summaryrefslogtreecommitdiff
path: root/absl/memory/memory_test.cc
blob: 21fe32f9350b60302524079811e3beb8a480dab3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Tests for pointer utilities.

#include "absl/memory/memory.h"

#include <sys/types.h>
#include <cstddef>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"

namespace {

using ::testing::ElementsAre;
using ::testing::Return;

// This class creates observable behavior to verify that a destructor has
// been called, via the instance_count variable.
class DestructorVerifier {
 public:
  DestructorVerifier() { ++instance_count_;  }
  DestructorVerifier(const DestructorVerifier&) = delete;
  DestructorVerifier& operator=(const DestructorVerifier&) = delete;
  ~DestructorVerifier() {  --instance_count_; }

  // The number of instances of this class currently active.
  static int instance_count() { return instance_count_; }

 private:
  // The number of instances of this class currently active.
  static int instance_count_;
};

int DestructorVerifier::instance_count_ = 0;

TEST(WrapUniqueTest, WrapUnique) {
  // Test that the unique_ptr is constructed properly by verifying that the
  // destructor for its payload gets called at the proper time.
  {
    auto dv = new DestructorVerifier;
    EXPECT_EQ(1, DestructorVerifier::instance_count());
    std::unique_ptr<DestructorVerifier> ptr = absl::WrapUnique(dv);
    EXPECT_EQ(1, DestructorVerifier::instance_count());
  }
  EXPECT_EQ(0, DestructorVerifier::instance_count());
}
TEST(MakeUniqueTest, Basic) {
  std::unique_ptr<std::string> p = absl::make_unique<std::string>();
  EXPECT_EQ("", *p);
  p = absl::make_unique<std::string>("hi");
  EXPECT_EQ("hi", *p);
}

// InitializationVerifier fills in a pattern when allocated so we can
// distinguish between its default and value initialized states (without
// accessing truly uninitialized memory).
struct InitializationVerifier {
  static constexpr int kDefaultScalar = 0x43;
  static constexpr int kDefaultArray = 0x4B;

  static void* operator new(size_t n) {
    void* ret = ::operator new(n);
    memset(ret, kDefaultScalar, n);
    return ret;
  }

  static void* operator new[](size_t n) {
    void* ret = ::operator new[](n);
    memset(ret, kDefaultArray, n);
    return ret;
  }

  int a;
  int b;
};

TEST(Initialization, MakeUnique) {
  auto p = absl::make_unique<InitializationVerifier>();

  EXPECT_EQ(0, p->a);
  EXPECT_EQ(0, p->b);
}

TEST(Initialization, MakeUniqueArray) {
  auto p = absl::make_unique<InitializationVerifier[]>(2);

  EXPECT_EQ(0, p[0].a);
  EXPECT_EQ(0, p[0].b);
  EXPECT_EQ(0, p[1].a);
  EXPECT_EQ(0, p[1].b);
}

struct MoveOnly {
  MoveOnly() = default;
  explicit MoveOnly(int i1) : ip1{new int{i1}} {}
  MoveOnly(int i1, int i2) : ip1{new int{i1}}, ip2{new int{i2}} {}
  std::unique_ptr<int> ip1;
  std::unique_ptr<int> ip2;
};

struct AcceptMoveOnly {
  explicit AcceptMoveOnly(MoveOnly m) : m_(std::move(m)) {}
  MoveOnly m_;
};

TEST(MakeUniqueTest, MoveOnlyTypeAndValue) {
  using ExpectedType = std::unique_ptr<MoveOnly>;
  {
    auto p = absl::make_unique<MoveOnly>();
    static_assert(std::is_same<decltype(p), ExpectedType>::value,
                  "unexpected return type");
    EXPECT_TRUE(!p->ip1);
    EXPECT_TRUE(!p->ip2);
  }
  {
    auto p = absl::make_unique<MoveOnly>(1);
    static_assert(std::is_same<decltype(p), ExpectedType>::value,
                  "unexpected return type");
    EXPECT_TRUE(p->ip1 && *p->ip1 == 1);
    EXPECT_TRUE(!p->ip2);
  }
  {
    auto p = absl::make_unique<MoveOnly>(1, 2);
    static_assert(std::is_same<decltype(p), ExpectedType>::value,
                  "unexpected return type");
    EXPECT_TRUE(p->ip1 && *p->ip1 == 1);
    EXPECT_TRUE(p->ip2 && *p->ip2 == 2);
  }
}

