summaryrefslogtreecommitdiff
path: root/absl/random/log_uniform_int_distribution.h
blob: 956a69070ccde798344bf8153717e3d2aa827ad0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_
#define ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_

#include <algorithm>
#include <cassert>
#include <cmath>
#include <istream>
#include <limits>
#include <ostream>
#include <type_traits>

#include "absl/random/internal/fastmath.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"
#include "absl/random/internal/traits.h"
#include "absl/random/uniform_int_distribution.h"

namespace absl {

// log_uniform_int_distribution:
//
// Returns a random variate R in range [min, max] such that
// floor(log(R-min, base)) is uniformly distributed.
// We ensure uniformity by discretization using the
// boundary sets [0, 1, base, base * base, ... min(base*n, max)]
//
template <typename IntType = int>
class log_uniform_int_distribution {
 private:
  using unsigned_type =
      typename random_internal::make_unsigned_bits<IntType>::type;

 public:
  using result_type = IntType;

  class param_type {
   public:
    using distribution_type = log_uniform_int_distribution;

    explicit param_type(
        result_type min = 0,
        result_type max = (std::numeric_limits<result_type>::max)(),
        result_type base = 2)
        : min_(min),
          max_(max),
          base_(base),
          range_(static_cast<unsigned_type>(max_) -
                 static_cast<unsigned_type>(min_)),
          log_range_(0) {
      assert(max_ >= min_);
      assert(base_ > 1);

      if (base_ == 2) {
        // Determine where the first set bit is on range(), giving a log2(range)
        // value which can be used to construct bounds.
        log_range_ = (std::min)(random_internal::LeadingSetBit(range()),
                                std::numeric_limits<unsigned_type>::digits);
      } else {
        // NOTE: Computing the logN(x) introduces error from 2 sources:
        // 1. Conversion of int to double loses precision for values >=
        // 2^53, which may cause some log() computations to operate on
        // different values.
        // 2. The error introduced by the division will cause the result
        // to differ from the expected value.
        //
        // Thus a result which should equal K may equal K +/- epsilon,
        // which can eliminate some values depending on where the bounds fall.
        const double inv_log_base = 1.0 / std::log(base_);
        const double log_range = std::log(static_cast<double>(range()) + 0.5);
        log_range_ = static_cast<int>(std::ceil(inv_log_base * log_range));
      }
    }

    result_type(min)() const { return min_; }
    result_type(max)() const { return max_; }
    result_type base() const { return base_; }

    friend bool operator==(const param_type& a, const param_type& b) {
      return a.min_ == b.min_ && a.max_ == b.max_ && a.base_ == b.base_;
    }

    friend bool operator!=(const param_type& a, const param_type& b) {
      return !(a == b);
    }

   private:
    friend class log_uniform_int_distribution;

    int log_range() const { return log_range_; }
    unsigned_type range() const { return range_; }

    result_type min_;
    result_type max_;
    result_type base_;
    unsigned_type range_;  // max - min
    int log_range_;        // ceil(logN(range_))

    static_assert(std::is_integral<IntType>::value,
                  "Class-template absl::log_uniform_int_distribution<> must be "
                  "parameterized using an integral type.");
  };

  log_uniform_int_distribution() : log_uniform_int_distribution(0) {}

  explicit log_uniform_int_distribution(
      result_type min,
      result_type max = (std::numeric_limits<result_type>::max)(),
      result_type base = 2)
      : param_(min, max, base) {}

  explicit log_uniform_int_distribution(const param_type& p) : param_(p) {}

  void reset() {}

  // generating functions
  template <typename URBG>
  result_type operator()(URBG& g) {  // NOLINT(runtime/references)
    return (*this)(g, param_);
  }

  template <typename URBG>
  result_type operator()(URBG& g,  // NOLINT(runtime/references)
                         const param_type& p) {
    return (p.min)() + Generate(g, p);
  }

