summaryrefslogtreecommitdiff
path: root/absl/random/internal/nanobenchmark.cc
blob: 5a8b1ed1dba1ed2d8e58a951979dd09dd99a7969 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
// Copyright 2017 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/random/internal/nanobenchmark.h"

#include <sys/types.h>

#include <algorithm>  // sort
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>  // memcpy
#include <limits>
#include <string>
#include <utility>
#include <vector>

#include "absl/base/internal/raw_logging.h"
#include "absl/random/internal/platform.h"
#include "absl/random/internal/randen_engine.h"

// OS
#if defined(_WIN32) || defined(_WIN64)
#define ABSL_OS_WIN
#include <windows.h>  // NOLINT

#elif defined(__ANDROID__)
#define ABSL_OS_ANDROID

#elif defined(__linux__)
#define ABSL_OS_LINUX
#include <sched.h>        // NOLINT
#include <sys/syscall.h>  // NOLINT
#endif

#if defined(ABSL_ARCH_X86_64) && !defined(ABSL_OS_WIN)
#include <cpuid.h>  // NOLINT
#endif

// __ppc_get_timebase_freq
#if defined(ABSL_ARCH_PPC)
#include <sys/platform/ppc.h>  // NOLINT
#endif

// clock_gettime
#if defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
#include <time.h>  // NOLINT
#endif

namespace absl {
namespace random_internal_nanobenchmark {
namespace {

// For code folding.
namespace platform {
#if defined(ABSL_ARCH_X86_64)

// TODO(janwas): Merge with the one in randen_hwaes.cc?
void Cpuid(const uint32_t level, const uint32_t count,
           uint32_t* ABSL_RANDOM_INTERNAL_RESTRICT abcd) {
#if defined(ABSL_OS_WIN)
  int regs[4];
  __cpuidex(regs, level, count);
  for (int i = 0; i < 4; ++i) {
    abcd[i] = regs[i];
  }
#else
  uint32_t a, b, c, d;
  __cpuid_count(level, count, a, b, c, d);
  abcd[0] = a;
  abcd[1] = b;
  abcd[2] = c;
  abcd[3] = d;
#endif
}

std::string BrandString() {
  char brand_string[49];
  uint32_t abcd[4];

  // Check if brand std::string is supported (it is on all reasonable Intel/AMD)
  Cpuid(0x80000000U, 0, abcd);
  if (abcd[0] < 0x80000004U) {
    return std::string();
  }

  for (int i = 0; i < 3; ++i) {
    Cpuid(0x80000002U + i, 0, abcd);
    memcpy(brand_string + i * 16, &abcd, sizeof(abcd));
  }
  brand_string[48] = 0;
  return brand_string;
}

// Returns the frequency quoted inside the brand string. This does not
// account for throttling nor Turbo Boost.
double NominalClockRate() {
  const std::string& brand_string = BrandString();
  // Brand strings include the maximum configured frequency. These prefixes are
  // defined by Intel CPUID documentation.
  const char* prefixes[3] = {"MHz", "GHz", "THz"};
  const double multipliers[3] = {1E6, 1E9, 1E12};
  for (size_t i = 0; i < 3; ++i) {
    const size_t pos_prefix = brand_string.find(prefixes[i]);
    if (pos_prefix != std::string::npos) {
      const size_t pos_space = brand_string.rfind(' ', pos_prefix - 1);
      if (pos_space != std::string::npos) {
        const std::string digits =
            brand_string.substr(pos_space + 1, pos_prefix - pos_space - 1);
        return std::stod(digits) * multipliers[i];
      }
    }
  }