TEST(MakeUniqueTest, AcceptMoveOnly) {
  auto p = absl::make_unique<AcceptMoveOnly>(MoveOnly());
  p = std::unique_ptr<AcceptMoveOnly>(new AcceptMoveOnly(MoveOnly()));
}

struct ArrayWatch {
  void* operator new[](size_t n) {
    allocs().push_back(n);
    return ::operator new[](n);
  }
  void operator delete[](void* p) {
    return ::operator delete[](p);
  }
  static std::vector<size_t>& allocs() {
    static auto& v = *new std::vector<size_t>;
    return v;
  }
};

TEST(Make_UniqueTest, Array) {
  // Ensure state is clean before we start so that these tests
  // are order-agnostic.
  ArrayWatch::allocs().clear();

  auto p = absl::make_unique<ArrayWatch[]>(5);
  static_assert(std::is_same<decltype(p),
                             std::unique_ptr<ArrayWatch[]>>::value,
                "unexpected return type");
  EXPECT_THAT(ArrayWatch::allocs(), ElementsAre(5 * sizeof(ArrayWatch)));
}

TEST(Make_UniqueTest, NotAmbiguousWithStdMakeUnique) {
  // Ensure that absl::make_unique is not ambiguous with std::make_unique.
  // In C++14 mode, the below call to make_unique has both types as candidates.
  struct TakesStdType {
    explicit TakesStdType(const std::vector<int> &vec) {}
  };
  using absl::make_unique;
  (void)make_unique<TakesStdType>(std::vector<int>());
}

#if 0
// These tests shouldn't compile.
TEST(MakeUniqueTestNC, AcceptMoveOnlyLvalue) {
  auto m = MoveOnly();
  auto p = absl::make_unique<AcceptMoveOnly>(m);
}
TEST(MakeUniqueTestNC, KnownBoundArray) {
  auto p = absl::make_unique<ArrayWatch[5]>();
}
#endif

TEST(RawPtrTest, RawPointer) {
  int i = 5;
  EXPECT_EQ(&i, absl::RawPtr(&i));
}

TEST(RawPtrTest, SmartPointer) {
  int* o = new int(5);
  std::unique_ptr<int> p(o);
  EXPECT_EQ(o, absl::RawPtr(p));
}

class IntPointerNonConstDeref {
 public:
  explicit IntPointerNonConstDeref(int* p) : p_(p) {}
  friend bool operator!=(const IntPointerNonConstDeref& a, std::nullptr_t) {
    return a.p_ != nullptr;
  }
  int& operator*() { return *p_; }

 private:
  std::unique_ptr<int> p_;
};

TEST(RawPtrTest, SmartPointerNonConstDereference) {
  int* o = new int(5);
  IntPointerNonConstDeref p(o);
  EXPECT_EQ(o, absl::RawPtr(p));
}

TEST(RawPtrTest, NullValuedRawPointer) {
  int* p = nullptr;
  EXPECT_EQ(nullptr, absl::RawPtr(p));
}

TEST(RawPtrTest, NullValuedSmartPointer) {
  std::unique_ptr<int> p;
  EXPECT_EQ(nullptr, absl::RawPtr(p));
}

TEST(RawPtrTest, Nullptr) {
  auto p = absl::RawPtr(nullptr);
  EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
  EXPECT_EQ(nullptr, p);
}

TEST(RawPtrTest, Null) {
  auto p = absl::RawPtr(nullptr);
  EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
  EXPECT_EQ(nullptr, p);
}

TEST(RawPtrTest, Zero) {
  auto p = absl::RawPtr(nullptr);
  EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
  EXPECT_EQ(nullptr, p);
}

TEST(ShareUniquePtrTest, Share) {
  auto up = absl::make_unique<int>();
  int* rp = up.get();
  auto sp = absl::ShareUniquePtr(std::move(up));
  EXPECT_EQ(sp.get(), rp);
}

TEST(ShareUniquePtrTest, ShareNull) {
  struct NeverDie {
    using pointer = void*;
    void operator()(pointer) {
      ASSERT_TRUE(false) << "Deleter should not have been called.";
    }
  };

  std::unique_ptr<void, NeverDie> up;
  auto sp = absl::ShareUniquePtr(std::move(up));
}

TEST(WeakenPtrTest, Weak) {
  auto sp = std::make_shared<int>();
  auto wp = absl::WeakenPtr(sp);
  EXPECT_EQ(sp.get(), wp.lock().get());
  sp.reset();
  EXPECT_TRUE(wp.expired());
}

