summaryrefslogtreecommitdiff
path: root/absl/hash/hash_test.cc
blob: 5b5561806d638166063f78e1f7b7ccc929d7bbeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/hash/hash.h"

#include <algorithm>
#include <array>
#include <bitset>
#include <cstring>
#include <deque>
#include <forward_list>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <random>
#include <set>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/btree_map.h"
#include "absl/container/btree_set.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/container/node_hash_map.h"
#include "absl/container/node_hash_set.h"
#include "absl/hash/hash_testing.h"
#include "absl/hash/internal/spy_hash_state.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/cord_test_helpers.h"

namespace {

// Utility wrapper of T for the purposes of testing the `AbslHash` type erasure
// mechanism.  `TypeErasedValue<T>` can be constructed with a `T`, and can
// be compared and hashed.  However, all hashing goes through the hashing
// type-erasure framework.
template <typename T>
class TypeErasedValue {
 public:
  TypeErasedValue() = default;
  TypeErasedValue(const TypeErasedValue&) = default;
  TypeErasedValue(TypeErasedValue&&) = default;
  explicit TypeErasedValue(const T& n) : n_(n) {}

  template <typename H>
  friend H AbslHashValue(H hash_state, const TypeErasedValue& v) {
    v.HashValue(absl::HashState::Create(&hash_state));
    return hash_state;
  }

  void HashValue(absl::HashState state) const {
    absl::HashState::combine(std::move(state), n_);
  }

  bool operator==(const TypeErasedValue& rhs) const { return n_ == rhs.n_; }
  bool operator!=(const TypeErasedValue& rhs) const { return !(*this == rhs); }

 private:
  T n_;
};

// A TypeErasedValue refinement, for containers.  It exposes the wrapped
// `value_type` and is constructible from an initializer list.
template <typename T>
class TypeErasedContainer : public TypeErasedValue<T> {
 public:
  using value_type = typename T::value_type;
  TypeErasedContainer() = default;
  TypeErasedContainer(const TypeErasedContainer&) = default;
  TypeErasedContainer(TypeErasedContainer&&) = default;
  explicit TypeErasedContainer(const T& n) : TypeErasedValue<T>(n) {}
  TypeErasedContainer(std::initializer_list<value_type> init_list)
      : TypeErasedContainer(T(init_list.begin(), init_list.end())) {}
  // one-argument constructor of value type T, to appease older toolchains that
  // get confused by one-element initializer lists in some contexts
  explicit TypeErasedContainer(const value_type& v)
      : TypeErasedContainer(T(&v, &v + 1)) {}
};

template <typename T>
using TypeErasedVector = TypeErasedContainer<std::vector<T>>;

using absl::Hash;
using absl::hash_internal::SpyHashState;

template <typename T>
class HashValueIntTest : public testing::Test {
};
TYPED_TEST_SUITE_P(HashValueIntTest);

template <typename T>
SpyHashState SpyHash(const T& value) {
  return SpyHashState::combine(SpyHashState(), value);
}

// Helper trait to verify if T is hashable. We use absl::Hash's poison status to
// detect it.
template <typename T>
using is_hashable = std::is_default_constructible<absl::Hash<T>>;

TYPED_TEST_P(HashValueIntTest, BasicUsage) {
  EXPECT_TRUE((is_hashable<TypeParam>::value));

  TypeParam n = 42;
  EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42}));
  EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0}));
  EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()),
            SpyHash(std::numeric_limits<TypeParam>::min()));
}

TYPED_TEST_P(HashValueIntTest, FastPath) {
  // Test the fast-path to make sure the values are the same.
  TypeParam n = 42;
  EXPECT_EQ(absl::Hash<TypeParam>{}(n),
            absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n)));
}

REGISTER_TYPED_TEST_SUITE_P(HashValueIntTest, BasicUsage, FastPath);
using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t,
                                uint32_t, uint64_t, size_t>;
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueIntTest, IntTypes);

enum LegacyEnum { kValue1, kValue2, kValue3 };

enum class EnumClass { kValue4, kValue5, kValue6 };

TEST(HashValueTest, EnumAndBool) {
  EXPECT_TRUE((is_hashable<LegacyEnum>::value));
  EXPECT_TRUE((is_hashable<EnumClass>::value));
  EXPECT_TRUE((is_hashable<bool>::value));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3)));
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6)));
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(true, false)));
}

TEST(HashValueTest, FloatingPoint) {
  EXPECT_TRUE((is_hashable<float>::value));
  EXPECT_TRUE((is_hashable<double>::value));
  EXPECT_TRUE((is_hashable<long double>::value));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits<float>::infinity(),
                      -std::numeric_limits<float>::infinity())));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(42., 0., -0., std::numeric_limits<double>::infinity(),
                      -std::numeric_limits<double>::infinity())));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      // Add some values with small exponent to test that NORMAL values also
      // append their category.
      .5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L,
      17 * static_cast<long double>(std::numeric_limits<double>::max()),
      std::numeric_limits<long double>::infinity(),
      -std::numeric_limits<long double>::infinity())));
}

TEST(HashValueTest, Pointer) {
  EXPECT_TRUE((is_hashable<int*>::value));
  EXPECT_TRUE((is_hashable<int(*)(char, float)>::value));
  EXPECT_TRUE((is_hashable<void(*)(int, int, ...)>::value));

  int i;
  int* ptr = &i;
  int* n = nullptr;

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(&i, ptr, nullptr, ptr + 1, n)));
}

