  auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
  return data_comp_res == 0 ? +1 : data_comp_res;
}

int Cord::Compare(absl::string_view rhs) const {
  return SharedCompareImpl(*this, rhs);
}

int Cord::CompareImpl(const Cord& rhs) const {
  return SharedCompareImpl(*this, rhs);
}

bool Cord::EndsWith(absl::string_view rhs) const {
  size_t my_size = size();
  size_t rhs_size = rhs.size();

  if (my_size < rhs_size) return false;

  Cord tmp(*this);
  tmp.RemovePrefix(my_size - rhs_size);
  return tmp.EqualsImpl(rhs, rhs_size);
}

bool Cord::EndsWith(const Cord& rhs) const {
  size_t my_size = size();
  size_t rhs_size = rhs.size();

  if (my_size < rhs_size) return false;

  Cord tmp(*this);
  tmp.RemovePrefix(my_size - rhs_size);
  return tmp.EqualsImpl(rhs, rhs_size);
}

// --------------------------------------------------------------------
// Misc.

Cord::operator std::string() const {
  std::string s;
  absl::CopyCordToString(*this, &s);
  return s;
}

void CopyCordToString(const Cord& src, std::string* dst) {
  if (!src.contents_.is_tree()) {
    src.contents_.CopyTo(dst);
  } else {
    absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
    src.CopyToArraySlowPath(&(*dst)[0]);
  }
}

void Cord::CopyToArraySlowPath(char* dst) const {
  assert(contents_.is_tree());
  absl::string_view fragment;
  if (GetFlatAux(contents_.tree(), &fragment)) {
    memcpy(dst, fragment.data(), fragment.size());
    return;
  }
  for (absl::string_view chunk : Chunks()) {
    memcpy(dst, chunk.data(), chunk.size());
    dst += chunk.size();
  }
}

Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
  ABSL_HARDENING_ASSERT(bytes_remaining_ >= n &&
                        "Attempted to iterate past `end()`");
  Cord subcord;
  auto constexpr method = CordzUpdateTracker::kCordReader;

  if (n <= InlineRep::kMaxInline) {
    // Range to read fits in inline data. Flatten it.
    char* data = subcord.contents_.set_data(n);
    while (n > current_chunk_.size()) {
      memcpy(data, current_chunk_.data(), current_chunk_.size());
      data += current_chunk_.size();
      n -= current_chunk_.size();
      ++*this;
    }
    memcpy(data, current_chunk_.data(), n);
    if (n < current_chunk_.size()) {
      RemoveChunkPrefix(n);
    } else if (n > 0) {
      ++*this;
    }
    return subcord;
  }

  if (btree_reader_) {
    size_t chunk_size = current_chunk_.size();
    if (n <= chunk_size && n <= kMaxBytesToCopy) {
      subcord = Cord(current_chunk_.substr(0, n), method);
      if (n < chunk_size) {
        current_chunk_.remove_prefix(n);
      } else {
        current_chunk_ = btree_reader_.Next();
      }
    } else {
      CordRep* rep;
      current_chunk_ = btree_reader_.Read(n, chunk_size, rep);
      subcord.contents_.EmplaceTree(rep, method);
    }
    bytes_remaining_ -= n;
    return subcord;
  }

  // Short circuit if reading the entire data edge.
  assert(current_leaf_ != nullptr);
  if (n == current_leaf_->length) {
    bytes_remaining_ = 0;
    current_chunk_ = {};
    CordRep* tree = CordRep::Ref(current_leaf_);
    subcord.contents_.EmplaceTree(VerifyTree(tree), method);
    return subcord;
  }