  return 0.0;
}

#endif  // ABSL_ARCH_X86_64
}  // namespace platform

// Prevents the compiler from eliding the computations that led to "output".
template <class T>
inline void PreventElision(T&& output) {
#ifndef ABSL_OS_WIN
  // Works by indicating to the compiler that "output" is being read and
  // modified. The +r constraint avoids unnecessary writes to memory, but only
  // works for built-in types (typically FuncOutput).
  asm volatile("" : "+r"(output) : : "memory");
#else
  // MSVC does not support inline assembly anymore (and never supported GCC's
  // RTL constraints). Self-assignment with #pragma optimize("off") might be
  // expected to prevent elision, but it does not with MSVC 2015. Type-punning
  // with volatile pointers generates inefficient code on MSVC 2017.
  static std::atomic<T> dummy(T{});
  dummy.store(output, std::memory_order_relaxed);
#endif
}

namespace timer {

// Start/Stop return absolute timestamps and must be placed immediately before
// and after the region to measure. We provide separate Start/Stop functions
// because they use different fences.
//
// Background: RDTSC is not 'serializing'; earlier instructions may complete
// after it, and/or later instructions may complete before it. 'Fences' ensure
// regions' elapsed times are independent of such reordering. The only
// documented unprivileged serializing instruction is CPUID, which acts as a
// full fence (no reordering across it in either direction). Unfortunately
// the latency of CPUID varies wildly (perhaps made worse by not initializing
// its EAX input). Because it cannot reliably be deducted from the region's
// elapsed time, it must not be included in the region to measure (i.e.
// between the two RDTSC).
//
// The newer RDTSCP is sometimes described as serializing, but it actually
// only serves as a half-fence with release semantics. Although all
// instructions in the region will complete before the final timestamp is
// captured, subsequent instructions may leak into the region and increase the
// elapsed time. Inserting another fence after the final RDTSCP would prevent
// such reordering without affecting the measured region.
//
// Fortunately, such a fence exists. The LFENCE instruction is only documented
// to delay later loads until earlier loads are visible. However, Intel's
// reference manual says it acts as a full fence (waiting until all earlier
// instructions have completed, and delaying later instructions until it
// completes). AMD assigns the same behavior to MFENCE.
//
// We need a fence before the initial RDTSC to prevent earlier instructions
// from leaking into the region, and arguably another after RDTSC to avoid
// region instructions from completing before the timestamp is recorded.
// When surrounded by fences, the additional RDTSCP half-fence provides no
// benefit, so the initial timestamp can be recorded via RDTSC, which has
// lower overhead than RDTSCP because it does not read TSC_AUX. In summary,
// we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE.
//
// Using Start+Start leads to higher variance and overhead than Stop+Stop.
// However, Stop+Stop includes an LFENCE in the region measurements, which
// adds a delay dependent on earlier loads. The combination of Start+Stop
// is faster than Start+Start and more consistent than Stop+Stop because
// the first LFENCE already delayed subsequent loads before the measured
// region. This combination seems not to have been considered in prior work:
// http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c
//
// Note: performance counters can measure 'exact' instructions-retired or
// (unhalted) cycle counts. The RDPMC instruction is not serializing and also
// requires fences. Unfortunately, it is not accessible on all OSes and we
// prefer to avoid kernel-mode drivers. Performance counters are also affected
// by several under/over-count errata, so we use the TSC instead.

// Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds,
// divide by InvariantTicksPerSecond.
inline uint64_t Start64() {
  uint64_t t;
#if defined(ABSL_ARCH_PPC)
  asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
#elif defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
  _ReadWriteBarrier();
  _mm_lfence();
  _ReadWriteBarrier();
  t = __rdtsc();
  _ReadWriteBarrier();
  _mm_lfence();
  _ReadWriteBarrier();
#else
  asm volatile(
      "lfence\n\t"
      "rdtsc\n\t"
      "shl $32, %%rdx\n\t"
      "or %%rdx, %0\n\t"
      "lfence"
      : "=a"(t)
      :
      // "memory" avoids reordering. rdx = TSC >> 32.
      // "cc" = flags modified by SHL.
      : "rdx", "memory", "cc");
#endif
#else
  // Fall back to OS - unsure how to reliably query cntvct_el0 frequency.
  timespec ts;
  clock_gettime(CLOCK_REALTIME, &ts);
  t = ts.tv_sec * 1000000000LL + ts.tv_nsec;
#endif
  return t;
}