TEST(HashValueTest, PointerAlignment) {
  // We want to make sure that pointer alignment will not cause bits to be
  // stuck.

  constexpr size_t kTotalSize = 1 << 20;
  std::unique_ptr<char[]> data(new char[kTotalSize]);
  constexpr size_t kLog2NumValues = 5;
  constexpr size_t kNumValues = 1 << kLog2NumValues;

  for (size_t align = 1; align < kTotalSize / kNumValues;
       align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) {
    SCOPED_TRACE(align);
    ASSERT_LE(align * kNumValues, kTotalSize);

    size_t bits_or = 0;
    size_t bits_and = ~size_t{};

    for (size_t i = 0; i < kNumValues; ++i) {
      size_t hash = absl::Hash<void*>()(data.get() + i * align);
      bits_or |= hash;
      bits_and &= hash;
    }

    // Limit the scope to the bits we would be using for Swisstable.
    constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1;
    size_t stuck_bits = (~bits_or | bits_and) & kMask;
    EXPECT_EQ(stuck_bits, 0u) << "0x" << std::hex << stuck_bits;
  }
}

TEST(HashValueTest, PointerToMember) {
  struct Bass {
    void q() {}
  };

  struct A : Bass {
    virtual ~A() = default;
    virtual void vfa() {}

    static auto pq() -> void (A::*)() { return &A::q; }
  };

  struct B : Bass {
    virtual ~B() = default;
    virtual void vfb() {}

    static auto pq() -> void (B::*)() { return &B::q; }
  };

  struct Foo : A, B {
    void f1() {}
    void f2() const {}

    int g1() & { return 0; }
    int g2() const & { return 0; }
    int g3() && { return 0; }
    int g4() const && { return 0; }

    int h1() & { return 0; }
    int h2() const & { return 0; }
    int h3() && { return 0; }
    int h4() const && { return 0; }

    int a;
    int b;

    const int c = 11;
    const int d = 22;
  };

  EXPECT_TRUE((is_hashable<float Foo::*>::value));
  EXPECT_TRUE((is_hashable<double (Foo::*)(int, int)&&>::value));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(&Foo::a, &Foo::b, static_cast<int Foo::*>(nullptr))));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(&Foo::c, &Foo::d, static_cast<const int Foo::*>(nullptr),
                      &Foo::a, &Foo::b)));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      &Foo::f1, static_cast<void (Foo::*)()>(nullptr))));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      &Foo::f2, static_cast<void (Foo::*)() const>(nullptr))));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      &Foo::g1, &Foo::h1, static_cast<int (Foo::*)() &>(nullptr))));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      &Foo::g2, &Foo::h2, static_cast<int (Foo::*)() const &>(nullptr))));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      &Foo::g3, &Foo::h3, static_cast<int (Foo::*)() &&>(nullptr))));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      &Foo::g4, &Foo::h4, static_cast<int (Foo::*)() const &&>(nullptr))));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(static_cast<void (Foo::*)()>(&Foo::vfa),
                      static_cast<void (Foo::*)()>(&Foo::vfb),
                      static_cast<void (Foo::*)()>(nullptr))));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(static_cast<void (Foo::*)()>(Foo::A::pq()),
                      static_cast<void (Foo::*)()>(Foo::B::pq()),
                      static_cast<void (Foo::*)()>(nullptr))));
}

TEST(HashValueTest, PairAndTuple) {
  EXPECT_TRUE((is_hashable<std::pair<int, int>>::value));
  EXPECT_TRUE((is_hashable<std::pair<const int&, const int&>>::value));
  EXPECT_TRUE((is_hashable<std::tuple<int&, int&>>::value));
  EXPECT_TRUE((is_hashable<std::tuple<int&&, int&&>>::value));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0),
      std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42))));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42),
                      std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0),
                      std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9),
                      std::make_tuple(0, 0, -42))));

  // Test that tuples of lvalue references work (so we need a few lvalues):
  int a = 0, b = 1, c = 17, d = 23;
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d))));

  // Test that tuples of rvalue references work:
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42),
      std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0),
      std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9),
      std::forward_as_tuple(0, 0, -42))));
}

TEST(HashValueTest, CombineContiguousWorks) {
  std::vector<std::tuple<int>> v1 = {std::make_tuple(1), std::make_tuple(3)};
  std::vector<std::tuple<int>> v2 = {std::make_tuple(1), std::make_tuple(2)};

  auto vh1 = SpyHash(v1);
  auto vh2 = SpyHash(v2);
  EXPECT_NE(vh1, vh2);
}

struct DummyDeleter {
  template <typename T>
  void operator() (T* ptr) {}
};

struct SmartPointerEq {
  template <typename T, typename U>
  bool operator()(const T& t, const U& u) const {
    return GetPtr(t) == GetPtr(u);
  }

  template <typename T>
  static auto GetPtr(const T& t) -> decltype(&*t) {
    return t ? &*t : nullptr;
  }

  static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; }
};

TEST(HashValueTest, SmartPointers) {
  EXPECT_TRUE((is_hashable<std::unique_ptr<int>>::value));
  EXPECT_TRUE((is_hashable<std::unique_ptr<int, DummyDeleter>>::value));
  EXPECT_TRUE((is_hashable<std::shared_ptr<int>>::value));

  int i, j;
  std::unique_ptr<int, DummyDeleter> unique1(&i);
  std::unique_ptr<int, DummyDeleter> unique2(&i);
  std::unique_ptr<int, DummyDeleter> unique_other(&j);
  std::unique_ptr<int, DummyDeleter> unique_null;

  std::shared_ptr<int> shared1(&i, DummyDeleter());
  std::shared_ptr<int> shared2(&i, DummyDeleter());
  std::shared_ptr<int> shared_other(&j, DummyDeleter());
  std::shared_ptr<int> shared_null;