// Should not compile.
/*
TEST(RawPtrTest, NotAPointer) {
  absl::RawPtr(1.5);
}
*/

template <typename T>
struct SmartPointer {
  using difference_type = char;
};

struct PointerWith {
  using element_type = int32_t;
  using difference_type = int16_t;
  template <typename U>
  using rebind = SmartPointer<U>;

  static PointerWith pointer_to(
      element_type& r) {  // NOLINT(runtime/references)
    return PointerWith{&r};
  }

  element_type* ptr;
};

template <typename... Args>
struct PointerWithout {};

TEST(PointerTraits, Types) {
  using TraitsWith = absl::pointer_traits<PointerWith>;
  EXPECT_TRUE((std::is_same<TraitsWith::pointer, PointerWith>::value));
  EXPECT_TRUE((std::is_same<TraitsWith::element_type, int32_t>::value));
  EXPECT_TRUE((std::is_same<TraitsWith::difference_type, int16_t>::value));
  EXPECT_TRUE((
      std::is_same<TraitsWith::rebind<int64_t>, SmartPointer<int64_t>>::value));

  using TraitsWithout = absl::pointer_traits<PointerWithout<double, int>>;
  EXPECT_TRUE((std::is_same<TraitsWithout::pointer,
                            PointerWithout<double, int>>::value));
  EXPECT_TRUE((std::is_same<TraitsWithout::element_type, double>::value));
  EXPECT_TRUE(
      (std::is_same<TraitsWithout ::difference_type, std::ptrdiff_t>::value));
  EXPECT_TRUE((std::is_same<TraitsWithout::rebind<int64_t>,
                            PointerWithout<int64_t, int>>::value));

  using TraitsRawPtr = absl::pointer_traits<char*>;
  EXPECT_TRUE((std::is_same<TraitsRawPtr::pointer, char*>::value));
  EXPECT_TRUE((std::is_same<TraitsRawPtr::element_type, char>::value));
  EXPECT_TRUE(
      (std::is_same<TraitsRawPtr::difference_type, std::ptrdiff_t>::value));
  EXPECT_TRUE((std::is_same<TraitsRawPtr::rebind<int64_t>, int64_t*>::value));
}

TEST(PointerTraits, Functions) {
  int i;
  EXPECT_EQ(&i, absl::pointer_traits<PointerWith>::pointer_to(i).ptr);
  EXPECT_EQ(&i, absl::pointer_traits<int*>::pointer_to(i));
}

TEST(AllocatorTraits, Typedefs) {
  struct A {
    struct value_type {};
  };
  EXPECT_TRUE((
      std::is_same<A,
                   typename absl::allocator_traits<A>::allocator_type>::value));
  EXPECT_TRUE(
      (std::is_same<A::value_type,
                    typename absl::allocator_traits<A>::value_type>::value));

  struct X {};
  struct HasPointer {
    using value_type = X;
    using pointer = SmartPointer<X>;
  };
  EXPECT_TRUE((std::is_same<SmartPointer<X>, typename absl::allocator_traits<
                                                 HasPointer>::pointer>::value));
  EXPECT_TRUE(
      (std::is_same<A::value_type*,
                    typename absl::allocator_traits<A>::pointer>::value));

  EXPECT_TRUE(
      (std::is_same<
          SmartPointer<const X>,
          typename absl::allocator_traits<HasPointer>::const_pointer>::value));
  EXPECT_TRUE(
      (std::is_same<const A::value_type*,
                    typename absl::allocator_traits<A>::const_pointer>::value));

  struct HasVoidPointer {
    using value_type = X;
    struct void_pointer {};
  };

  EXPECT_TRUE((std::is_same<HasVoidPointer::void_pointer,
                            typename absl::allocator_traits<
                                HasVoidPointer>::void_pointer>::value));
  EXPECT_TRUE(
      (std::is_same<SmartPointer<void>, typename absl::allocator_traits<
                                            HasPointer>::void_pointer>::value));

  struct HasConstVoidPointer {
    using value_type = X;
    struct const_void_pointer {};
  };

  EXPECT_TRUE(
      (std::is_same<HasConstVoidPointer::const_void_pointer,
                    typename absl::allocator_traits<
                        HasConstVoidPointer>::const_void_pointer>::value));
  EXPECT_TRUE((std::is_same<SmartPointer<const void>,
                            typename absl::allocator_traits<
                                HasPointer>::const_void_pointer>::value));

  struct HasDifferenceType {
    using value_type = X;
    using difference_type = int;
  };
  EXPECT_TRUE(
      (std::is_same<int, typename absl::allocator_traits<
                             HasDifferenceType>::difference_type>::value));
  EXPECT_TRUE((std::is_same<char, typename absl::allocator_traits<
                                      HasPointer>::difference_type>::value));

  struct HasSizeType {
    using value_type = X;
    using size_type = unsigned int;
  };
  EXPECT_TRUE((std::is_same<unsigned int, typename absl::allocator_traits<
                                              HasSizeType>::size_type>::value));
  EXPECT_TRUE((std::is_same<unsigned char, typename absl::allocator_traits<
                                               HasPointer>::size_type>::value));

  struct HasPropagateOnCopy {
    using value_type = X;
    struct propagate_on_container_copy_assignment {};
  };

