summaryrefslogtreecommitdiff
path: root/absl/hash/hash_benchmark.cc
blob: 8712a01ccaa14e17015743aa997118d220b744a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <type_traits>
#include <typeindex>
#include <utility>
#include <vector>

#include "absl/base/attributes.h"
#include "absl/container/flat_hash_set.h"
#include "absl/hash/hash.h"
#include "absl/random/random.h"
#include "absl/strings/cord.h"
#include "absl/strings/cord_test_helpers.h"
#include "absl/strings/string_view.h"
#include "benchmark/benchmark.h"

namespace {

using absl::Hash;

template <template <typename> class H, typename T>
void RunBenchmark(benchmark::State& state, T value) {
  H<T> h;
  for (auto _ : state) {
    benchmark::DoNotOptimize(value);
    benchmark::DoNotOptimize(h(value));
  }
}

}  // namespace

template <typename T>
using AbslHash = absl::Hash<T>;

class TypeErasedInterface {
 public:
  virtual ~TypeErasedInterface() = default;

  template <typename H>
  friend H AbslHashValue(H state, const TypeErasedInterface& wrapper) {
    state = H::combine(std::move(state), std::type_index(typeid(wrapper)));
    wrapper.HashValue(absl::HashState::Create(&state));
    return state;
  }

 private:
  virtual void HashValue(absl::HashState state) const = 0;
};

template <typename T>
struct TypeErasedAbslHash {
  class Wrapper : public TypeErasedInterface {
   public:
    explicit Wrapper(const T& value) : value_(value) {}

   private:
    void HashValue(absl::HashState state) const override {
      absl::HashState::combine(std::move(state), value_);
    }

    const T& value_;
  };

  size_t operator()(const T& value) {
    return absl::Hash<Wrapper>{}(Wrapper(value));
  }
};

template <typename FuncType>
inline FuncType* ODRUseFunction(FuncType* ptr) {
  volatile FuncType* dummy = ptr;
  return dummy;
}

absl::Cord FlatCord(size_t size) {
  absl::Cord result(std::string(size, 'a'));
  result.Flatten();
  return result;
}

absl::Cord FragmentedCord(size_t size) {
  const size_t orig_size = size;
  std::vector<std::string> chunks;
  size_t chunk_size = std::max<size_t>(1, size / 10);
  while (size > chunk_size) {
    chunks.push_back(std::string(chunk_size, 'a'));
    size -= chunk_size;
  }
  if (size > 0) {
    chunks.push_back(std::string(size, 'a'));
  }
  absl::Cord result = absl::MakeFragmentedCord(chunks);
  (void) orig_size;
  assert(result.size() == orig_size);
  return result;
}

template <typename T>
std::vector<T> Vector(size_t count) {
  std::vector<T> result;
  for (size_t v = 0; v < count; ++v) {
    result.push_back(v);
  }
  return result;
}

// Bogus type that replicates an unorderd_set's bit mixing, but with
// vector-speed iteration. This is intended to measure the overhead of unordered
// hashing without counting the speed of unordered_set iteration.
template <typename T>
struct FastUnorderedSet {
  explicit FastUnorderedSet(size_t count) {
    for (size_t v = 0; v < count; ++v) {
      values.push_back(v);
    }
  }
  std::vector<T> values;

  template <typename H>
  friend H AbslHashValue(H h, const FastUnorderedSet& fus) {
    return H::combine(H::combine_unordered(std::move(h), fus.values.begin(),
                                           fus.values.end()),
                      fus.values.size());
  }
};

template <typename T>
absl::flat_hash_set<T> FlatHashSet(size_t count) {
  absl::flat_hash_set<T> result;
  for (size_t v = 0; v < count; ++v) {
    result.insert(v);
  }
  return result;
}

// Generates a benchmark and a codegen method for the provided types.  The
// codegen method provides a well known entrypoint for dumping assembly.
#define MAKE_BENCHMARK(hash, name, ...)                          \
  namespace {                                                    \
  void BM_##hash##_##name(benchmark::State& state) {             \
    RunBenchmark<hash>(state, __VA_ARGS__);                      \
  }                                                              \
  BENCHMARK(BM_##hash##_##name);                                 \
  }                                                              \
  size_t Codegen##hash##name(const decltype(__VA_ARGS__)& arg);  \
  size_t Codegen##hash##name(const decltype(__VA_ARGS__)& arg) { \
    return hash<decltype(__VA_ARGS__)>{}(arg);                   \
  }                                                              \
  bool absl_hash_test_odr_use##hash##name =                      \
      ODRUseFunction(&Codegen##hash##name);