  // Sanity check of the Eq function.
  ASSERT_TRUE(SmartPointerEq{}(unique1, shared1));
  ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other));
  ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr));
  ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::forward_as_tuple(&i, nullptr,                    //
                            unique1, unique2, unique_null,  //
                            absl::make_unique<int>(),       //
                            shared1, shared2, shared_null,  //
                            std::make_shared<int>()),
      SmartPointerEq{}));
}

TEST(HashValueTest, FunctionPointer) {
  using Func = int (*)();
  EXPECT_TRUE(is_hashable<Func>::value);

  Func p1 = [] { return 2; }, p2 = [] { return 1; };
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(p1, p2, nullptr)));
}

struct WrapInTuple {
  template <typename T>
  std::tuple<int, T, size_t> operator()(const T& t) const {
    return std::make_tuple(7, t, 0xdeadbeef);
  }
};

absl::Cord FlatCord(absl::string_view sv) {
  absl::Cord c(sv);
  c.Flatten();
  return c;
}

absl::Cord FragmentedCord(absl::string_view sv) {
  if (sv.size() < 2) {
    return absl::Cord(sv);
  }
  size_t halfway = sv.size() / 2;
  std::vector<absl::string_view> parts = {sv.substr(0, halfway),
                                          sv.substr(halfway)};
  return absl::MakeFragmentedCord(parts);
}

TEST(HashValueTest, Strings) {
  EXPECT_TRUE((is_hashable<std::string>::value));

  const std::string small = "foo";
  const std::string dup = "foofoo";
  const std::string large = std::string(2048, 'x');  // multiple of chunk size
  const std::string huge = std::string(5000, 'a');   // not a multiple

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(  //
      std::string(), absl::string_view(), absl::Cord(),                     //
      std::string(""), absl::string_view(""), absl::Cord(""),               //
      std::string(small), absl::string_view(small), absl::Cord(small),      //
      std::string(dup), absl::string_view(dup), absl::Cord(dup),            //
      std::string(large), absl::string_view(large), absl::Cord(large),      //
      std::string(huge), absl::string_view(huge), FlatCord(huge),           //
      FragmentedCord(huge))));

  // Also check that nested types maintain the same hash.
  const WrapInTuple t{};
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(  //
      t(std::string()), t(absl::string_view()), t(absl::Cord()),            //
      t(std::string("")), t(absl::string_view("")), t(absl::Cord("")),      //
      t(std::string(small)), t(absl::string_view(small)),                   //
          t(absl::Cord(small)),                                             //
      t(std::string(dup)), t(absl::string_view(dup)), t(absl::Cord(dup)),   //
      t(std::string(large)), t(absl::string_view(large)),                   //
          t(absl::Cord(large)),                                             //
      t(std::string(huge)), t(absl::string_view(huge)),                     //
          t(FlatCord(huge)), t(FragmentedCord(huge)))));

  // Make sure that hashing a `const char*` does not use its string-value.
  EXPECT_NE(SpyHash(static_cast<const char*>("ABC")),
            SpyHash(absl::string_view("ABC")));
}

TEST(HashValueTest, WString) {
  EXPECT_TRUE((is_hashable<std::wstring>::value));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      std::wstring(), std::wstring(L"ABC"), std::wstring(L"ABC"),
      std::wstring(L"Some other different string"),
      std::wstring(L"Iñtërnâtiônàlizætiøn"))));
}

TEST(HashValueTest, U16String) {
  EXPECT_TRUE((is_hashable<std::u16string>::value));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      std::u16string(), std::u16string(u"ABC"), std::u16string(u"ABC"),
      std::u16string(u"Some other different string"),
      std::u16string(u"Iñtërnâtiônàlizætiøn"))));
}

TEST(HashValueTest, U32String) {
  EXPECT_TRUE((is_hashable<std::u32string>::value));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      std::u32string(), std::u32string(U"ABC"), std::u32string(U"ABC"),
      std::u32string(U"Some other different string"),
      std::u32string(U"Iñtërnâtiônàlizætiøn"))));
}

TEST(HashValueTest, StdArray) {
  EXPECT_TRUE((is_hashable<std::array<int, 3>>::value));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(std::array<int, 3>{}, std::array<int, 3>{{0, 23, 42}})));
}

TEST(HashValueTest, StdBitset) {
  EXPECT_TRUE((is_hashable<std::bitset<257>>::value));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      {std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"),
       std::bitset<2>("11")}));
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      {std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()}));

  constexpr int kNumBits = 256;
  std::array<std::string, 6> bit_strings;
  bit_strings.fill(std::string(kNumBits, '1'));
  bit_strings[1][0] = '0';
  bit_strings[2][1] = '0';
  bit_strings[3][kNumBits / 3] = '0';
  bit_strings[4][kNumBits - 2] = '0';
  bit_strings[5][kNumBits - 1] = '0';
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      {std::bitset<kNumBits>(bit_strings[0].c_str()),
       std::bitset<kNumBits>(bit_strings[1].c_str()),
       std::bitset<kNumBits>(bit_strings[2].c_str()),
       std::bitset<kNumBits>(bit_strings[3].c_str()),
       std::bitset<kNumBits>(bit_strings[4].c_str()),
       std::bitset<kNumBits>(bit_strings[5].c_str())}));
}  // namespace