  EXPECT_TRUE(
      (std::is_same<HasPropagateOnCopy::propagate_on_container_copy_assignment,
                    typename absl::allocator_traits<HasPropagateOnCopy>::
                        propagate_on_container_copy_assignment>::value));
  EXPECT_TRUE(
      (std::is_same<std::false_type,
                    typename absl::allocator_traits<
                        A>::propagate_on_container_copy_assignment>::value));

  struct HasPropagateOnMove {
    using value_type = X;
    struct propagate_on_container_move_assignment {};
  };

  EXPECT_TRUE(
      (std::is_same<HasPropagateOnMove::propagate_on_container_move_assignment,
                    typename absl::allocator_traits<HasPropagateOnMove>::
                        propagate_on_container_move_assignment>::value));
  EXPECT_TRUE(
      (std::is_same<std::false_type,
                    typename absl::allocator_traits<
                        A>::propagate_on_container_move_assignment>::value));

  struct HasPropagateOnSwap {
    using value_type = X;
    struct propagate_on_container_swap {};
  };

  EXPECT_TRUE(
      (std::is_same<HasPropagateOnSwap::propagate_on_container_swap,
                    typename absl::allocator_traits<HasPropagateOnSwap>::
                        propagate_on_container_swap>::value));
  EXPECT_TRUE(
      (std::is_same<std::false_type, typename absl::allocator_traits<A>::
                                         propagate_on_container_swap>::value));

  struct HasIsAlwaysEqual {
    using value_type = X;
    struct is_always_equal {};
  };

  EXPECT_TRUE((std::is_same<HasIsAlwaysEqual::is_always_equal,
                            typename absl::allocator_traits<
                                HasIsAlwaysEqual>::is_always_equal>::value));
  EXPECT_TRUE((std::is_same<std::true_type, typename absl::allocator_traits<
                                                A>::is_always_equal>::value));
  struct NonEmpty {
    using value_type = X;
    int i;
  };
  EXPECT_TRUE(
      (std::is_same<std::false_type,
                    absl::allocator_traits<NonEmpty>::is_always_equal>::value));
}

template <typename T>
struct AllocWithPrivateInheritance : private std::allocator<T> {
  using value_type = T;
};

TEST(AllocatorTraits, RebindWithPrivateInheritance) {
  // Regression test for some versions of gcc that do not like the sfinae we
  // used in combination with private inheritance.
  EXPECT_TRUE(
      (std::is_same<AllocWithPrivateInheritance<int>,
                    absl::allocator_traits<AllocWithPrivateInheritance<char>>::
                        rebind_alloc<int>>::value));
}

template <typename T>
struct Rebound {};

struct AllocWithRebind {
  using value_type = int;
  template <typename T>
  struct rebind {
    using other = Rebound<T>;
  };
};

template <typename T, typename U>
struct AllocWithoutRebind {
  using value_type = int;
};

TEST(AllocatorTraits, Rebind) {
  EXPECT_TRUE(
      (std::is_same<Rebound<int>,
                    typename absl::allocator_traits<
                        AllocWithRebind>::template rebind_alloc<int>>::value));
  EXPECT_TRUE(
      (std::is_same<absl::allocator_traits<Rebound<int>>,
                    typename absl::allocator_traits<
                        AllocWithRebind>::template rebind_traits<int>>::value));

  EXPECT_TRUE(
      (std::is_same<AllocWithoutRebind<double, char>,
                    typename absl::allocator_traits<AllocWithoutRebind<
                        int, char>>::template rebind_alloc<double>>::value));
  EXPECT_TRUE(
      (std::is_same<absl::allocator_traits<AllocWithoutRebind<double, char>>,
                    typename absl::allocator_traits<AllocWithoutRebind<
                        int, char>>::template rebind_traits<double>>::value));
}

struct TestValue {
  TestValue() {}
  explicit TestValue(int* trace) : trace(trace) { ++*trace; }
  ~TestValue() {
    if (trace) --*trace;
  }
  int* trace = nullptr;
};

struct MinimalMockAllocator {
  MinimalMockAllocator() : value(0) {}
  explicit MinimalMockAllocator(int value) : value(value) {}
  MinimalMockAllocator(const MinimalMockAllocator& other)
      : value(other.value) {}
  using value_type = TestValue;
  MOCK_METHOD1(allocate, value_type*(size_t));
  MOCK_METHOD2(deallocate, void(value_type*, size_t));

  int value;
};