inline uint64_t Stop64() {
  uint64_t t;
#if defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
  _ReadWriteBarrier();
  unsigned aux;
  t = __rdtscp(&aux);
  _ReadWriteBarrier();
  _mm_lfence();
  _ReadWriteBarrier();
#else
  // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
  asm volatile(
      "rdtscp\n\t"
      "shl $32, %%rdx\n\t"
      "or %%rdx, %0\n\t"
      "lfence"
      : "=a"(t)
      :
      // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
      // "cc" = flags modified by SHL.
      : "rcx", "rdx", "memory", "cc");
#endif
#else
  t = Start64();
#endif
  return t;
}

// Returns a 32-bit timestamp with about 4 cycles less overhead than
// Start64. Only suitable for measuring very short regions because the
// timestamp overflows about once a second.
inline uint32_t Start32() {
  uint32_t t;
#if defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
  _ReadWriteBarrier();
  _mm_lfence();
  _ReadWriteBarrier();
  t = static_cast<uint32_t>(__rdtsc());
  _ReadWriteBarrier();
  _mm_lfence();
  _ReadWriteBarrier();
#else
  asm volatile(
      "lfence\n\t"
      "rdtsc\n\t"
      "lfence"
      : "=a"(t)
      :
      // "memory" avoids reordering. rdx = TSC >> 32.
      : "rdx", "memory");
#endif
#else
  t = static_cast<uint32_t>(Start64());
#endif
  return t;
}

inline uint32_t Stop32() {
  uint32_t t;
#if defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
  _ReadWriteBarrier();
  unsigned aux;
  t = static_cast<uint32_t>(__rdtscp(&aux));
  _ReadWriteBarrier();
  _mm_lfence();
  _ReadWriteBarrier();
#else
  // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
  asm volatile(
      "rdtscp\n\t"
      "lfence"
      : "=a"(t)
      :
      // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
      : "rcx", "rdx", "memory");
#endif
#else
  t = static_cast<uint32_t>(Stop64());
#endif
  return t;
}

}  // namespace timer

namespace robust_statistics {

// Sorts integral values in ascending order (e.g. for Mode). About 3x faster
// than std::sort for input distributions with very few unique values.
template <class T>
void CountingSort(T* values, size_t num_values) {
  // Unique values and their frequency (similar to flat_map).
  using Unique = std::pair<T, int>;
  std::vector<Unique> unique;
  for (size_t i = 0; i < num_values; ++i) {
    const T value = values[i];
    const auto pos =
        std::find_if(unique.begin(), unique.end(),
                     [value](const Unique u) { return u.first == value; });
    if (pos == unique.end()) {
      unique.push_back(std::make_pair(value, 1));
    } else {
      ++pos->second;
    }
  }

  // Sort in ascending order of value (pair.first).
  std::sort(unique.begin(), unique.end());

  // Write that many copies of each unique value to the array.
  T* ABSL_RANDOM_INTERNAL_RESTRICT p = values;
  for (const auto& value_count : unique) {
    std::fill(p, p + value_count.second, value_count.first);
    p += value_count.second;
  }
  ABSL_RAW_CHECK(p == values + num_values, "Did not produce enough output");
}