// Dummy type with unordered equality and hashing semantics.  This preserves
// input order internally, and is used below to ensure we get test coverage
// for equal sequences with different iteraton orders.
template <typename T>
class UnorderedSequence {
 public:
  UnorderedSequence() = default;
  template <typename TT>
  UnorderedSequence(std::initializer_list<TT> l)
      : values_(l.begin(), l.end()) {}
  template <typename ForwardIterator,
            typename std::enable_if<!std::is_integral<ForwardIterator>::value,
                                    bool>::type = true>
  UnorderedSequence(ForwardIterator begin, ForwardIterator end)
      : values_(begin, end) {}
  // one-argument constructor of value type T, to appease older toolchains that
  // get confused by one-element initializer lists in some contexts
  explicit UnorderedSequence(const T& v) : values_(&v, &v + 1) {}

  using value_type = T;

  size_t size() const { return values_.size(); }
  typename std::vector<T>::const_iterator begin() const {
    return values_.begin();
  }
  typename std::vector<T>::const_iterator end() const { return values_.end(); }

  friend bool operator==(const UnorderedSequence& lhs,
                         const UnorderedSequence& rhs) {
    return lhs.size() == rhs.size() &&
           std::is_permutation(lhs.begin(), lhs.end(), rhs.begin());
  }
  friend bool operator!=(const UnorderedSequence& lhs,
                         const UnorderedSequence& rhs) {
    return !(lhs == rhs);
  }
  template <typename H>
  friend H AbslHashValue(H h, const UnorderedSequence& u) {
    return H::combine(H::combine_unordered(std::move(h), u.begin(), u.end()),
                      u.size());
  }

 private:
  std::vector<T> values_;
};

template <typename T>
class HashValueSequenceTest : public testing::Test {
};
TYPED_TEST_SUITE_P(HashValueSequenceTest);

TYPED_TEST_P(HashValueSequenceTest, BasicUsage) {
  EXPECT_TRUE((is_hashable<TypeParam>::value));

  using IntType = typename TypeParam::value_type;
  auto a = static_cast<IntType>(0);
  auto b = static_cast<IntType>(23);
  auto c = static_cast<IntType>(42);

  std::vector<TypeParam> exemplars = {
      TypeParam(),        TypeParam(),        TypeParam{a, b, c},
      TypeParam{a, c, b}, TypeParam{c, a, b}, TypeParam{a},
      TypeParam{a, a},    TypeParam{a, a, a}, TypeParam{a, a, b},
      TypeParam{a, b, a}, TypeParam{b, a, a}, TypeParam{a, b},
      TypeParam{b, c}};
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars));
}

REGISTER_TYPED_TEST_SUITE_P(HashValueSequenceTest, BasicUsage);
using IntSequenceTypes = testing::Types<
    std::deque<int>, std::forward_list<int>, std::list<int>, std::vector<int>,
    std::vector<bool>, TypeErasedContainer<std::vector<int>>, std::set<int>,
    std::multiset<int>, UnorderedSequence<int>,
    TypeErasedContainer<UnorderedSequence<int>>, std::unordered_set<int>,
    std::unordered_multiset<int>, absl::flat_hash_set<int>,
    absl::node_hash_set<int>, absl::btree_set<int>>;
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueSequenceTest, IntSequenceTypes);

template <typename T>
class HashValueNestedSequenceTest : public testing::Test {};
TYPED_TEST_SUITE_P(HashValueNestedSequenceTest);

TYPED_TEST_P(HashValueNestedSequenceTest, BasicUsage) {
  using T = TypeParam;
  using V = typename T::value_type;
  std::vector<T> exemplars = {
      // empty case
      T{},
      // sets of empty sets
      T{V{}}, T{V{}, V{}}, T{V{}, V{}, V{}},
      // multisets of different values
      T{V{1}}, T{V{1, 1}, V{1, 1}}, T{V{1, 1, 1}, V{1, 1, 1}, V{1, 1, 1}},
      // various orderings of same nested sets
      T{V{}, V{1, 2}}, T{V{}, V{2, 1}}, T{V{1, 2}, V{}}, T{V{2, 1}, V{}},
      // various orderings of various nested sets, case 2
      T{V{1, 2}, V{3, 4}}, T{V{1, 2}, V{4, 3}}, T{V{1, 3}, V{2, 4}},
      T{V{1, 3}, V{4, 2}}, T{V{1, 4}, V{2, 3}}, T{V{1, 4}, V{3, 2}},
      T{V{2, 3}, V{1, 4}}, T{V{2, 3}, V{4, 1}}, T{V{2, 4}, V{1, 3}},
      T{V{2, 4}, V{3, 1}}, T{V{3, 4}, V{1, 2}}, T{V{3, 4}, V{2, 1}}};
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars));
}

REGISTER_TYPED_TEST_SUITE_P(HashValueNestedSequenceTest, BasicUsage);
template <typename T>
using TypeErasedSet = TypeErasedContainer<UnorderedSequence<T>>;

using NestedIntSequenceTypes = testing::Types<
    std::vector<std::vector<int>>, std::vector<UnorderedSequence<int>>,
    std::vector<TypeErasedSet<int>>, UnorderedSequence<std::vector<int>>,
    UnorderedSequence<UnorderedSequence<int>>,
    UnorderedSequence<TypeErasedSet<int>>, TypeErasedSet<std::vector<int>>,
    TypeErasedSet<UnorderedSequence<int>>, TypeErasedSet<TypeErasedSet<int>>>;
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueNestedSequenceTest,
                              NestedIntSequenceTypes);