  // From this point on, we need a partial substring node.
  // Get pointer to the underlying flat or external data payload and
  // compute data pointer and offset into current flat or external.
  CordRep* payload = current_leaf_->IsSubstring()
                         ? current_leaf_->substring()->child
                         : current_leaf_;
  const char* data = payload->IsExternal() ? payload->external()->base
                                           : payload->flat()->Data();
  const size_t offset = static_cast<size_t>(current_chunk_.data() - data);

  auto* tree = CordRepSubstring::Substring(payload, offset, n);
  subcord.contents_.EmplaceTree(VerifyTree(tree), method);
  bytes_remaining_ -= n;
  current_chunk_.remove_prefix(n);
  return subcord;
}

char Cord::operator[](size_t i) const {
  ABSL_HARDENING_ASSERT(i < size());
  size_t offset = i;
  const CordRep* rep = contents_.tree();
  if (rep == nullptr) {
    return contents_.data()[i];
  }
  rep = cord_internal::SkipCrcNode(rep);
  while (true) {
    assert(rep != nullptr);
    assert(offset < rep->length);
    if (rep->IsFlat()) {
      // Get the "i"th character directly from the flat array.
      return rep->flat()->Data()[offset];
    } else if (rep->IsBtree()) {
      return rep->btree()->GetCharacter(offset);
    } else if (rep->IsExternal()) {
      // Get the "i"th character from the external array.
      return rep->external()->base[offset];
    } else {
      // This must be a substring a node, so bypass it to get to the child.
      assert(rep->IsSubstring());
      offset += rep->substring()->start;
      rep = rep->substring()->child;
    }
  }
}

namespace {

// Tests whether the sequence of chunks beginning at `position` starts with
// `needle`.
//
// REQUIRES: remaining `absl::Cord` starting at `position` is greater than or
// equal to `needle.size()`.
bool IsSubstringInCordAt(absl::Cord::CharIterator position,
                         absl::string_view needle) {
  auto haystack_chunk = absl::Cord::ChunkRemaining(position);
  while (true) {
    // Precondition is that `absl::Cord::ChunkRemaining(position)` is not
    // empty. This assert will trigger if that is not true.
    assert(!haystack_chunk.empty());
    auto min_length = std::min(haystack_chunk.size(), needle.size());
    if (!absl::ConsumePrefix(&needle, haystack_chunk.substr(0, min_length))) {
      return false;
    }
    if (needle.empty()) {
      return true;
    }
    absl::Cord::Advance(&position, min_length);
    haystack_chunk = absl::Cord::ChunkRemaining(position);
  }
}

}  // namespace

// A few options how this could be implemented:
// (a) Flatten the Cord and find, i.e.
//       haystack.Flatten().find(needle)
//     For large 'haystack' (where Cord makes sense to be used), this copies
//     the whole 'haystack' and can be slow.
// (b) Use std::search, i.e.
//       std::search(haystack.char_begin(), haystack.char_end(),
//                   needle.begin(), needle.end())
//     This avoids the copy, but compares one byte at a time, and branches a
//     lot every time it has to advance. It is also not possible to use
//     std::search as is, because CharIterator is only an input iterator, not a
//     forward iterator.
// (c) Use string_view::find in each fragment, and specifically handle fragment
//     boundaries.
//
// This currently implements option (b).
absl::Cord::CharIterator absl::Cord::FindImpl(CharIterator it,
                                              absl::string_view needle) const {
  // Ensure preconditions are met by callers first.

  // Needle must not be empty.
  assert(!needle.empty());
  // Haystack must be at least as large as needle.
  assert(it.chunk_iterator_.bytes_remaining_ >= needle.size());