// @return i in [idx_begin, idx_begin + half_count) that minimizes
// sorted[i + half_count] - sorted[i].
template <typename T>
size_t MinRange(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted,
                const size_t idx_begin, const size_t half_count) {
  T min_range = (std::numeric_limits<T>::max)();
  size_t min_idx = 0;

  for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) {
    ABSL_RAW_CHECK(sorted[idx] <= sorted[idx + half_count], "Not sorted");
    const T range = sorted[idx + half_count] - sorted[idx];
    if (range < min_range) {
      min_range = range;
      min_idx = idx;
    }
  }

  return min_idx;
}

// Returns an estimate of the mode by calling MinRange on successively
// halved intervals. "sorted" must be in ascending order. This is the
// Half Sample Mode estimator proposed by Bickel in "On a fast, robust
// estimator of the mode", with complexity O(N log N). The mode is less
// affected by outliers in highly-skewed distributions than the median.
// The averaging operation below assumes "T" is an unsigned integer type.
template <typename T>
T ModeOfSorted(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted,
               const size_t num_values) {
  size_t idx_begin = 0;
  size_t half_count = num_values / 2;
  while (half_count > 1) {
    idx_begin = MinRange(sorted, idx_begin, half_count);
    half_count >>= 1;
  }

  const T x = sorted[idx_begin + 0];
  if (half_count == 0) {
    return x;
  }
  ABSL_RAW_CHECK(half_count == 1, "Should stop at half_count=1");
  const T average = (x + sorted[idx_begin + 1] + 1) / 2;
  return average;
}

// Returns the mode. Side effect: sorts "values".
template <typename T>
T Mode(T* values, const size_t num_values) {
  CountingSort(values, num_values);
  return ModeOfSorted(values, num_values);
}

template <typename T, size_t N>
T Mode(T (&values)[N]) {
  return Mode(&values[0], N);
}

// Returns the median value. Side effect: sorts "values".
template <typename T>
T Median(T* values, const size_t num_values) {
  ABSL_RAW_CHECK(num_values != 0, "Empty input");
  std::sort(values, values + num_values);
  const size_t half = num_values / 2;
  // Odd count: return middle
  if (num_values % 2) {
    return values[half];
  }
  // Even count: return average of middle two.
  return (values[half] + values[half - 1] + 1) / 2;
}

// Returns a robust measure of variability.
template <typename T>
T MedianAbsoluteDeviation(const T* values, const size_t num_values,
                          const T median) {
  ABSL_RAW_CHECK(num_values != 0, "Empty input");
  std::vector<T> abs_deviations;
  abs_deviations.reserve(num_values);
  for (size_t i = 0; i < num_values; ++i) {
    const int64_t abs = std::abs(int64_t(values[i]) - int64_t(median));
    abs_deviations.push_back(static_cast<T>(abs));
  }
  return Median(abs_deviations.data(), num_values);
}

}  // namespace robust_statistics

// Ticks := platform-specific timer values (CPU cycles on x86). Must be
// unsigned to guarantee wraparound on overflow. 32 bit timers are faster to
// read than 64 bit.
using Ticks = uint32_t;

// Returns timer overhead / minimum measurable difference.
Ticks TimerResolution() {
  // Nested loop avoids exceeding stack/L1 capacity.
  Ticks repetitions[Params::kTimerSamples];
  for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) {
    Ticks samples[Params::kTimerSamples];
    for (size_t i = 0; i < Params::kTimerSamples; ++i) {
      const Ticks t0 = timer::Start32();
      const Ticks t1 = timer::Stop32();
      samples[i] = t1 - t0;
    }
    repetitions[rep] = robust_statistics::Mode(samples);
  }
  return robust_statistics::Mode(repetitions);
}

static const Ticks timer_resolution = TimerResolution();

// Estimates the expected value of "lambda" values with a variable number of
// samples until the variability "rel_mad" is less than "max_rel_mad".
template <class Lambda>
Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad,
                        const Params& p, const Lambda& lambda) {
  auto measure_duration = [&lambda]() -> Ticks {
    const Ticks t0 = timer::Start32();
    lambda();
    const Ticks t1 = timer::Stop32();
    return t1 - t0;
  };