TEST(AllocatorTraits, FunctionsMinimal) {
  int trace = 0;
  int hint;
  TestValue x(&trace);
  MinimalMockAllocator mock;
  using Traits = absl::allocator_traits<MinimalMockAllocator>;
  EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));
  EXPECT_CALL(mock, deallocate(&x, 7));

  EXPECT_EQ(&x, Traits::allocate(mock, 7));
  Traits::allocate(mock, 7, static_cast<const void*>(&hint));
  EXPECT_EQ(&x, Traits::allocate(mock, 7, static_cast<const void*>(&hint)));
  Traits::deallocate(mock, &x, 7);

  EXPECT_EQ(1, trace);
  Traits::construct(mock, &x, &trace);
  EXPECT_EQ(2, trace);
  Traits::destroy(mock, &x);
  EXPECT_EQ(1, trace);

  EXPECT_EQ(std::numeric_limits<size_t>::max() / sizeof(TestValue),
            Traits::max_size(mock));

  EXPECT_EQ(0, mock.value);
  EXPECT_EQ(0, Traits::select_on_container_copy_construction(mock).value);
}

struct FullMockAllocator {
  FullMockAllocator() : value(0) {}
  explicit FullMockAllocator(int value) : value(value) {}
  FullMockAllocator(const FullMockAllocator& other) : value(other.value) {}
  using value_type = TestValue;
  MOCK_METHOD1(allocate, value_type*(size_t));
  MOCK_METHOD2(allocate, value_type*(size_t, const void*));
  MOCK_METHOD2(construct, void(value_type*, int*));
  MOCK_METHOD1(destroy, void(value_type*));
  MOCK_CONST_METHOD0(max_size, size_t());
  MOCK_CONST_METHOD0(select_on_container_copy_construction,
                     FullMockAllocator());

  int value;
};

TEST(AllocatorTraits, FunctionsFull) {
  int trace = 0;
  int hint;
  TestValue x(&trace), y;
  FullMockAllocator mock;
  using Traits = absl::allocator_traits<FullMockAllocator>;
  EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));
  EXPECT_CALL(mock, allocate(13, &hint)).WillRepeatedly(Return(&y));
  EXPECT_CALL(mock, construct(&x, &trace));
  EXPECT_CALL(mock, destroy(&x));
  EXPECT_CALL(mock, max_size()).WillRepeatedly(Return(17));
  EXPECT_CALL(mock, select_on_container_copy_construction())
      .WillRepeatedly(Return(FullMockAllocator(23)));

  EXPECT_EQ(&x, Traits::allocate(mock, 7));
  EXPECT_EQ(&y, Traits::allocate(mock, 13, static_cast<const void*>(&hint)));

  EXPECT_EQ(1, trace);
  Traits::construct(mock, &x, &trace);
  EXPECT_EQ(1, trace);
  Traits::destroy(mock, &x);
  EXPECT_EQ(1, trace);

  EXPECT_EQ(17, Traits::max_size(mock));

  EXPECT_EQ(0, mock.value);
  EXPECT_EQ(23, Traits::select_on_container_copy_construction(mock).value);
}

TEST(AllocatorNoThrowTest, DefaultAllocator) {
#if ABSL_ALLOCATOR_NOTHROW
  EXPECT_TRUE(absl::default_allocator_is_nothrow::value);
#else
  EXPECT_FALSE(absl::default_allocator_is_nothrow::value);
#endif
}

TEST(AllocatorNoThrowTest, StdAllocator) {
#if ABSL_ALLOCATOR_NOTHROW
  EXPECT_TRUE(absl::allocator_is_nothrow<std::allocator<int>>::value);
#else
  EXPECT_FALSE(absl::allocator_is_nothrow<std::allocator<int>>::value);
#endif
}

TEST(AllocatorNoThrowTest, CustomAllocator) {
  struct NoThrowAllocator {
    using is_nothrow = std::true_type;
  };
  struct CanThrowAllocator {
    using is_nothrow = std::false_type;
  };
  struct UnspecifiedAllocator {
  };
  EXPECT_TRUE(absl::allocator_is_nothrow<NoThrowAllocator>::value);
  EXPECT_FALSE(absl::allocator_is_nothrow<CanThrowAllocator>::value);
  EXPECT_FALSE(absl::allocator_is_nothrow<UnspecifiedAllocator>::value);
}

}  // namespace