MAKE_BENCHMARK(AbslHash, Int32, int32_t{});
MAKE_BENCHMARK(AbslHash, Int64, int64_t{});
MAKE_BENCHMARK(AbslHash, Double, 1.2);
MAKE_BENCHMARK(AbslHash, DoubleZero, 0.0);
MAKE_BENCHMARK(AbslHash, PairInt32Int32, std::pair<int32_t, int32_t>{});
MAKE_BENCHMARK(AbslHash, PairInt64Int64, std::pair<int64_t, int64_t>{});
MAKE_BENCHMARK(AbslHash, TupleInt32BoolInt64,
               std::tuple<int32_t, bool, int64_t>{});
MAKE_BENCHMARK(AbslHash, String_0, std::string());
MAKE_BENCHMARK(AbslHash, String_10, std::string(10, 'a'));
MAKE_BENCHMARK(AbslHash, String_30, std::string(30, 'a'));
MAKE_BENCHMARK(AbslHash, String_90, std::string(90, 'a'));
MAKE_BENCHMARK(AbslHash, String_200, std::string(200, 'a'));
MAKE_BENCHMARK(AbslHash, String_5000, std::string(5000, 'a'));
MAKE_BENCHMARK(AbslHash, Cord_Flat_0, absl::Cord());
MAKE_BENCHMARK(AbslHash, Cord_Flat_10, FlatCord(10));
MAKE_BENCHMARK(AbslHash, Cord_Flat_30, FlatCord(30));
MAKE_BENCHMARK(AbslHash, Cord_Flat_90, FlatCord(90));
MAKE_BENCHMARK(AbslHash, Cord_Flat_200, FlatCord(200));
MAKE_BENCHMARK(AbslHash, Cord_Flat_5000, FlatCord(5000));
MAKE_BENCHMARK(AbslHash, Cord_Fragmented_200, FragmentedCord(200));
MAKE_BENCHMARK(AbslHash, Cord_Fragmented_5000, FragmentedCord(5000));
MAKE_BENCHMARK(AbslHash, VectorInt64_10, Vector<int64_t>(10));
MAKE_BENCHMARK(AbslHash, VectorInt64_100, Vector<int64_t>(100));
MAKE_BENCHMARK(AbslHash, VectorInt64_1000, Vector<int64_t>(1000));
MAKE_BENCHMARK(AbslHash, VectorDouble_10, Vector<double>(10));
MAKE_BENCHMARK(AbslHash, VectorDouble_100, Vector<double>(100));
MAKE_BENCHMARK(AbslHash, VectorDouble_1000, Vector<double>(1000));
MAKE_BENCHMARK(AbslHash, FlatHashSetInt64_10, FlatHashSet<int64_t>(10));
MAKE_BENCHMARK(AbslHash, FlatHashSetInt64_100, FlatHashSet<int64_t>(100));
MAKE_BENCHMARK(AbslHash, FlatHashSetInt64_1000, FlatHashSet<int64_t>(1000));
MAKE_BENCHMARK(AbslHash, FlatHashSetDouble_10, FlatHashSet<double>(10));
MAKE_BENCHMARK(AbslHash, FlatHashSetDouble_100, FlatHashSet<double>(100));
MAKE_BENCHMARK(AbslHash, FlatHashSetDouble_1000, FlatHashSet<double>(1000));
MAKE_BENCHMARK(AbslHash, FastUnorderedSetInt64_1000,
               FastUnorderedSet<int64_t>(1000));
MAKE_BENCHMARK(AbslHash, FastUnorderedSetDouble_1000,
               FastUnorderedSet<double>(1000));
MAKE_BENCHMARK(AbslHash, PairStringString_0,
               std::make_pair(std::string(), std::string()));
MAKE_BENCHMARK(AbslHash, PairStringString_10,
               std::make_pair(std::string(10, 'a'), std::string(10, 'b')));
MAKE_BENCHMARK(AbslHash, PairStringString_30,
               std::make_pair(std::string(30, 'a'), std::string(30, 'b')));
MAKE_BENCHMARK(AbslHash, PairStringString_90,
               std::make_pair(std::string(90, 'a'), std::string(90, 'b')));
MAKE_BENCHMARK(AbslHash, PairStringString_200,
               std::make_pair(std::string(200, 'a'), std::string(200, 'b')));
MAKE_BENCHMARK(AbslHash, PairStringString_5000,
               std::make_pair(std::string(5000, 'a'), std::string(5000, 'b')));