  // Choose initial samples_per_eval based on a single estimated duration.
  Ticks est = measure_duration();
  static const double ticks_per_second = InvariantTicksPerSecond();
  const size_t ticks_per_eval = ticks_per_second * p.seconds_per_eval;
  size_t samples_per_eval = ticks_per_eval / est;
  samples_per_eval = (std::max)(samples_per_eval, p.min_samples_per_eval);

  std::vector<Ticks> samples;
  samples.reserve(1 + samples_per_eval);
  samples.push_back(est);

  // Percentage is too strict for tiny differences, so also allow a small
  // absolute "median absolute deviation".
  const Ticks max_abs_mad = (timer_resolution + 99) / 100;
  *rel_mad = 0.0;  // ensure initialized

  for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) {
    samples.reserve(samples.size() + samples_per_eval);
    for (size_t i = 0; i < samples_per_eval; ++i) {
      const Ticks r = measure_duration();
      samples.push_back(r);
    }

    if (samples.size() >= p.min_mode_samples) {
      est = robust_statistics::Mode(samples.data(), samples.size());
    } else {
      // For "few" (depends also on the variance) samples, Median is safer.
      est = robust_statistics::Median(samples.data(), samples.size());
    }
    ABSL_RAW_CHECK(est != 0, "Estimator returned zero duration");

    // Median absolute deviation (mad) is a robust measure of 'variability'.
    const Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation(
        samples.data(), samples.size(), est);
    *rel_mad = static_cast<double>(static_cast<int>(abs_mad)) / est;

    if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) {
      if (p.verbose) {
        ABSL_RAW_LOG(INFO,
                     "%6zu samples => %5u (abs_mad=%4u, rel_mad=%4.2f%%)\n",
                     samples.size(), est, abs_mad, *rel_mad * 100.0);
      }
      return est;
    }
  }

  if (p.verbose) {
    ABSL_RAW_LOG(WARNING,
                 "rel_mad=%4.2f%% still exceeds %4.2f%% after %6zu samples.\n",
                 *rel_mad * 100.0, max_rel_mad * 100.0, samples.size());
  }
  return est;
}

using InputVec = std::vector<FuncInput>;

// Returns vector of unique input values.
InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) {
  InputVec unique(inputs, inputs + num_inputs);
  std::sort(unique.begin(), unique.end());
  unique.erase(std::unique(unique.begin(), unique.end()), unique.end());
  return unique;
}

// Returns how often we need to call func for sufficient precision, or zero
// on failure (e.g. the elapsed time is too long for a 32-bit tick count).
size_t NumSkip(const Func func, const void* arg, const InputVec& unique,
               const Params& p) {
  // Min elapsed ticks for any input.
  Ticks min_duration = ~0u;

  for (const FuncInput input : unique) {
    // Make sure a 32-bit timer is sufficient.
    const uint64_t t0 = timer::Start64();
    PreventElision(func(arg, input));
    const uint64_t t1 = timer::Stop64();
    const uint64_t elapsed = t1 - t0;
    if (elapsed >= (1ULL << 30)) {
      ABSL_RAW_LOG(WARNING,
                   "Measurement failed: need 64-bit timer for input=%zu\n",
                   static_cast<size_t>(input));
      return 0;
    }

    double rel_mad;
    const Ticks total = SampleUntilStable(
        p.target_rel_mad, &rel_mad, p,
        [func, arg, input]() { PreventElision(func(arg, input)); });
    min_duration = (std::min)(min_duration, total - timer_resolution);
  }

  // Number of repetitions required to reach the target resolution.
  const size_t max_skip = p.precision_divisor;
  // Number of repetitions given the estimated duration.
  const size_t num_skip =
      min_duration == 0 ? 0 : (max_skip + min_duration - 1) / min_duration;
  if (p.verbose) {
    ABSL_RAW_LOG(INFO, "res=%u max_skip=%zu min_dur=%u num_skip=%zu\n",
                 timer_resolution, max_skip, min_duration, num_skip);
  }
  return num_skip;
}

