summaryrefslogtreecommitdiff
path: root/absl/profiling/internal/exponential_biased.h
blob: d31f7782e83dca4461073c443b9b04582a5921df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_
#define ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_

#include <stdint.h>

#include "absl/base/config.h"
#include "absl/base/macros.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace profiling_internal {

// ExponentialBiased provides a small and fast random number generator for a
// rounded exponential distribution. This generator manages very little state,
// and imposes no synchronization overhead. This makes it useful in specialized
// scenarios requiring minimum overhead, such as stride based periodic sampling.
//
// ExponentialBiased provides two closely related functions, GetSkipCount() and
// GetStride(), both returning a rounded integer defining a number of events
// required before some event with a given mean probability occurs.
//
// The distribution is useful to generate a random wait time or some periodic
// event with a given mean probability. For example, if an action is supposed to
// happen on average once every 'N' events, then we can get a random 'stride'
// counting down how long before the event to happen. For example, if we'd want
// to sample one in every 1000 'Frobber' calls, our code could look like this:
//
//   Frobber::Frobber() {
//     stride_ = exponential_biased_.GetStride(1000);
//   }
//
//   void Frobber::Frob(int arg) {
//     if (--stride == 0) {
//       SampleFrob(arg);
//       stride_ = exponential_biased_.GetStride(1000);
//     }
//     ...
//   }
//
// The rounding of the return value creates a bias, especially for smaller means
// where the distribution of the fraction is not evenly distributed. We correct
// this bias by tracking the fraction we rounded up or down on each iteration,
// effectively tracking the distance between the cumulative value, and the
// rounded cumulative value. For example, given a mean of 2:
//
//   raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923
//   raw = 0.14624, cumulative = 1.77701, rounded = 2, bias =  0.14624
//   raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805
//   raw = 0.24206, cumulative = 6.95101, rounded = 7, bias =  0.24206
//   etc...
//
// Adjusting with rounding bias is relatively trivial:
//
//    double value = bias_ + exponential_distribution(mean)();
//    double rounded_value = std::rint(value);
//    bias_ = value - rounded_value;
//    return rounded_value;
//
// This class is thread-compatible.
class ExponentialBiased {
 public:
  // The number of bits set by NextRandom.
  static constexpr int kPrngNumBits = 48;

  // `GetSkipCount()` returns the number of events to skip before some chosen
  // event happens. For example, randomly tossing a coin, we will on average
  // throw heads once before we get tails. We can simulate random coin tosses
  // using GetSkipCount() as:
  //
  //   ExponentialBiased eb;
  //   for (...) {
  //     int number_of_heads_before_tail = eb.GetSkipCount(1);
  //     for (int flips = 0; flips < number_of_heads_before_tail; ++flips) {
  //       printf("head...");
  //     }
  //     printf("tail\n");
  //   }
  //
  int64_t GetSkipCount(int64_t mean);

  // GetStride() returns the number of events required for a specific event to
  // happen. See the class comments for a usage example. `GetStride()` is
  // equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or
  // `GetSkipCount()` depends mostly on what best fits the use case.
  int64_t GetStride(int64_t mean);

  // Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1]
  //
  // This is public to enable testing.
  static uint64_t NextRandom(uint64_t rnd);

 private:
  void Initialize();

  uint64_t rng_{0};
  double bias_{0};
  bool initialized_{false};
};

// Returns the next prng value.
// pRNG is: aX+b mod c with a = 0x5DEECE66D, b =  0xB, c = 1<<48
// This is the lrand64 generator.
inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) {
  const uint64_t prng_mult = uint64_t{0x5DEECE66D};
  const uint64_t prng_add = 0xB;
  const uint64_t prng_mod_power = 48;
  const uint64_t prng_mod_mask =
      ~((~static_cast<uint64_t>(0)) << prng_mod_power);
  return (prng_mult * rnd + prng_add) & prng_mod_mask;
}

}  // namespace profiling_internal
ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_