// Private type that only supports AbslHashValue to make sure our chosen hash
// implementation is recursive within absl::Hash.
// It uses std::abs() on the value to provide different bitwise representations
// of the same logical value.
struct Private {
  int i;
  template <typename H>
  friend H AbslHashValue(H h, Private p) {
    return H::combine(std::move(h), std::abs(p.i));
  }

  friend bool operator==(Private a, Private b) {
    return std::abs(a.i) == std::abs(b.i);
  }

  friend std::ostream& operator<<(std::ostream& o, Private p) {
    return o << p.i;
  }
};

// Test helper for combine_piecewise_buffer.  It holds a string_view to the
// buffer-to-be-hashed.  Its AbslHashValue specialization will split up its
// contents at the character offsets requested.
class PiecewiseHashTester {
 public:
  // Create a hash view of a buffer to be hashed contiguously.
  explicit PiecewiseHashTester(absl::string_view buf)
      : buf_(buf), piecewise_(false), split_locations_() {}

  // Create a hash view of a buffer to be hashed piecewise, with breaks at the
  // given locations.
  PiecewiseHashTester(absl::string_view buf, std::set<size_t> split_locations)
      : buf_(buf),
        piecewise_(true),
        split_locations_(std::move(split_locations)) {}

  template <typename H>
  friend H AbslHashValue(H h, const PiecewiseHashTester& p) {
    if (!p.piecewise_) {
      return H::combine_contiguous(std::move(h), p.buf_.data(), p.buf_.size());
    }
    absl::hash_internal::PiecewiseCombiner combiner;
    if (p.split_locations_.empty()) {
      h = combiner.add_buffer(std::move(h), p.buf_.data(), p.buf_.size());
      return combiner.finalize(std::move(h));
    }
    size_t begin = 0;
    for (size_t next : p.split_locations_) {
      absl::string_view chunk = p.buf_.substr(begin, next - begin);
      h = combiner.add_buffer(std::move(h), chunk.data(), chunk.size());
      begin = next;
    }
    absl::string_view last_chunk = p.buf_.substr(begin);
    if (!last_chunk.empty()) {
      h = combiner.add_buffer(std::move(h), last_chunk.data(),
                              last_chunk.size());
    }
    return combiner.finalize(std::move(h));
  }

 private:
  absl::string_view buf_;
  bool piecewise_;
  std::set<size_t> split_locations_;
};

// Dummy object that hashes as two distinct contiguous buffers, "foo" followed
// by "bar"
struct DummyFooBar {
  template <typename H>
  friend H AbslHashValue(H h, const DummyFooBar&) {
    const char* foo = "foo";
    const char* bar = "bar";
    h = H::combine_contiguous(std::move(h), foo, 3);
    h = H::combine_contiguous(std::move(h), bar, 3);
    return h;
  }
};

TEST(HashValueTest, CombinePiecewiseBuffer) {
  absl::Hash<PiecewiseHashTester> hash;

  // Check that hashing an empty buffer through the piecewise API works.
  EXPECT_EQ(hash(PiecewiseHashTester("")), hash(PiecewiseHashTester("", {})));

  // Similarly, small buffers should give consistent results
  EXPECT_EQ(hash(PiecewiseHashTester("foobar")),
            hash(PiecewiseHashTester("foobar", {})));
  EXPECT_EQ(hash(PiecewiseHashTester("foobar")),
            hash(PiecewiseHashTester("foobar", {3})));

  // But hashing "foobar" in pieces gives a different answer than hashing "foo"
  // contiguously, then "bar" contiguously.
  EXPECT_NE(hash(PiecewiseHashTester("foobar", {3})),
            absl::Hash<DummyFooBar>()(DummyFooBar{}));

  // Test hashing a large buffer incrementally, broken up in several different
  // ways.  Arrange for breaks on and near the stride boundaries to look for
  // off-by-one errors in the implementation.
  //
  // This test is run on a buffer that is a multiple of the stride size, and one
  // that isn't.
  for (size_t big_buffer_size : {1024u * 2 + 512u, 1024u * 3}) {
    SCOPED_TRACE(big_buffer_size);
    std::string big_buffer;
    for (size_t i = 0; i < big_buffer_size; ++i) {
      // Arbitrary string
      big_buffer.push_back(32 + (i * (i / 3)) % 64);
    }
    auto big_buffer_hash = hash(PiecewiseHashTester(big_buffer));

    const int possible_breaks = 9;
    size_t breaks[possible_breaks] = {1,    512,  1023, 1024, 1025,
                                      1536, 2047, 2048, 2049};
    for (unsigned test_mask = 0; test_mask < (1u << possible_breaks);
         ++test_mask) {
      SCOPED_TRACE(test_mask);
      std::set<size_t> break_locations;
      for (int j = 0; j < possible_breaks; ++j) {
        if (test_mask & (1u << j)) {
          break_locations.insert(breaks[j]);
        }
      }
      EXPECT_EQ(
          hash(PiecewiseHashTester(big_buffer, std::move(break_locations))),
          big_buffer_hash);
    }
  }
}

TEST(HashValueTest, PrivateSanity) {
  // Sanity check that Private is working as the tests below expect it to work.
  EXPECT_TRUE(is_hashable<Private>::value);
  EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1}));
  EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1}));
}

TEST(HashValueTest, Optional) {
  EXPECT_TRUE(is_hashable<absl::optional<Private>>::value);

  using O = absl::optional<Private>;
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}})));
}