  result_type(min)() const { return (param_.min)(); }
  result_type(max)() const { return (param_.max)(); }
  result_type base() const { return param_.base(); }

  param_type param() const { return param_; }
  void param(const param_type& p) { param_ = p; }

  friend bool operator==(const log_uniform_int_distribution& a,
                         const log_uniform_int_distribution& b) {
    return a.param_ == b.param_;
  }
  friend bool operator!=(const log_uniform_int_distribution& a,
                         const log_uniform_int_distribution& b) {
    return a.param_ != b.param_;
  }

 private:
  // Returns a log-uniform variate in the range [0, p.range()]. The caller
  // should add min() to shift the result to the correct range.
  template <typename URNG>
  unsigned_type Generate(URNG& g,  // NOLINT(runtime/references)
                         const param_type& p);

  param_type param_;
};

template <typename IntType>
template <typename URBG>
typename log_uniform_int_distribution<IntType>::unsigned_type
log_uniform_int_distribution<IntType>::Generate(
    URBG& g,  // NOLINT(runtime/references)
    const param_type& p) {
  // sample e over [0, log_range]. Map the results of e to this:
  // 0 => 0
  // 1 => [1, b-1]
  // 2 => [b, (b^2)-1]
  // n => [b^(n-1)..(b^n)-1]
  const int e = absl::uniform_int_distribution<int>(0, p.log_range())(g);
  if (e == 0) {
    return 0;
  }
  const int d = e - 1;

  unsigned_type base_e, top_e;
  if (p.base() == 2) {
    base_e = static_cast<unsigned_type>(1) << d;

    top_e = (e >= std::numeric_limits<unsigned_type>::digits)
                ? (std::numeric_limits<unsigned_type>::max)()
                : (static_cast<unsigned_type>(1) << e) - 1;
  } else {
    const double r = std::pow(p.base(), d);
    const double s = (r * p.base()) - 1.0;

    base_e = (r > (std::numeric_limits<unsigned_type>::max)())
                 ? (std::numeric_limits<unsigned_type>::max)()
                 : static_cast<unsigned_type>(r);

    top_e = (s > (std::numeric_limits<unsigned_type>::max)())
                ? (std::numeric_limits<unsigned_type>::max)()
                : static_cast<unsigned_type>(s);
  }

  const unsigned_type lo = (base_e >= p.range()) ? p.range() : base_e;
  const unsigned_type hi = (top_e >= p.range()) ? p.range() : top_e;

  // choose uniformly over [lo, hi]
  return absl::uniform_int_distribution<result_type>(lo, hi)(g);
}

template <typename CharT, typename Traits, typename IntType>
std::basic_ostream<CharT, Traits>& operator<<(
    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
    const log_uniform_int_distribution<IntType>& x) {
  using stream_type =
      typename random_internal::stream_format_type<IntType>::type;
  auto saver = random_internal::make_ostream_state_saver(os);
  os << static_cast<stream_type>((x.min)()) << os.fill()
     << static_cast<stream_type>((x.max)()) << os.fill()
     << static_cast<stream_type>(x.base());
  return os;
}

template <typename CharT, typename Traits, typename IntType>
std::basic_istream<CharT, Traits>& operator>>(
    std::basic_istream<CharT, Traits>& is,       // NOLINT(runtime/references)
    log_uniform_int_distribution<IntType>& x) {  // NOLINT(runtime/references)
  using param_type = typename log_uniform_int_distribution<IntType>::param_type;
  using result_type =
      typename log_uniform_int_distribution<IntType>::result_type;
  using stream_type =
      typename random_internal::stream_format_type<IntType>::type;

  stream_type min;
  stream_type max;
  stream_type base;

  auto saver = random_internal::make_istream_state_saver(is);
  is >> min >> max >> base;
  if (!is.fail()) {
    x.param(param_type(static_cast<result_type>(min),
                       static_cast<result_type>(max),
                       static_cast<result_type>(base)));
  }
  return is;
}

}  // namespace absl

#endif  // ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_