// Replicates inputs until we can omit "num_skip" occurrences of an input.
InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs,
                         const size_t num_unique, const size_t num_skip,
                         const Params& p) {
  InputVec full;
  if (num_unique == 1) {
    full.assign(p.subset_ratio * num_skip, inputs[0]);
    return full;
  }

  full.reserve(p.subset_ratio * num_skip * num_inputs);
  for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) {
    full.insert(full.end(), inputs, inputs + num_inputs);
  }
  absl::random_internal::randen_engine<uint32_t> rng;
  std::shuffle(full.begin(), full.end(), rng);
  return full;
}

// Copies the "full" to "subset" in the same order, but with "num_skip"
// randomly selected occurrences of "input_to_skip" removed.
void FillSubset(const InputVec& full, const FuncInput input_to_skip,
                const size_t num_skip, InputVec* subset) {
  const size_t count = std::count(full.begin(), full.end(), input_to_skip);
  // Generate num_skip random indices: which occurrence to skip.
  std::vector<uint32_t> omit;
  // Replacement for std::iota, not yet available in MSVC builds.
  omit.reserve(count);
  for (size_t i = 0; i < count; ++i) {
    omit.push_back(i);
  }
  // omit[] is the same on every call, but that's OK because they identify the
  // Nth instance of input_to_skip, so the position within full[] differs.
  absl::random_internal::randen_engine<uint32_t> rng;
  std::shuffle(omit.begin(), omit.end(), rng);
  omit.resize(num_skip);
  std::sort(omit.begin(), omit.end());

  uint32_t occurrence = ~0u;  // 0 after preincrement
  size_t idx_omit = 0;        // cursor within omit[]
  size_t idx_subset = 0;      // cursor within *subset
  for (const FuncInput next : full) {
    if (next == input_to_skip) {
      ++occurrence;
      // Haven't removed enough already
      if (idx_omit < num_skip) {
        // This one is up for removal
        if (occurrence == omit[idx_omit]) {
          ++idx_omit;
          continue;
        }
      }
    }
    if (idx_subset < subset->size()) {
      (*subset)[idx_subset++] = next;
    }
  }
  ABSL_RAW_CHECK(idx_subset == subset->size(), "idx_subset not at end");
  ABSL_RAW_CHECK(idx_omit == omit.size(), "idx_omit not at end");
  ABSL_RAW_CHECK(occurrence == count - 1, "occurrence not at end");
}

// Returns total ticks elapsed for all inputs.
Ticks TotalDuration(const Func func, const void* arg, const InputVec* inputs,
                    const Params& p, double* max_rel_mad) {
  double rel_mad;
  const Ticks duration =
      SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() {
        for (const FuncInput input : *inputs) {
          PreventElision(func(arg, input));
        }
      });
  *max_rel_mad = (std::max)(*max_rel_mad, rel_mad);
  return duration;
}

// (Nearly) empty Func for measuring timer overhead/resolution.
ABSL_ATTRIBUTE_NEVER_INLINE FuncOutput EmptyFunc(const void* arg,
                                                 const FuncInput input) {
  return input;
}

// Returns overhead of accessing inputs[] and calling a function; this will
// be deducted from future TotalDuration return values.
Ticks Overhead(const void* arg, const InputVec* inputs, const Params& p) {
  double rel_mad;
  // Zero tolerance because repeatability is crucial and EmptyFunc is fast.
  return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() {
    for (const FuncInput input : *inputs) {
      PreventElision(EmptyFunc(arg, input));
    }
  });
}