TEST(HashValueTest, Variant) {
  using V = absl::variant<Private, std::string>;
  EXPECT_TRUE(is_hashable<V>::value);

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD"))));

#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
  struct S {};
  EXPECT_FALSE(is_hashable<absl::variant<S>>::value);
#endif
}

template <typename T>
class HashValueAssociativeMapTest : public testing::Test {};
TYPED_TEST_SUITE_P(HashValueAssociativeMapTest);

TYPED_TEST_P(HashValueAssociativeMapTest, BasicUsage) {
  using M = TypeParam;
  using V = typename M::value_type;
  std::vector<M> exemplars{M{},
                           M{V{0, "foo"}},
                           M{V{1, "foo"}},
                           M{V{0, "bar"}},
                           M{V{1, "bar"}},
                           M{V{0, "foo"}, V{42, "bar"}},
                           M{V{42, "bar"}, V{0, "foo"}},
                           M{V{1, "foo"}, V{42, "bar"}},
                           M{V{1, "foo"}, V{43, "bar"}},
                           M{V{1, "foo"}, V{43, "baz"}}};
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars));
}

REGISTER_TYPED_TEST_SUITE_P(HashValueAssociativeMapTest, BasicUsage);
using AssociativeMapTypes = testing::Types<
    std::map<int, std::string>, std::unordered_map<int, std::string>,
    absl::flat_hash_map<int, std::string>,
    absl::node_hash_map<int, std::string>, absl::btree_map<int, std::string>,
    UnorderedSequence<std::pair<const int, std::string>>>;
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueAssociativeMapTest,
                              AssociativeMapTypes);

template <typename T>
class HashValueAssociativeMultimapTest : public testing::Test {};
TYPED_TEST_SUITE_P(HashValueAssociativeMultimapTest);

TYPED_TEST_P(HashValueAssociativeMultimapTest, BasicUsage) {
  using MM = TypeParam;
  using V = typename MM::value_type;
  std::vector<MM> exemplars{MM{},
                            MM{V{0, "foo"}},
                            MM{V{1, "foo"}},
                            MM{V{0, "bar"}},
                            MM{V{1, "bar"}},
                            MM{V{0, "foo"}, V{0, "bar"}},
                            MM{V{0, "bar"}, V{0, "foo"}},
                            MM{V{0, "foo"}, V{42, "bar"}},
                            MM{V{1, "foo"}, V{42, "bar"}},
                            MM{V{1, "foo"}, V{1, "foo"}, V{43, "bar"}},
                            MM{V{1, "foo"}, V{43, "bar"}, V{1, "foo"}},
                            MM{V{1, "foo"}, V{43, "baz"}}};
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars));
}

REGISTER_TYPED_TEST_SUITE_P(HashValueAssociativeMultimapTest, BasicUsage);
using AssociativeMultimapTypes =
    testing::Types<std::multimap<int, std::string>,
                   std::unordered_multimap<int, std::string>>;
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueAssociativeMultimapTest,
                              AssociativeMultimapTypes);

TEST(HashValueTest, ReferenceWrapper) {
  EXPECT_TRUE(is_hashable<std::reference_wrapper<Private>>::value);

  Private p1{1}, p10{10};
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      p1, p10, std::ref(p1), std::ref(p10), std::cref(p1), std::cref(p10))));

  EXPECT_TRUE(is_hashable<std::reference_wrapper<int>>::value);
  int one = 1, ten = 10;
  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
      one, ten, std::ref(one), std::ref(ten), std::cref(one), std::cref(ten))));

  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
      std::make_tuple(std::tuple<std::reference_wrapper<int>>(std::ref(one)),
                      std::tuple<std::reference_wrapper<int>>(std::ref(ten)),
                      std::tuple<int>(one), std::tuple<int>(ten))));
}

template <typename T, typename = void>
struct IsHashCallable : std::false_type {};

template <typename T>
struct IsHashCallable<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()(
                            std::declval<const T&>()))>> : std::true_type {};

template <typename T, typename = void>
struct IsAggregateInitializable : std::false_type {};

template <typename T>
struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>>
    : std::true_type {};

TEST(IsHashableTest, ValidHash) {
  EXPECT_TRUE((is_hashable<int>::value));
  EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value);
  EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value);
  EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value);
  EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value);
  EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value);
  EXPECT_TRUE(IsHashCallable<int>::value);
  EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value);
}

#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
TEST(IsHashableTest, PoisonHash) {
  struct X {};
  EXPECT_FALSE((is_hashable<X>::value));
  EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value);
  EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value);
  EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value);
  EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value);
  EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value);
  EXPECT_FALSE(IsHashCallable<X>::value);
#if !defined(__GNUC__) || defined(__clang__)
  // TODO(b/144368551): As of GCC 8.4 this does not compile.
  EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value);
#endif
}
#endif  // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_