MAKE_BENCHMARK(TypeErasedAbslHash, Int32, int32_t{});
MAKE_BENCHMARK(TypeErasedAbslHash, Int64, int64_t{});
MAKE_BENCHMARK(TypeErasedAbslHash, PairInt32Int32,
               std::pair<int32_t, int32_t>{});
MAKE_BENCHMARK(TypeErasedAbslHash, PairInt64Int64,
               std::pair<int64_t, int64_t>{});
MAKE_BENCHMARK(TypeErasedAbslHash, TupleInt32BoolInt64,
               std::tuple<int32_t, bool, int64_t>{});
MAKE_BENCHMARK(TypeErasedAbslHash, String_0, std::string());
MAKE_BENCHMARK(TypeErasedAbslHash, String_10, std::string(10, 'a'));
MAKE_BENCHMARK(TypeErasedAbslHash, String_30, std::string(30, 'a'));
MAKE_BENCHMARK(TypeErasedAbslHash, String_90, std::string(90, 'a'));
MAKE_BENCHMARK(TypeErasedAbslHash, String_200, std::string(200, 'a'));
MAKE_BENCHMARK(TypeErasedAbslHash, String_5000, std::string(5000, 'a'));
MAKE_BENCHMARK(TypeErasedAbslHash, VectorDouble_10,
               std::vector<double>(10, 1.1));
MAKE_BENCHMARK(TypeErasedAbslHash, VectorDouble_100,
               std::vector<double>(100, 1.1));
MAKE_BENCHMARK(TypeErasedAbslHash, VectorDouble_1000,
               std::vector<double>(1000, 1.1));
MAKE_BENCHMARK(TypeErasedAbslHash, FlatHashSetInt64_10,
               FlatHashSet<int64_t>(10));
MAKE_BENCHMARK(TypeErasedAbslHash, FlatHashSetInt64_100,
               FlatHashSet<int64_t>(100));
MAKE_BENCHMARK(TypeErasedAbslHash, FlatHashSetInt64_1000,
               FlatHashSet<int64_t>(1000));
MAKE_BENCHMARK(TypeErasedAbslHash, FlatHashSetDouble_10,
               FlatHashSet<double>(10));
MAKE_BENCHMARK(TypeErasedAbslHash, FlatHashSetDouble_100,
               FlatHashSet<double>(100));
MAKE_BENCHMARK(TypeErasedAbslHash, FlatHashSetDouble_1000,
               FlatHashSet<double>(1000));
MAKE_BENCHMARK(TypeErasedAbslHash, FastUnorderedSetInt64_1000,
               FastUnorderedSet<int64_t>(1000));
MAKE_BENCHMARK(TypeErasedAbslHash, FastUnorderedSetDouble_1000,
               FastUnorderedSet<double>(1000));

// The latency benchmark attempts to model the speed of the hash function in
// production. When a hash function is used for hashtable lookups it is rarely
// used to hash N items in a tight loop nor on constant sized strings. Instead,
// after hashing there is a potential equality test plus a (usually) large
// amount of user code. To simulate this effectively we introduce a data
// dependency between elements we hash by using the hash of the Nth element as
// the selector of the N+1th element to hash. This isolates the hash function
// code much like in production. As a bonus we use the hash to generate strings
// of size [1,N] (instead of fixed N) to disable perfect branch predictions in
// hash function implementations.
namespace {
// 16kb fits in L1 cache of most CPUs we care about. Keeping memory latency low
// will allow us to attribute most time to CPU which means more accurate
// measurements.
static constexpr size_t kEntropySize = 16 << 10;
static char entropy[kEntropySize + 1024];
ABSL_ATTRIBUTE_UNUSED static const bool kInitialized = [] {
  absl::BitGen gen;
  static_assert(sizeof(entropy) % sizeof(uint64_t) == 0, "");
  for (int i = 0; i != sizeof(entropy); i += sizeof(uint64_t)) {
    auto rand = absl::Uniform<uint64_t>(gen);
    memcpy(&entropy[i], &rand, sizeof(uint64_t));
  }
  return true;
}();
}  // namespace

template <class T>
struct PodRand {
  static_assert(std::is_pod<T>::value, "");
  static_assert(kEntropySize + sizeof(T) < sizeof(entropy), "");

  T Get(size_t i) const {
    T v;
    memcpy(&v, &entropy[i % kEntropySize], sizeof(T));
    return v;
  }
};

template <size_t N>
struct StringRand {
  static_assert(kEntropySize + N < sizeof(entropy), "");

  absl::string_view Get(size_t i) const {
    // This has a small bias towards small numbers. Because max N is ~200 this
    // is very small and prefer to be very fast instead of absolutely accurate.
    // Also we pass N = 2^K+1 so that mod reduces to a bitand.
    size_t s = (i % (N - 1)) + 1;
    return {&entropy[i % kEntropySize], s};
  }
};

#define MAKE_LATENCY_BENCHMARK(hash, name, ...)              \
  namespace {                                                \
  void BM_latency_##hash##_##name(benchmark::State& state) { \
    __VA_ARGS__ r;                                           \
    hash<decltype(r.Get(0))> h;                              \
    size_t i = 871401241;                                    \
    for (auto _ : state) {                                   \
      benchmark::DoNotOptimize(i = h(r.Get(i)));             \
    }                                                        \
  }                                                          \
  BENCHMARK(BM_latency_##hash##_##name);                     \
  }  // namespace

MAKE_LATENCY_BENCHMARK(AbslHash, Int32, PodRand<int32_t>);
MAKE_LATENCY_BENCHMARK(AbslHash, Int64, PodRand<int64_t>);
MAKE_LATENCY_BENCHMARK(AbslHash, String9, StringRand<9>);
MAKE_LATENCY_BENCHMARK(AbslHash, String33, StringRand<33>);
MAKE_LATENCY_BENCHMARK(AbslHash, String65, StringRand<65>);
MAKE_LATENCY_BENCHMARK(AbslHash, String257, StringRand<257>);