}  // namespace

void PinThreadToCPU(int cpu) {
  // We might migrate to another CPU before pinning below, but at least cpu
  // will be one of the CPUs on which this thread ran.
#if defined(ABSL_OS_WIN)
  if (cpu < 0) {
    cpu = static_cast<int>(GetCurrentProcessorNumber());
    ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed");
    if (cpu >= 64) {
      // NOTE: On wine, at least, GetCurrentProcessorNumber() sometimes returns
      // a value > 64, which is out of range. When this happens, log a message
      // and don't set a cpu affinity.
      ABSL_RAW_LOG(ERROR, "Invalid CPU number: %d", cpu);
      return;
    }
  } else if (cpu >= 64) {
    // User specified an explicit CPU affinity > the valid range.
    ABSL_RAW_LOG(FATAL, "Invalid CPU number: %d", cpu);
  }
  const DWORD_PTR prev = SetThreadAffinityMask(GetCurrentThread(), 1ULL << cpu);
  ABSL_RAW_CHECK(prev != 0, "SetAffinity failed");
#elif defined(ABSL_OS_LINUX) && !defined(ABSL_OS_ANDROID)
  if (cpu < 0) {
    cpu = sched_getcpu();
    ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed");
  }
  const pid_t pid = 0;  // current thread
  cpu_set_t set;
  CPU_ZERO(&set);
  CPU_SET(cpu, &set);
  const int err = sched_setaffinity(pid, sizeof(set), &set);
  ABSL_RAW_CHECK(err == 0, "SetAffinity failed");
#endif
}

// Returns tick rate. Invariant means the tick counter frequency is independent
// of CPU throttling or sleep. May be expensive, caller should cache the result.
double InvariantTicksPerSecond() {
#if defined(ABSL_ARCH_PPC)
  return __ppc_get_timebase_freq();
#elif defined(ABSL_ARCH_X86_64)
  // We assume the TSC is invariant; it is on all recent Intel/AMD CPUs.
  return platform::NominalClockRate();
#else
  // Fall back to clock_gettime nanoseconds.
  return 1E9;
#endif
}

size_t MeasureImpl(const Func func, const void* arg, const size_t num_skip,
                   const InputVec& unique, const InputVec& full,
                   const Params& p, Result* results) {
  const float mul = 1.0f / static_cast<int>(num_skip);

  InputVec subset(full.size() - num_skip);
  const Ticks overhead = Overhead(arg, &full, p);
  const Ticks overhead_skip = Overhead(arg, &subset, p);
  if (overhead < overhead_skip) {
    ABSL_RAW_LOG(WARNING, "Measurement failed: overhead %u < %u\n", overhead,
                 overhead_skip);
    return 0;
  }

  if (p.verbose) {
    ABSL_RAW_LOG(INFO, "#inputs=%5zu,%5zu overhead=%5u,%5u\n", full.size(),
                 subset.size(), overhead, overhead_skip);
  }

  double max_rel_mad = 0.0;
  const Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad);

  for (size_t i = 0; i < unique.size(); ++i) {
    FillSubset(full, unique[i], num_skip, &subset);
    const Ticks total_skip = TotalDuration(func, arg, &subset, p, &max_rel_mad);

    if (total < total_skip) {
      ABSL_RAW_LOG(WARNING, "Measurement failed: total %u < %u\n", total,
                   total_skip);
      return 0;
    }

    const Ticks duration = (total - overhead) - (total_skip - overhead_skip);
    results[i].input = unique[i];
    results[i].ticks = duration * mul;
    results[i].variability = max_rel_mad;
  }

  return unique.size();
}

size_t Measure(const Func func, const void* arg, const FuncInput* inputs,
               const size_t num_inputs, Result* results, const Params& p) {
  ABSL_RAW_CHECK(num_inputs != 0, "No inputs");

  const InputVec unique = UniqueInputs(inputs, num_inputs);
  const size_t num_skip = NumSkip(func, arg, unique, p);  // never 0
  if (num_skip == 0) return 0;  // NumSkip already printed error message

  const InputVec full =
      ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p);

  // MeasureImpl may fail up to p.max_measure_retries times.
  for (size_t i = 0; i < p.max_measure_retries; i++) {
    auto result = MeasureImpl(func, arg, num_skip, unique, full, p, results);
    if (result != 0) {
      return result;
    }
  }
  // All retries failed. (Unusual)
  return 0;
}

}  // namespace random_internal_nanobenchmark
}  // namespace absl