  // Cord is a sequence of chunks. To find `needle` we go chunk by chunk looking
  // for the first char of needle, up until we have advanced `N` defined as
  // `haystack.size() - needle.size()`. If we find the first char of needle at
  // `P` and `P` is less than `N`, we then call `IsSubstringInCordAt` to
  // see if this is the needle. If not, we advance to `P + 1` and try again.
  while (it.chunk_iterator_.bytes_remaining_ >= needle.size()) {
    auto haystack_chunk = Cord::ChunkRemaining(it);
    assert(!haystack_chunk.empty());
    // Look for the first char of `needle` in the current chunk.
    auto idx = haystack_chunk.find(needle.front());
    if (idx == absl::string_view::npos) {
      // No potential match in this chunk, advance past it.
      Cord::Advance(&it, haystack_chunk.size());
      continue;
    }
    // We found the start of a potential match in the chunk. Advance the
    // iterator and haystack chunk to the match the position.
    Cord::Advance(&it, idx);
    // Check if there is enough haystack remaining to actually have a match.
    if (it.chunk_iterator_.bytes_remaining_ < needle.size()) {
      break;
    }
    // Check if this is `needle`.
    if (IsSubstringInCordAt(it, needle)) {
      return it;
    }
    // No match, increment the iterator for the next attempt.
    Cord::Advance(&it, 1);
  }
  // If we got here, we did not find `needle`.
  return char_end();
}

absl::Cord::CharIterator absl::Cord::Find(absl::string_view needle) const {
  if (needle.empty()) {
    return char_begin();
  }
  if (needle.size() > size()) {
    return char_end();
  }
  if (needle.size() == size()) {
    return *this == needle ? char_begin() : char_end();
  }
  return FindImpl(char_begin(), needle);
}

namespace {

// Tests whether the sequence of chunks beginning at `haystack` starts with the
// sequence of chunks beginning at `needle_begin` and extending to `needle_end`.
//
// REQUIRES: remaining `absl::Cord` starting at `position` is greater than or
// equal to `needle_end - needle_begin` and `advance`.
bool IsSubcordInCordAt(absl::Cord::CharIterator haystack,
                       absl::Cord::CharIterator needle_begin,
                       absl::Cord::CharIterator needle_end) {
  while (needle_begin != needle_end) {
    auto haystack_chunk = absl::Cord::ChunkRemaining(haystack);
    assert(!haystack_chunk.empty());
    auto needle_chunk = absl::Cord::ChunkRemaining(needle_begin);
    auto min_length = std::min(haystack_chunk.size(), needle_chunk.size());
    if (haystack_chunk.substr(0, min_length) !=
        needle_chunk.substr(0, min_length)) {
      return false;
    }
    absl::Cord::Advance(&haystack, min_length);
    absl::Cord::Advance(&needle_begin, min_length);
  }
  return true;
}

// Tests whether the sequence of chunks beginning at `position` starts with the
// cord `needle`.
//
// REQUIRES: remaining `absl::Cord` starting at `position` is greater than or
// equal to `needle.size()`.
bool IsSubcordInCordAt(absl::Cord::CharIterator position,
                       const absl::Cord& needle) {
  return IsSubcordInCordAt(position, needle.char_begin(), needle.char_end());
}

}  // namespace

absl::Cord::CharIterator absl::Cord::Find(const absl::Cord& needle) const {
  if (needle.empty()) {
    return char_begin();
  }
  const auto needle_size = needle.size();
  if (needle_size > size()) {
    return char_end();
  }
  if (needle_size == size()) {
    return *this == needle ? char_begin() : char_end();
  }
  const auto needle_chunk = Cord::ChunkRemaining(needle.char_begin());
  auto haystack_it = char_begin();
  while (true) {
    haystack_it = FindImpl(haystack_it, needle_chunk);
    if (haystack_it == char_end() ||
        haystack_it.chunk_iterator_.bytes_remaining_ < needle_size) {
      break;
    }
    // We found the first chunk of `needle` at `haystack_it` but not the entire
    // subcord. Advance past the first chunk and check for the remainder.
    auto haystack_advanced_it = haystack_it;
    auto needle_it = needle.char_begin();
    Cord::Advance(&haystack_advanced_it, needle_chunk.size());
    Cord::Advance(&needle_it, needle_chunk.size());
    if (IsSubcordInCordAt(haystack_advanced_it, needle_it, needle.char_end())) {
      return haystack_it;
    }
    Cord::Advance(&haystack_it, 1);
    if (haystack_it.chunk_iterator_.bytes_remaining_ < needle_size) {
      break;
    }
    if (haystack_it.chunk_iterator_.bytes_remaining_ == needle_size) {
      // Special case, if there is exactly `needle_size` bytes remaining, the
      // subcord is either at `haystack_it` or not at all.
      if (IsSubcordInCordAt(haystack_it, needle)) {
        return haystack_it;
      }
      break;
    }
  }
  return char_end();
}

