summaryrefslogtreecommitdiff
path: root/absl/random/exponential_distribution_test.cc
blob: fb9a0d161828b45fb68215062e17a1ddbb06524d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/random/exponential_distribution.h"

#include <algorithm>
#include <cfloat>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/macros.h"
#include "absl/log/log.h"
#include "absl/numeric/internal/representation.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_replace.h"
#include "absl/strings/strip.h"

namespace {

using absl::random_internal::kChiSquared;

template <typename RealType>
class ExponentialDistributionTypedTest : public ::testing::Test {};

// double-double arithmetic is not supported well by either GCC or Clang; see
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048,
// https://bugs.llvm.org/show_bug.cgi?id=49131, and
// https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests
// with double doubles until compiler support is better.
using RealTypes =
    std::conditional<absl::numeric_internal::IsDoubleDouble(),
                     ::testing::Types<float, double>,
                     ::testing::Types<float, double, long double>>::type;
TYPED_TEST_SUITE(ExponentialDistributionTypedTest, RealTypes);

TYPED_TEST(ExponentialDistributionTypedTest, SerializeTest) {
  using param_type =
      typename absl::exponential_distribution<TypeParam>::param_type;

  const TypeParam kParams[] = {
      // Cases around 1.
      1,                                           //
      std::nextafter(TypeParam(1), TypeParam(0)),  // 1 - epsilon
      std::nextafter(TypeParam(1), TypeParam(2)),  // 1 + epsilon
      // Typical cases.
      TypeParam(1e-8), TypeParam(1e-4), TypeParam(1), TypeParam(2),
      TypeParam(1e4), TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
      // Boundary cases.
      std::numeric_limits<TypeParam>::max(),
      std::numeric_limits<TypeParam>::epsilon(),
      std::nextafter(std::numeric_limits<TypeParam>::min(),
                     TypeParam(1)),           // min + epsilon
      std::numeric_limits<TypeParam>::min(),  // smallest normal
      // There are some errors dealing with denorms on apple platforms.
      std::numeric_limits<TypeParam>::denorm_min(),  // smallest denorm
      std::numeric_limits<TypeParam>::min() / 2,     // denorm
      std::nextafter(std::numeric_limits<TypeParam>::min(),
                     TypeParam(0)),  // denorm_max
  };

  constexpr int kCount = 1000;
  absl::InsecureBitGen gen;

  for (const TypeParam lambda : kParams) {
    // Some values may be invalid; skip those.
    if (!std::isfinite(lambda)) continue;
    ABSL_ASSERT(lambda > 0);

    const param_type param(lambda);

    absl::exponential_distribution<TypeParam> before(lambda);
    EXPECT_EQ(before.lambda(), param.lambda());

    {
      absl::exponential_distribution<TypeParam> via_param(param);
      EXPECT_EQ(via_param, before);
      EXPECT_EQ(via_param.param(), before.param());
    }

    // Smoke test.
    auto sample_min = before.max();
    auto sample_max = before.min();
    for (int i = 0; i < kCount; i++) {
      auto sample = before(gen);
      EXPECT_GE(sample, before.min()) << before;
      EXPECT_LE(sample, before.max()) << before;
      if (sample > sample_max) sample_max = sample;
      if (sample < sample_min) sample_min = sample;
    }
    if (!std::is_same<TypeParam, long double>::value) {
      LOG(INFO) << "Range {" << lambda << "}: " << sample_min << ", "
                << sample_max << ", lambda=" << lambda;
    }

    std::stringstream ss;
    ss << before;

    if (!std::isfinite(lambda)) {
      // Streams do not deserialize inf/nan correctly.
      continue;
    }
    // Validate stream serialization.
    absl::exponential_distribution<TypeParam> after(34.56f);

    EXPECT_NE(before.lambda(), after.lambda());
    EXPECT_NE(before.param(), after.param());
    EXPECT_NE(before, after);

    ss >> after;

    EXPECT_EQ(before.lambda(), after.lambda())  //
        << ss.str() << " "                      //
        << (ss.good() ? "good " : "")           //
        << (ss.bad() ? "bad " : "")             //
        << (ss.eof() ? "eof " : "")             //
        << (ss.fail() ? "fail " : "");
  }
}

// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm

class ExponentialModel {
 public:
  explicit ExponentialModel(double lambda)
      : lambda_(lambda), beta_(1.0 / lambda) {}

  double lambda() const { return lambda_; }

  double mean() const { return beta_; }
  double variance() const { return beta_ * beta_; }
  double stddev() const { return std::sqrt(variance()); }
  double skew() const { return 2; }
  double kurtosis() const { return 6.0; }

  double CDF(double x) { return 1.0 - std::exp(-lambda_ * x); }

  // The inverse CDF, or PercentPoint function of the distribution
  double InverseCDF(double p) {
    ABSL_ASSERT(p >= 0.0);
    ABSL_ASSERT(p < 1.0);
    return -beta_ * std::log(1.0 - p);
  }

 private:
  const double lambda_;
  const double beta_;
};

struct Param {
  double lambda;
  double p_fail;
  int trials;
};

class ExponentialDistributionTests : public testing::TestWithParam<Param>,
                                     public ExponentialModel {
 public:
  ExponentialDistributionTests() : ExponentialModel(GetParam().lambda) {}

  // SingleZTest provides a basic z-squared test of the mean vs. expected
  // mean for data generated by the poisson distribution.
  template <typename D>
  bool SingleZTest(const double p, const size_t samples);

  // SingleChiSquaredTest provides a basic chi-squared test of the normal
  // distribution.
  template <typename D>
  double SingleChiSquaredTest();

  // We use a fixed bit generator for distribution accuracy tests.  This allows
  // these tests to be deterministic, while still testing the qualify of the
  // implementation.
  absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
};

template <typename D>
bool ExponentialDistributionTests::SingleZTest(const double p,
                                               const size_t samples) {
  D dis(lambda());

  std::vector<double> data;
  data.reserve(samples);
  for (size_t i = 0; i < samples; i++) {
    const double x = dis(rng_);
    data.push_back(x);
  }

  const auto m = absl::random_internal::ComputeDistributionMoments(data);
  const double max_err = absl::random_internal::MaxErrorTolerance(p);
  const double z = absl::random_internal::ZScore(mean(), m);
  const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);

  if (!pass) {
    // clang-format off
    LOG(INFO)
        << "p=" << p << " max_err=" << max_err << "\n"
           " lambda=" << lambda() << "\n"
           " mean=" << m.mean << " vs. " << mean() << "\n"
           " stddev=" << std::sqrt(m.variance) << " vs. " << stddev() << "\n"
           " skewness=" << m.skewness << " vs. " << skew() << "\n"
           " kurtosis=" << m.kurtosis << " vs. " << kurtosis() << "\n"
           " z=" << z << " vs. 0";
    // clang-format on
  }
  return pass;
}

template <typename D>
double ExponentialDistributionTests::SingleChiSquaredTest() {
  const size_t kSamples = 10000;
  const int kBuckets = 50;

  // The InverseCDF is the percent point function of the distribution, and can
  // be used to assign buckets roughly uniformly.
  std::vector<double> cutoffs;
  const double kInc = 1.0 / static_cast<double>(kBuckets);
  for (double p = kInc; p < 1.0; p += kInc) {
    cutoffs.push_back(InverseCDF(p));
  }
  if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
    cutoffs.push_back(std::numeric_limits<double>::infinity());
  }

  D dis(lambda());

  std::vector<int32_t> counts(cutoffs.size(), 0);
  for (int j = 0; j < kSamples; j++) {
    const double x = dis(rng_);
    auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
    counts[std::distance(cutoffs.begin(), it)]++;
  }

  // Null-hypothesis is that the distribution is exponentially distributed
  // with the provided lambda (not estimated from the data).
  const int dof = static_cast<int>(counts.size()) - 1;

  // Our threshold for logging is 1-in-50.
  const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);

  const double expected =
      static_cast<double>(kSamples) / static_cast<double>(counts.size());

  double chi_square = absl::random_internal::ChiSquareWithExpected(
      std::begin(counts), std::end(counts), expected);
  double p = absl::random_internal::ChiSquarePValue(chi_square, dof);

  if (chi_square > threshold) {
    for (size_t i = 0; i < cutoffs.size(); i++) {
      LOG(INFO) << i << " : (" << cutoffs[i] << ") = " << counts[i];
    }

    // clang-format off
    LOG(INFO) << "lambda " << lambda() << "\n"
                 " expected " << expected << "\n"
              << kChiSquared << " " << chi_square << " (" << p << ")\n"
              << kChiSquared << " @ 0.98 = " << threshold;
    // clang-format on
  }
  return p;
}