// Hashable types
//
// These types exist simply to exercise various AbslHashValue behaviors, so
// they are named by what their AbslHashValue overload does.
struct NoOp {
  template <typename HashCode>
  friend HashCode AbslHashValue(HashCode h, NoOp n) {
    return h;
  }
};

struct EmptyCombine {
  template <typename HashCode>
  friend HashCode AbslHashValue(HashCode h, EmptyCombine e) {
    return HashCode::combine(std::move(h));
  }
};

template <typename Int>
struct CombineIterative {
  template <typename HashCode>
  friend HashCode AbslHashValue(HashCode h, CombineIterative c) {
    for (int i = 0; i < 5; ++i) {
      h = HashCode::combine(std::move(h), Int(i));
    }
    return h;
  }
};

template <typename Int>
struct CombineVariadic {
  template <typename HashCode>
  friend HashCode AbslHashValue(HashCode h, CombineVariadic c) {
    return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3),
                             Int(4));
  }
};
enum class InvokeTag {
  kUniquelyRepresented,
  kHashValue,
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
  kLegacyHash,
#endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
  kStdHash,
  kNone
};

template <InvokeTag T>
using InvokeTagConstant = std::integral_constant<InvokeTag, T>;

template <InvokeTag... Tags>
struct MinTag;

template <InvokeTag a, InvokeTag b, InvokeTag... Tags>
struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {};

template <InvokeTag a>
struct MinTag<a> : InvokeTagConstant<a> {};

template <InvokeTag... Tags>
struct CustomHashType {
  explicit CustomHashType(size_t val) : value(val) {}
  size_t value;
};

template <InvokeTag allowed, InvokeTag... tags>
struct EnableIfContained
    : std::enable_if<absl::disjunction<
          std::integral_constant<bool, allowed == tags>...>::value> {};

template <
    typename H, InvokeTag... Tags,
    typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type>
H AbslHashValue(H state, CustomHashType<Tags...> t) {
  static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, "");
  return H::combine(std::move(state),
                    t.value + static_cast<int>(InvokeTag::kHashValue));
}

}  // namespace

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace hash_internal {
template <InvokeTag... Tags>
struct is_uniquely_represented<
    CustomHashType<Tags...>,
    typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type>
    : std::true_type {};
}  // namespace hash_internal
ABSL_NAMESPACE_END
}  // namespace absl

#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE {
template <InvokeTag... Tags>
struct hash<CustomHashType<Tags...>> {
  template <InvokeTag... TagsIn, typename = typename EnableIfContained<
                                     InvokeTag::kLegacyHash, TagsIn...>::type>
  size_t operator()(CustomHashType<TagsIn...> t) const {
    static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, "");
    return t.value + static_cast<int>(InvokeTag::kLegacyHash);
  }
};
}  // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE
#endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_

namespace std {
template <InvokeTag... Tags>  // NOLINT
struct hash<CustomHashType<Tags...>> {
  template <InvokeTag... TagsIn, typename = typename EnableIfContained<
                                     InvokeTag::kStdHash, TagsIn...>::type>
  size_t operator()(CustomHashType<TagsIn...> t) const {
    static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, "");
    return t.value + static_cast<int>(InvokeTag::kStdHash);
  }
};
}  // namespace std

namespace {

template <typename... T>
void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) {
  using type = CustomHashType<T::value...>;
  SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...}));
  EXPECT_TRUE(is_hashable<type>());
  EXPECT_TRUE(is_hashable<const type>());
  EXPECT_TRUE(is_hashable<const type&>());

  const size_t offset = static_cast<int>(std::min({T::value...}));
  EXPECT_EQ(SpyHash(type(7)), SpyHash(size_t{7 + offset}));
}

void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) {
#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
  // is_hashable is false if we don't support any of the hooks.
  using type = CustomHashType<>;
  EXPECT_FALSE(is_hashable<type>());
  EXPECT_FALSE(is_hashable<const type>());
  EXPECT_FALSE(is_hashable<const type&>());
#endif  // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
}

template <InvokeTag Tag, typename... T>
void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) {
  constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1);
  TestCustomHashType(InvokeTagConstant<next>(), tag, t...);
  TestCustomHashType(InvokeTagConstant<next>(), t...);
}

TEST(HashTest, CustomHashType) {
  TestCustomHashType(InvokeTagConstant<InvokeTag{}>());
}

TEST(HashTest, NoOpsAreEquivalent) {
  EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({}));
  EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({}));
}

template <typename T>
class HashIntTest : public testing::Test {
};
TYPED_TEST_SUITE_P(HashIntTest);

TYPED_TEST_P(HashIntTest, BasicUsage) {
  EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0));
  EXPECT_NE(Hash<NoOp>()({}),
            Hash<TypeParam>()(std::numeric_limits<TypeParam>::max()));
  if (std::numeric_limits<TypeParam>::min() != 0) {
    EXPECT_NE(Hash<NoOp>()({}),
              Hash<TypeParam>()(std::numeric_limits<TypeParam>::min()));
  }

  EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}),
            Hash<CombineVariadic<TypeParam>>()({}));
}

REGISTER_TYPED_TEST_SUITE_P(HashIntTest, BasicUsage);
using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t,
                                uint32_t, uint64_t, size_t>;
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashIntTest, IntTypes);

struct StructWithPadding {
  char c;
  int i;

  template <typename H>
  friend H AbslHashValue(H hash_state, const StructWithPadding& s) {
    return H::combine(std::move(hash_state), s.c, s.i);
  }
};

static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int),
              "StructWithPadding doesn't have padding");
static_assert(std::is_standard_layout<StructWithPadding>::value, "");

// This check has to be disabled because libstdc++ doesn't support it.
// static_assert(std::is_trivially_constructible<StructWithPadding>::value, "");

template <typename T>
struct ArraySlice {
  T* begin;
  T* end;

  template <typename H>
  friend H AbslHashValue(H hash_state, const ArraySlice& slice) {
    for (auto t = slice.begin; t != slice.end; ++t) {
      hash_state = H::combine(std::move(hash_state), *t);
    }
    return hash_state;
  }
};