bool Cord::Contains(absl::string_view rhs) const {
  return rhs.empty() || Find(rhs) != char_end();
}

bool Cord::Contains(const absl::Cord& rhs) const {
  return rhs.empty() || Find(rhs) != char_end();
}

absl::string_view Cord::FlattenSlowPath() {
  assert(contents_.is_tree());
  size_t total_size = size();
  CordRep* new_rep;
  char* new_buffer;

  // Try to put the contents into a new flat rep. If they won't fit in the
  // biggest possible flat node, use an external rep instead.
  if (total_size <= kMaxFlatLength) {
    new_rep = CordRepFlat::New(total_size);
    new_rep->length = total_size;
    new_buffer = new_rep->flat()->Data();
    CopyToArraySlowPath(new_buffer);
  } else {
    new_buffer = std::allocator<char>().allocate(total_size);
    CopyToArraySlowPath(new_buffer);
    new_rep = absl::cord_internal::NewExternalRep(
        absl::string_view(new_buffer, total_size), [](absl::string_view s) {
          std::allocator<char>().deallocate(const_cast<char*>(s.data()),
                                            s.size());
        });
  }
  CordzUpdateScope scope(contents_.cordz_info(), CordzUpdateTracker::kFlatten);
  CordRep::Unref(contents_.as_tree());
  contents_.SetTree(new_rep, scope);
  return absl::string_view(new_buffer, total_size);
}

/* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
  assert(rep != nullptr);
  if (rep->length == 0) {
    *fragment = absl::string_view();
    return true;
  }
  rep = cord_internal::SkipCrcNode(rep);
  if (rep->IsFlat()) {
    *fragment = absl::string_view(rep->flat()->Data(), rep->length);
    return true;
  } else if (rep->IsExternal()) {
    *fragment = absl::string_view(rep->external()->base, rep->length);
    return true;
  } else if (rep->IsBtree()) {
    return rep->btree()->IsFlat(fragment);
  } else if (rep->IsSubstring()) {
    CordRep* child = rep->substring()->child;
    if (child->IsFlat()) {
      *fragment = absl::string_view(
          child->flat()->Data() + rep->substring()->start, rep->length);
      return true;
    } else if (child->IsExternal()) {
      *fragment = absl::string_view(
          child->external()->base + rep->substring()->start, rep->length);
      return true;
    } else if (child->IsBtree()) {
      return child->btree()->IsFlat(rep->substring()->start, rep->length,
                                    fragment);
    }
  }
  return false;
}

/* static */ void Cord::ForEachChunkAux(
    absl::cord_internal::CordRep* rep,
    absl::FunctionRef<void(absl::string_view)> callback) {
  assert(rep != nullptr);
  if (rep->length == 0) return;
  rep = cord_internal::SkipCrcNode(rep);

  if (rep->IsBtree()) {
    ChunkIterator it(rep), end;
    while (it != end) {
      callback(*it);
      ++it;
    }
    return;
  }

  // This is a leaf node, so invoke our callback.
  absl::cord_internal::CordRep* current_node = cord_internal::SkipCrcNode(rep);
  absl::string_view chunk;
  bool success = GetFlatAux(current_node, &chunk);
  assert(success);
  if (success) {
    callback(chunk);
  }
}

