1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
// Copyright 2022 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CRC_INTERNAL_CRC_INTERNAL_H_
#define ABSL_CRC_INTERNAL_CRC_INTERNAL_H_
#include <cstdint>
#include <memory>
#include <vector>
#include "absl/base/internal/raw_logging.h"
#include "absl/crc/internal/crc.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace crc_internal {
// Prefetch constants used in some Extend() implementations
constexpr int kPrefetchHorizon = ABSL_CACHELINE_SIZE * 4; // Prefetch this far
static_assert(kPrefetchHorizon >= 64, "CRCPrefetchHorizon less than loop len");
// We require the Scramble() function:
// - to be reversible (Unscramble() must exist)
// - to be non-linear in the polynomial's Galois field (so the CRC of a
// scrambled CRC is not linearly affected by the scrambled CRC, even if
// using the same polynomial)
// - not to be its own inverse. Preferably, if X=Scramble^N(X) and N!=0, then
// N is large.
// - to be fast.
// - not to change once defined.
// We introduce non-linearity in two ways:
// Addition of a constant.
// - The carries introduce non-linearity; we use bits of an irrational
// (phi) to make it unlikely that we introduce no carries.
// Rotate by a constant number of bits.
// - We use floor(degree/2)+1, which does not divide the degree, and
// splits the bits nearly evenly, which makes it less likely the
// halves will be the same or one will be all zeroes.
// We do both things to improve the chances of non-linearity in the face of
// bit patterns with low numbers of bits set, while still being fast.
// Below is the constant that we add. The bits are the first 128 bits of the
// fractional part of phi, with a 1 ored into the bottom bit to maximize the
// cycle length of repeated adds.
constexpr uint64_t kScrambleHi = (static_cast<uint64_t>(0x4f1bbcdcU) << 32) |
static_cast<uint64_t>(0xbfa53e0aU);
constexpr uint64_t kScrambleLo = (static_cast<uint64_t>(0xf9ce6030U) << 32) |
static_cast<uint64_t>(0x2e76e41bU);
class CRCImpl : public CRC { // Implemention of the abstract class CRC
public:
using Uint32By256 = uint32_t[256];
CRCImpl() {}
~CRCImpl() override = default;
// The internal version of CRC::New().
static CRCImpl* NewInternal();
void Empty(uint32_t* crc) const override;
// Fill in a table for updating a CRC by one word of 'word_size' bytes
// [last_lo, last_hi] contains the answer if the last bit in the word
// is set.
static void FillWordTable(uint32_t poly, uint32_t last, int word_size,
Uint32By256* t);
// Build the table for extending by zeroes, returning the number of entries.
// For a in {1, 2, ..., ZEROES_BASE-1}, b in {0, 1, 2, 3, ...},
// entry j=a-1+(ZEROES_BASE-1)*b
// contains a polynomial Pi such that multiplying
// a CRC by Pi mod P, where P is the CRC polynomial, is equivalent to
// appending a*2**(ZEROES_BASE_LG*b) zero bytes to the original string.
static int FillZeroesTable(uint32_t poly, Uint32By256* t);
virtual void InitTables() = 0;
private:
CRCImpl(const CRCImpl&) = delete;
CRCImpl& operator=(const CRCImpl&) = delete;
};
// This is the 32-bit implementation. It handles all sizes from 8 to 32.
class CRC32 : public CRCImpl {
public:
CRC32() {}
~CRC32() override {}
void Extend(uint32_t* crc, const void* bytes, size_t length) const override;
void ExtendByZeroes(uint32_t* crc, size_t length) const override;
void Scramble(uint32_t* crc) const override;
void Unscramble(uint32_t* crc) const override;
void UnextendByZeroes(uint32_t* crc, size_t length) const override;
void InitTables() override;
private:
// Common implementation guts for ExtendByZeroes and UnextendByZeroes().
//
// zeroes_table is a table as returned by FillZeroesTable(), containing
// polynomials representing CRCs of strings-of-zeros of various lenghts,
// and which can be combined by polynomial multiplication. poly_table is
// a table of CRC byte extension values. These tables are determined by
// the generator polynomial.
//
// These will be set to reverse_zeroes_ and reverse_table0_ for Unextend, and
// CRC32::zeroes_ and CRC32::table0_ for Extend.
void ExtendByZeroesImpl(uint32_t* crc, size_t length,
const uint32_t zeroes_table[256],
const uint32_t poly_table[256]) const;
uint32_t table0_[256]; // table of byte extensions
uint32_t zeroes_[256]; // table of zero extensions
// table of 4-byte extensions shifted by 12 bytes of zeroes
uint32_t table_[4][256];
// Reverse lookup tables, using the alternate polynomial used by
// UnextendByZeroes().
uint32_t reverse_table0_[256]; // table of reverse byte extensions
uint32_t reverse_zeroes_[256]; // table of reverse zero extensions
CRC32(const CRC32&) = delete;
CRC32& operator=(const CRC32&) = delete;
};
// Helpers
// Return a bit mask containing len 1-bits.
// Requires 0 < len <= sizeof(T)
template <typename T>
T MaskOfLength(int len) {
// shift 2 by len-1 rather than 1 by len because shifts of wordsize
// are undefined.
return (T(2) << (len - 1)) - 1;
}
// Rotate low-order "width" bits of "in" right by "r" bits,
// setting other bits in word to arbitrary values.
template <typename T>
T RotateRight(T in, int width, int r) {
return (in << (width - r)) | ((in >> r) & MaskOfLength<T>(width - r));
}
// RoundUp<N>(p) returns the lowest address >= p aligned to an N-byte
// boundary. Requires that N is a power of 2.
template <int alignment>
const uint8_t* RoundUp(const uint8_t* p) {
static_assert((alignment & (alignment - 1)) == 0, "alignment is not 2^n");
constexpr uintptr_t mask = alignment - 1;
const uintptr_t as_uintptr = reinterpret_cast<uintptr_t>(p);
return reinterpret_cast<const uint8_t*>((as_uintptr + mask) & ~mask);
}
// Return a newly created CRC32AcceleratedX86ARMCombined if we can use Intel's
// or ARM's CRC acceleration for a given polynomial. Return nullptr otherwise.
CRCImpl* TryNewCRC32AcceleratedX86ARMCombined();
// Return all possible hardware accelerated implementations. For testing only.
std::vector<std::unique_ptr<CRCImpl>> NewCRC32AcceleratedX86ARMCombinedAll();
} // namespace crc_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CRC_INTERNAL_CRC_INTERNAL_H_
|