TEST_P(ExponentialDistributionTests, ZTest) {
  const size_t kSamples = 10000;
  const auto& param = GetParam();
  const int expected_failures =
      std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
  const double p = absl::random_internal::RequiredSuccessProbability(
      param.p_fail, param.trials);

  int failures = 0;
  for (int i = 0; i < param.trials; i++) {
    failures += SingleZTest<absl::exponential_distribution<double>>(p, kSamples)
                    ? 0
                    : 1;
  }
  EXPECT_LE(failures, expected_failures);
}

TEST_P(ExponentialDistributionTests, ChiSquaredTest) {
  const int kTrials = 20;
  int failures = 0;

  for (int i = 0; i < kTrials; i++) {
    double p_value =
        SingleChiSquaredTest<absl::exponential_distribution<double>>();
    if (p_value < 0.005) {  // 1/200
      failures++;
    }
  }

  // There is a 0.10% chance of producing at least one failure, so raise the
  // failure threshold high enough to allow for a flake rate < 10,000.
  EXPECT_LE(failures, 4);
}

std::vector<Param> GenParams() {
  return {
      Param{1.0, 0.02, 100},
      Param{2.5, 0.02, 100},
      Param{10, 0.02, 100},
      // large
      Param{1e4, 0.02, 100},
      Param{1e9, 0.02, 100},
      // small
      Param{0.1, 0.02, 100},
      Param{1e-3, 0.02, 100},
      Param{1e-5, 0.02, 100},
  };
}

std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
  const auto& p = info.param;
  std::string name = absl::StrCat("lambda_", absl::SixDigits(p.lambda));
  return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
}

INSTANTIATE_TEST_SUITE_P(All, ExponentialDistributionTests,
                         ::testing::ValuesIn(GenParams()), ParamName);

// NOTE: absl::exponential_distribution is not guaranteed to be stable.
TEST(ExponentialDistributionTest, StabilityTest) {
  // absl::exponential_distribution stability relies on std::log1p and
  // absl::uniform_real_distribution.
  absl::random_internal::sequence_urbg urbg(
      {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
       0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
       0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
       0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});

  std::vector<int> output(14);

  {
    absl::exponential_distribution<double> dist;
    std::generate(std::begin(output), std::end(output),
                  [&] { return static_cast<int>(10000.0 * dist(urbg)); });

    EXPECT_EQ(14, urbg.invocations());
    EXPECT_THAT(output,
                testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
                                     804, 126, 12337, 17984, 27002, 0, 71913));
  }

  urbg.reset();
  {
    absl::exponential_distribution<float> dist;
    std::generate(std::begin(output), std::end(output),
                  [&] { return static_cast<int>(10000.0f * dist(urbg)); });

    EXPECT_EQ(14, urbg.invocations());
    EXPECT_THAT(output,
                testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
                                     804, 126, 12337, 17984, 27002, 0, 71913));
  }
}

TEST(ExponentialDistributionTest, AlgorithmBounds) {
  // Relies on absl::uniform_real_distribution, so some of these comments
  // reference that.

#if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0
  // We're using an x87-compatible FPU, and intermediate operations can be
  // performed with 80-bit floats. This produces slightly different results from
  // what we expect below.
  GTEST_SKIP()
      << "Skipping the test because we detected x87 floating-point semantics";
#endif

  absl::exponential_distribution<double> dist;

  {
    // This returns the smallest value >0 from absl::uniform_real_distribution.
    absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
    double a = dist(urbg);
    EXPECT_EQ(a, 5.42101086242752217004e-20);
  }

  {
    // This returns a value very near 0.5 from absl::uniform_real_distribution.
    absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
    double a = dist(urbg);
    EXPECT_EQ(a, 0.693147180559945175204);
  }

  {
    // This returns the largest value <1 from absl::uniform_real_distribution.
    // WolframAlpha: ~39.1439465808987766283058547296341915292187253
    absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFeFull});
    double a = dist(urbg);
    EXPECT_EQ(a, 36.7368005696771007251);
  }
  {
    // This *ALSO* returns the largest value <1.
    absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
    double a = dist(urbg);
    EXPECT_EQ(a, 36.7368005696771007251);
  }
}

}  // namespace