static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
                     int indent) {
  const int kIndentStep = 1;
  absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
  absl::InlinedVector<int, kInlinedVectorSize> indents;
  for (;;) {
    *os << std::setw(3) << rep->refcount.Get();
    *os << " " << std::setw(7) << rep->length;
    *os << " [";
    if (include_data) *os << static_cast<void*>(rep);
    *os << "]";
    *os << " " << std::setw(indent) << "";
    bool leaf = false;
    if (rep == nullptr) {
      *os << "NULL\n";
      leaf = true;
    } else if (rep->IsCrc()) {
      *os << "CRC crc=" << rep->crc()->crc_cord_state.Checksum() << "\n";
      indent += kIndentStep;
      rep = rep->crc()->child;
    } else if (rep->IsSubstring()) {
      *os << "SUBSTRING @ " << rep->substring()->start << "\n";
      indent += kIndentStep;
      rep = rep->substring()->child;
    } else {  // Leaf or ring
      leaf = true;
      if (rep->IsExternal()) {
        *os << "EXTERNAL [";
        if (include_data)
          *os << absl::CEscape(std::string(rep->external()->base, rep->length));
        *os << "]\n";
      } else if (rep->IsFlat()) {
        *os << "FLAT cap=" << rep->flat()->Capacity() << " [";
        if (include_data)
          *os << absl::CEscape(std::string(rep->flat()->Data(), rep->length));
        *os << "]\n";
      } else {
        CordRepBtree::Dump(rep, /*label=*/"", include_data, *os);
      }
    }
    if (leaf) {
      if (stack.empty()) break;
      rep = stack.back();
      stack.pop_back();
      indent = indents.back();
      indents.pop_back();
    }
  }
  ABSL_INTERNAL_CHECK(indents.empty(), "");
}

static std::string ReportError(CordRep* root, CordRep* node) {
  std::ostringstream buf;
  buf << "Error at node " << node << " in:";
  DumpNode(root, true, &buf);
  return buf.str();
}

static bool VerifyNode(CordRep* root, CordRep* start_node) {
  absl::InlinedVector<CordRep*, 2> worklist;
  worklist.push_back(start_node);
  do {
    CordRep* node = worklist.back();
    worklist.pop_back();

    ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
    if (node != root) {
      ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
      ABSL_INTERNAL_CHECK(!node->IsCrc(), ReportError(root, node));
    }

    if (node->IsFlat()) {
      ABSL_INTERNAL_CHECK(node->length <= node->flat()->Capacity(),
                          ReportError(root, node));
    } else if (node->IsExternal()) {
      ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
                          ReportError(root, node));
    } else if (node->IsSubstring()) {
      ABSL_INTERNAL_CHECK(
          node->substring()->start < node->substring()->child->length,
          ReportError(root, node));
      ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
                              node->substring()->child->length,
                          ReportError(root, node));
    } else if (node->IsCrc()) {
      ABSL_INTERNAL_CHECK(
          node->crc()->child != nullptr || node->crc()->length == 0,
          ReportError(root, node));
      if (node->crc()->child != nullptr) {
        ABSL_INTERNAL_CHECK(node->crc()->length == node->crc()->child->length,
                            ReportError(root, node));
        worklist.push_back(node->crc()->child);
      }
    }
  } while (!worklist.empty());
  return true;
}

std::ostream& operator<<(std::ostream& out, const Cord& cord) {
  for (absl::string_view chunk : cord.Chunks()) {
    out.write(chunk.data(), static_cast<std::streamsize>(chunk.size()));
  }
  return out;
}

namespace strings_internal {
size_t CordTestAccess::FlatOverhead() { return cord_internal::kFlatOverhead; }
size_t CordTestAccess::MaxFlatLength() { return cord_internal::kMaxFlatLength; }
size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
  return cord_internal::TagToLength(tag);
}
uint8_t CordTestAccess::LengthToTag(size_t s) {
  ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
  return cord_internal::AllocatedSizeToTag(s + cord_internal::kFlatOverhead);
}
size_t CordTestAccess::SizeofCordRepExternal() {
  return sizeof(CordRepExternal);
}
size_t CordTestAccess::SizeofCordRepSubstring() {
  return sizeof(CordRepSubstring);
}
}  // namespace strings_internal
ABSL_NAMESPACE_END
}  // namespace absl