summaryrefslogtreecommitdiff
path: root/absl/random/internal/fastmath.h
blob: 1dc2cd7b501b51c7f21a1d608ca656745cbe9dc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_RANDOM_INTERNAL_FASTMATH_H_
#define ABSL_RANDOM_INTERNAL_FASTMATH_H_

// This file contains fast math functions (bitwise ops as well as some others)
// which are implementation details of various absl random number distributions.

#include <cassert>
#include <cmath>
#include <cstdint>

#include "absl/base/internal/bits.h"

namespace absl {
inline namespace lts_2019_08_08 {
namespace random_internal {

// Returns the position of the first bit set.
inline int LeadingSetBit(uint64_t n) {
  return 64 - base_internal::CountLeadingZeros64(n);
}

// Compute log2(n) using integer operations.
// While std::log2 is more accurate than std::log(n) / std::log(2), for
// very large numbers--those close to std::numeric_limits<uint64_t>::max() - 2,
// for instance--std::log2 rounds up rather than down, which introduces
// definite skew in the results.
inline int IntLog2Floor(uint64_t n) {
  return (n <= 1) ? 0 : (63 - base_internal::CountLeadingZeros64(n));
}
inline int IntLog2Ceil(uint64_t n) {
  return (n <= 1) ? 0 : (64 - base_internal::CountLeadingZeros64(n - 1));
}

inline double StirlingLogFactorial(double n) {
  assert(n >= 1);
  // Using Stirling's approximation.
  constexpr double kLog2PI = 1.83787706640934548356;
  const double logn = std::log(n);
  const double ninv = 1.0 / static_cast<double>(n);
  return n * logn - n + 0.5 * (kLog2PI + logn) + (1.0 / 12.0) * ninv -
         (1.0 / 360.0) * ninv * ninv * ninv;
}

// Rotate value right.
//
// We only implement the uint32_t / uint64_t versions because
// 1) those are the only ones we use, and
// 2) those are the only ones where clang detects the rotate idiom correctly.
inline constexpr uint32_t rotr(uint32_t value, uint8_t bits) {
  return (value >> (bits & 31)) | (value << ((-bits) & 31));
}
inline constexpr uint64_t rotr(uint64_t value, uint8_t bits) {
  return (value >> (bits & 63)) | (value << ((-bits) & 63));
}

}  // namespace random_internal
}  // inline namespace lts_2019_08_08
}  // namespace absl

#endif  // ABSL_RANDOM_INTERNAL_FASTMATH_H_