TEST(HashTest, HashNonUniquelyRepresentedType) {
  // Create equal StructWithPadding objects that are known to have non-equal
  // padding bytes.
  static const size_t kNumStructs = 10;
  unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)];
  std::memset(buffer1, 0, sizeof(buffer1));
  auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1);

  unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)];
  std::memset(buffer2, 255, sizeof(buffer2));
  auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2);
  for (size_t i = 0; i < kNumStructs; ++i) {
    SCOPED_TRACE(i);
    s1[i].c = s2[i].c = static_cast<char>('0' + i);
    s1[i].i = s2[i].i = static_cast<int>(i);
    ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding),
                        buffer2 + i * sizeof(StructWithPadding),
                        sizeof(StructWithPadding)) == 0)
        << "Bug in test code: objects do not have unequal"
        << " object representations";
  }

  EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0]));
  EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}),
            Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs}));
}

TEST(HashTest, StandardHashContainerUsage) {
  std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"},
                                                         {42, "bar"}};

  EXPECT_NE(map.find(0), map.end());
  EXPECT_EQ(map.find(1), map.end());
  EXPECT_NE(map.find(0u), map.end());
}

struct ConvertibleFromNoOp {
  ConvertibleFromNoOp(NoOp) {}  // NOLINT(runtime/explicit)

  template <typename H>
  friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) {
    return H::combine(std::move(hash_state), 1);
  }
};

TEST(HashTest, HeterogeneousCall) {
  EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()),
            Hash<NoOp>()(NoOp()));
}

TEST(IsUniquelyRepresentedTest, SanityTest) {
  using absl::hash_internal::is_uniquely_represented;

  EXPECT_TRUE(is_uniquely_represented<unsigned char>::value);
  EXPECT_TRUE(is_uniquely_represented<int>::value);
  EXPECT_FALSE(is_uniquely_represented<bool>::value);
  EXPECT_FALSE(is_uniquely_represented<int*>::value);
}

struct IntAndString {
  int i;
  std::string s;

  template <typename H>
  friend H AbslHashValue(H hash_state, IntAndString int_and_string) {
    return H::combine(std::move(hash_state), int_and_string.s,
                      int_and_string.i);
  }
};

TEST(HashTest, SmallValueOn64ByteBoundary) {
  Hash<IntAndString>()(IntAndString{0, std::string(63, '0')});
}

TEST(HashTest, TypeErased) {
  EXPECT_TRUE((is_hashable<TypeErasedValue<size_t>>::value));
  EXPECT_TRUE((is_hashable<std::pair<TypeErasedValue<size_t>, int>>::value));

  EXPECT_EQ(SpyHash(TypeErasedValue<size_t>(7)), SpyHash(size_t{7}));
  EXPECT_NE(SpyHash(TypeErasedValue<size_t>(7)), SpyHash(size_t{13}));

  EXPECT_EQ(SpyHash(std::make_pair(TypeErasedValue<size_t>(7), 17)),
            SpyHash(std::make_pair(size_t{7}, 17)));

  absl::flat_hash_set<absl::flat_hash_set<int>> ss = {{1, 2}, {3, 4}};
  TypeErasedContainer<absl::flat_hash_set<absl::flat_hash_set<int>>> es = {
      absl::flat_hash_set<int>{1, 2}, {3, 4}};
  absl::flat_hash_set<TypeErasedContainer<absl::flat_hash_set<int>>> se = {
      {1, 2}, {3, 4}};
  EXPECT_EQ(SpyHash(ss), SpyHash(es));
  EXPECT_EQ(SpyHash(ss), SpyHash(se));
}

struct ValueWithBoolConversion {
  operator bool() const { return false; }
  int i;
};

}  // namespace
namespace std {
template <>
struct hash<ValueWithBoolConversion> {
  size_t operator()(ValueWithBoolConversion v) {
    return static_cast<size_t>(v.i);
  }
};
}  // namespace std

namespace {

TEST(HashTest, DoesNotUseImplicitConversionsToBool) {
  EXPECT_NE(absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{0}),
            absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{1}));
}

TEST(HashOf, MatchesHashForSingleArgument) {
  std::string s = "forty two";
  int i = 42;
  double d = 42.0;
  std::tuple<int, int> t{4, 2};

  EXPECT_EQ(absl::HashOf(s), absl::Hash<std::string>{}(s));
  EXPECT_EQ(absl::HashOf(i), absl::Hash<int>{}(i));
  EXPECT_EQ(absl::HashOf(d), absl::Hash<double>{}(d));
  EXPECT_EQ(absl::HashOf(t), (absl::Hash<std::tuple<int, int>>{}(t)));
}

TEST(HashOf, MatchesHashOfTupleForMultipleArguments) {
  std::string hello = "hello";
  std::string world = "world";

  EXPECT_EQ(absl::HashOf(), absl::HashOf(std::make_tuple()));
  EXPECT_EQ(absl::HashOf(hello), absl::HashOf(std::make_tuple(hello)));
  EXPECT_EQ(absl::HashOf(hello, world),
            absl::HashOf(std::make_tuple(hello, world)));
}

template <typename T>
std::true_type HashOfExplicitParameter(decltype(absl::HashOf<T>(0))) {
  return {};
}
template <typename T>
std::false_type HashOfExplicitParameter(size_t) {
  return {};
}

TEST(HashOf, CantPassExplicitTemplateParameters) {
  EXPECT_FALSE(HashOfExplicitParameter<int>(0));
}

}  // namespace